[1] |
杨云, 宋梦然, 于萍,等. 人造沸石对氨氮废水的吸附及其电化学再生研究[J]. 工业水处理, 2017, 37(10):65-68.
YANG Y, SONG M G, YU P, et al. Research on the artificial zeolite adsorption for ammonia nitrogen wastewater and its electrochemical regeneration[J]. Industrial Water Treatment, 2017, 37(10):65-68(in Chinese).
|
[2] |
丁真贞, 孟绫, 董建勋,等. 改性斜发沸石处理高浓度氨氮废水[J]. 环境化学, 2012, 31(8):1232-1237.
DING Z Z, MENG L, DONG J X, et al. Removal of ammonnia-nitrogen in simulated NH4+-N wastewater with modified clinoptilolite[J]. Environmental Chemistry, 2012, 31(8):1232-1237(in Chinese).
|
[3] |
李丹,沈存花,刘佛财,等. 低浓度氨氮废水处理技术研究进展[J]. 应用化工,2018,47(6):1274-1280.
LI D, SHEN C H, LIU F C, et al. Progress in the treatment technology of low-concentration ammonium-nitrogen water[J]. Applied Chemical Industry, 2018, 47(6):1274-1280(in Chinese).
|
[4] |
赖祖明, 胡琴, 赖兴. 一种新型高浓度氨氮废水资源化回收工艺的研发和应用[J]. 江汉石油职工大学学报, 2017, 30(1):59-61.
LAI Z M, HU Q, LAI X. Development and application of a new-type resource recycling processing of high-concentration ammonia-nitrogen wastewater[J]. Journal of Jiang Han Petroleum University of Staff and Workers, 2017, 30(1):59-61(in Chinese).
|
[5] |
ZHANG M, ZHANG H, XU D, et al. Removal of ammonium from aqueous solutions using zeolite synthesized from fly ash by a fusion method[J]. Desalination, 2011, 271(1-3):111-121.
|
[6] |
DONG Y B, LIN H. Ammonia nitrogen removal from aqueous solution using zeolite modified by microwave-sodium acetate[J]. Journal of Central South University, 2016, 23:1345-1352.
|
[7] |
OTAL E, VILCHES L F, LUNA Y, et al. Ammonium ion adsorption and settle ability improvement achieved in a synthetic zeolite-amended activated sludge[J]. Chinese Journal of Chemical Engineering, 2013, 21(9):1062-1068.
|
[8] |
周健, 胡晓静, 李凯荣, 等. 4A分子筛处理高浓度氨氮废水[J]. 环境化学, 2010, 29(5):943-947.
ZHOU J, HU X J, LI K R, et al. Removal of high-concentration ammonia-nitrogen wastewater with 4A molecular sieve[J]. Environmental Chemistry, 2010, 29(5):943-947(in Chinese).
|
[9] |
LEI L, LI X, ZHANG X. Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite[J]. Separation & Purification Technology, 2008, 58(3):359-366.
|
[10] |
WANG S, PENG Y. Natural zeolites as effective adsorbents in water and wastewater treatment[J]. Chemical Engineering Journal,2010, 156(1):11-24.
|
[11] |
张新颖, 余杨波, 王美银,等. 天然斜发沸石的氨氮改性吸附与化学再生[J]. 环境化学, 2016, 35(5):1058-1066.
ZHANG X Y, YU Y B, WANG M Y, et al. Modification and chemical regeneration of natural clinoptilolite for ammonium nitrogen adsorption[J]. Environmental Chemistry, 2016, 35(5):1058-1066(in Chinese).
|
[12] |
桂花, 谭伟, 李彬,等. 4A沸石分子筛处理中低浓度氨氮废水[J]. 环境工程学报, 2014, 8(5):1944-1950.
GUI H, TANW, LI B, et al. Removal ammonia-nitrogen from medium-low concentration wastewater by 4A zeolite molecular sieve[J]. Chinese Journal of Environmental Engineering, 2014, 8(5):1944-1950(in Chinese).
|
[13] |
张曦, 吴为中, 温东辉,等. 氨氮在天然沸石上的吸附及解吸[J]. 环境化学, 2003, 22(2):166-171.
ZHANG X, WU W Z, WEN D H, et al. Adsorption and desorption of ammonia-nitrogen onto natural zeolite[J]. Environmental Chemistry, 2003, 22(2):166-171(in Chinese).
|
[14] |
张燕, 吕宪俊, 曹晓强,等. NaCl改性人造沸石去除废水中氨氮的性能及其影响因素[J]. 生态与农村环境学报, 2013, 29(4):507-511.
ZHANG Y, LV X J, CAO X Q, et al. Performance of NaCl-modified artificial zeolite in removing ammonia nitrogen from wastewater and its influencing factors[J]. Journal of Ecology and Rural Environment, 2013, 29(4):507-511(in Chinese).
|
[15] |
DONG Y, LIN H, HE Y. Correlation between physicochemical properties of modified clinoptilolite and its performance in the removal of ammonia-nitrogen[J]. Environmental Monitoring & Assessment, 2017, 189(3):107.
|
[16] |
YUSOF A M, KEAT L K, IBRAHIM Z, et al. Kinetic and equilibrium studies of the removal of ammonium ions from aqueous solution by rice husk ash-synthesized zeolite Y and powdered and granulated forms of mordenite.[J]. Journal of Hazardous Materials, 2010, 174(1-3):380-385.
|
[17] |
SUGAWARA T, MATSUURA Y, ANZAI T, et al. Removal of ammonia nitrogen from water by magnetic zeolite and high-gradient magnetic separation[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4):1-4.
|
[18] |
WANG T, QU G, REN J, et al. Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma.[J]. Water Research, 2015, 2(1), 89:28-38.
|
[19] |
孙玉, 田露, 李蕊,等. Fenton-like/TiO2催化介质阻挡放电体系对活性艳蓝的降解[J]. 环境工程学报, 2016, 10(6):2819-2825.
SUN Y, TIAN L, LI R, et al. Degradation of reactive brilliant blue by dielectric barrier discharge combined with Fenton-like/TiO2[J]. Chinese Journal of Environmental Engineering, 2016, 10(6):2819-2825(in Chinese).
|
[20] |
WU H X,FANG Z,ZHOU T,et al.Discoloration of congo red by rod-plate dielectric barrier discharge processes at atmospheric pressure[J].Plasma Science & Technology,2016,18(5):500-505.
|
[21] |
赵坤, 党小庆, 朱海瀛,等. 负载型催化剂联合低温等离子体去除甲苯[J]. 环境工程学报, 2016, 10(7):3756-3762.
ZHAO K, DANG X Q, ZHU H Y, et al. Removal of toluene using of non-thermal plasma combined with supported catalysts[J]. Chinese Journal of Environmental Engineering, 2016, 10(7):3756-3762(in Chinese).
|
[22] |
董冰岩, 黄尝伟, 江小华,等. 脉冲放电协同负载型氧化物催化剂降解甲醛[J]. 环境工程学报, 2015, 9(10):4947-4952.
DONG B Y, HUANG C W, JIANG X H, et al. Degradation of formaldehyde by pulse discharge combined with supported oxide catalyst[J]. Chinese Journal of Environmental Engineering, 2015, 9(10):4947-4952(in Chinese).
|
[23] |
孙明, 郝夏桐, 鲁晓辉,等. 气液两相脉冲放电反应器的设计及其对酸性橙Ⅱ的降解效果[J]. 高电压技术, 2015,41(2):498-503.
SUN M, HAO X T, LU X H, et al. A reactor design of gas-liquid two-phase pulse discharge and its performance in degrading acid orangeⅡ[J]. High Voltage Engineering, 2015, 41(2):498-503(in Chinese).
|
[24] |
于欣, 刘洪波, 孔令江. MCM-41介孔分子筛水热结构稳定性对介质阻挡放电脱除甲苯的影响[J]. 环境化学, 2007,26(3):280-283.
YU X, LIU H B, KONG L J, et al. The effects of hydrothermal stabilization of MCM-41 on plasma-catalysis process for removing toluene[J]. Environmental Chemistry, 2007, 26(3):280-283(in Chinese).
|
[25] |
武海霞, 殷宝剑, 方志,等. 铋酸钠催化大气压介质阻挡放电降解苯胺[J]. 强激光与粒子束, 2017, 29(5):148-154.
WU H X, YIN B J, FANG Z, et al. Degradation of aniline by dielectric barrier discharge combined with sodium bismuthate[J].High Power Laser and Particle Beams, 2017, 29(5):148-154(in Chinese).
|
[26] |
吕双春, 葛云丽, 赵倩,等. 高硅分子筛的合成及其在VOCs吸附去除领域的应用[J]. 环境化学, 2017, 36(7):1492-1505.
LV S C, GE Y L, ZHAO Q, et al. Synthesis of high silica molecular sieves and their application in VOCs adsorption removal[J]. Industrial Water Treatment, 2017, 36(7):1492-1505(in Chinese).
|
[27] |
曲珍杰. 超声强化人造沸石处理高浓度氨氮废水[D]. 南京:南京工业大学, 2016. QU Z J. Ultrasonic treatment of high-concentration ammonia nitrogen wastewater by modified zeilite[D]. Nanjing:Nanjing Technology University, 2016(in Chinese).
|
[28] |
PÂRVULESCU V I, MAGUREANU M, LUKES P. Plasma chemistry and catalysis in gases and liquids[M].Germany:Wiley-VCH Verlag GmbH & Co. KGaA, 2012.
|
[29] |
OU H H, LIAO C H, LIOU Y H, et al. Photocatalytic oxidation of aqueous ammonia over microwave-induced titanate nanotubes[J]. Environmental Science & Technology, 2008, 42(12):4507-4512.
|
[30] |
任海涛.Ag增强TiO2和g-C3N4复合材料光催化转化含氮和苯酚污染物的研究[D]. 天津:天津大学,2015. REN H T. Photocatalytic transformation of nitrogen and phenol contaminants by Ag enhanced TiO2 and g-C3N4
composites[D]. Tianjin:Tianjin University, 2015(in Chinese).
|
[31] |
姜理英, 曹书岭, 朱润晔,等. 介质阻挡放电对氯苯的降解特性及其产物分析[J]. 环境科学, 2015, 36(3):831-838.
JIANG L Y, CAO S L, ZHU R H, et al. Analysis of characteristics and products of chlorobenzene degradation with dielectric barrier discharge[J]. Environmental Chemistry, 2015, 36(3):831-838(in Chinese).
|
[32] |
孙广垠, 宋萌. 低温等离子体技术降解甲基橙染料废水[J]. 中国给水排水, 2016, 32(21):96-99.
SUN G Y, SONG M. Degradation of methyl orange dye wastewater by non-thermal plasma technology[J]. China Water & Wastewater, 2016, 32(21):96-99(in Chinese).
|