[1] STOCKER T F, QIN D, PLATTNER G, et al. IPCC(intergovernmental panel on climate change): Climate Change 2013: The Physical Science Basis. Contribution of working Group I to the fifth assessment report of the intergovernmental panel on climate change[C]. Cambridge Univ. Press, Cambridge, UK, 2013.
[2] POPE C A, DOCKERY D W. Health effects of fine particulate air pollution: Lines that connect[J]. Air Repair, 2006, 56(10):709-742.
[3] FANG M, CHAN C K, YAO X. Managing air quality in a rapidly developing nation: China[J]. Atmospheric Environment, 2009, 43(1):79-86.
[4] HUANG R J, ZHANG Y, BOZZETTI C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521):218-222.
[5] KANAKIDOU M, SEINFELD J H, PANDIS S N, et al. Organic aerosol and global climate modelling: A review[J]. Atmospheric Chemistry & Physics Discussions, 2004, 4(5):1053-1123.
[6] ZHANG Q, JIMENEZ J L, CANAGARATNA M R, et al.Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes[J]. Geophysical Research Letters, 2007, 34(13):L13801, doi:10.1029/2007GL029979.
[7] SCHAUER J J, ROGGE W F, HILDEMANN L M, et al. Source apportionment of airborne particulate matter using organic compounds as tracers[J]. Atmospheric Environment, 2007, 41(22): 241-259.
[8] HALLQUIST M, WENGER J C, BALTENSPERGER U, et al. The formation, properties and impact of secondary organic aerosol: Current and emerging issues[J]. Atmospheric Chemistry & Physics, 2009, 9(1):5155-5236.
[9] DOCHERTY K S, STONE E A, ULBRICH I M, et al. Apportionment of primary and secondary organic aerosols in southern California during the 2005 study of organic aerosols in riverside (SOAR-1)[J]. Environmental Science & Technology, 2008, 42(20):7655-7662.
[10] GOLDSTEIN A H, GALBALLY I E. Known and unexplored organic constituents in the earth's atmosphere[J].Environmental Science & Technology, 2007, 41(5): 1514-1521.
[11] MURPHY D M, CZICZO D J, FROYD K D, et al. Single-particle mass spectrometry of tropospheric aerosol particles[J]. Journal of Geophysical Research Atmospheres, 2006, 111: D23S23, doi:10.1029/2006JD007340.
[12] ROBINSON A L, DONAHUE N M, SHRIVASTAVA M K, et al. Rethinking organic aerosols: Semivolatile emissions and photochemical aging[J]. Science, 2007, 315(5816): 1259-1262.
[13] GRIESHOP A P, DONAHUE N M, ROBINSON A L. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 2: Analysis of aerosol mass spectrometer data[J].Atmospheric Chemistry & Physics Discussions, 2009,9: 2227-2240.
[14] GRIESHOP A P, LOGUE J M, DONAHUE N M, et al. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1:Measurement and simulation of organic aerosol evolution[J]. Atmospheric Chemistry & Physics, 2009,9: 1263-1277.
[15] DE GOUW J A, MIDDLEBROOK A M, WARNEKE C, et al. Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002[J]. Journal of Geophysical Research-Atmospheres, 2005, 110(D16): D16305, doi:10.1029/2004JD005623.
[16] HEALD C L, JACOB D J, PARK R J, et al. A large organic aerosol source in the free troposphere missing from current models[J]. Geophysical Research Letters, 2005, 32(18):109-127.
[17] VOLKAMER R, JIMENEZ J L, MARTINI F S, et al. Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected[J]. Geophysical Research Letters, 2006, 33(17):254-269.
[18] DONAHUE N M, ROBINSON A L, STANIER C O, et al. Coupled partitioning, dilution, and chemical aging of semivolatile organics.[J]. Environmental Science & Technology, 2006, 40(8):2635-2643.
[19] LIPSKY E M, ROBINSON A L. Effects of dilution on fine particle mass and partitioning of semivolatile organics in diesel exhaust and wood smoke[J]. Environmental Science & Technology, 2006, 40(1):155-162.
[20] HUFFMAN J A, DOCHERTY K S, AIKEN A C, et al. Chemically-resolved aerosol volatility measurements from two megacity field studies[J]. Atmospheric Chemistry & Physics, 2009, 9(18):7161-7182.
[21] HUFFMAN J A, DOCHERTY K S, MOHR C, et al. Chemically-resolved volatility measurements of organic aerosol from different sources[J]. Environmental Science & Technology, 2009, 43(14):5351-5357.
[22] SAGE A M, WEITKAMP E A, ROBINSON A L, et al. Evolving mass spectra of the oxidized component of organic aerosol: Results from aerosol mass spectrometer analyses of aged diesel emissions[J]. Atmospheric Chemistry & Physics, 2008, 8(5): 1139-2008.
[23] JIMENEZ J L, CANAGARATNA M R, DONAHUE N M, et al. Evolution of organic aerosols in the atmosphere: A new framework connecting measurements to models[J]. Science, 2009, 326:1525-1535.
[24] FRASER M P, CASS G R, SIMONEIT B R T, et al. Air quality model evaluation data for organics. 4. C 2 -C 36 nonaromatic hydrocarbons[J]. Environmental Science & Technology, 1997, 31(8):2356-2367.
[25] CHAN A W H, KAUTZMAN K E, CHHABRA P S, et al. Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs)[J]. Atmospheric Chemistry & Physics, 2009, 9(9):3049-3060.
[26] PRESTO A A, MIRACOLO M A, KROLL J H, et al. Intermediate-volatility organic compounds: A potential source of ambient oxidized organic aerosol[J]. Environmental Science & Technology, 2009, 43(13):4744-4749.
[27] RIVA M, HEALY R M, FLAUD P M, et al. Gas- and particle-phase products from the photooxidation of acenaphthene and acenaphthylene by OH radicals[J]. Atmospheric Environment, 2017, 151:34-44.
[28] 王振亚, 郝立庆, 张为俊. 二次有机气溶胶形成的化学过程[J]. 化学进展, 2005, 17(4):732-739. WANG Z Y, HAO L Q, ZHANG W J. Chemical processes on the formation of secondary organic aerosols[J].Progress in Chemitry,2005,2005, 17(4):732-739(in Chinese).
[29] 王振亚, 郝立庆, 张为俊. 二次有机气溶胶的气体/粒子分配理论[J]. 化学进展, 2007, 19(1):93-100. WANG Z Y, HAO L Q, ZHANG W J.Gas Particle partitioning theory for secondary organic aerosol[J].Progress in Chemistry, 2007, 19(1):93-100(in Chinese).
[30] 谢绍东, 田晓雪. 挥发性和半挥发性有机物向二次有机气溶胶转化的机制[J]. 化学进展, 2010, 22(4):727-733. XIE S D, TIAN X X. Formation mechanism of secondary organic aerosols from the reaction of volatile and semi-volatile compounds[J]. Progress in Chemitry,2010, 22(4):727-733(in Chinese).
[31] 李莹莹, 李想, 陈建民. 植物释放挥发性有机物(BVOC)向二次有机气溶胶(SOA)转化机制研究[J]. 环境科学, 2011, 32(12):3588-3592. LI Y Y, LI X, CHENG J M. Study on transformation mechanism of SOA from biogenic VOC under UV-B condition[J]. Environmental Science, 2011, 32(12):3588-3592(in Chinese).
[32] 陈文泰, 邵敏, 袁斌,等. 大气中挥发性有机物(VOCs)对二次有机气溶胶(SOA)生成贡献的参数化估算[J]. 环境科学学报, 2013, 33(1):163-172. CHENG W T, SHAO M,YUAN B, et al. Parameterization of contribution to secondary organic aerosol (SOA) formation from ambient volatile organic compounds (VOCs)[J]. Acta Scientiae Circumstantiae, 2013, 33(1): 163-172(in Chinese).
[33] 李时政, 马嫣, 郑军, 等. α-蒎烯臭氧氧化反应中二次有机气溶胶理化特性与云凝结核活性[J]. 环境化学, 2015,34(9): 1633-1641. LI S Z, MA Y, ZHENG J, et al. Physicochemical properties and cloud nucleating abilities of secondary organic aerosol from α-pinene ozonolysis[J]. Environmental Chemistry, 2015, 34(9): 1633-1641(in Chinese).
[34] 陈卓, 刘峻峰, 陶玮, 等. 中国地区二次有机气溶胶的时空分布特征和来源分析[J]. 环境科学, 2016, 37(8):2815-2822. CHENG Z, LIU J F, TAO W, et al. Spatiotemporal distribution and source attribution of SOA in China [J]. Environmental Science, 2016, 37(8):2815-2822(in Chinese).
[35] 葛跃, 王明新, 孙向武,等. 长三角地区秋冬季大气PM2.5含量空间变异特征[J]. 环境化学, 2016, 35(8):1698-1706. GE Y, WANG M X, SUN X W, et al. Spatial variations of atmospheric PM2.5 concentration in autumn and winter in Yangtze River Delta[J]. Environmental Chemistry, 2016, 35(8): 1698-1706(in Chinese).
[36] XU S, LIU W, TAO S. Emission of polycyclic aromatic hydrocarbons in China[J]. Environmental Science & Technology, 2006, 40(3):702-708.
[37] YUAN B, HU W W, SHAO M, et al. VOC emissions, evolutions and contributions to SOA formation at a receptor site in Eastern China[J]. Atmospheric Chemistry & Physics, 2013, 13(17):8815-8832.
[38] ATKINSON R, AREY J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review[J]. Atmospheric Environment, 2003, 37(1):197-219.
[39] ATKINSON R, ASCHMANN S M. Kinetics of the reactions of acenaphthene and acenaphthylene and structurally-related aromatic compounds with OH and NO3 radicals, N2O5 and O3 at 296 ±2 K[J]. International Journal of Chemical Kinetics, 1988, 20(20):513-539.
[40] ATKINSON R, AREY J. Mechanisms of the gas -phase reactions of aromatic Hydrocarbons and PAHs with OH and NO3 Radicals[J]. Polycyclic Aromatic Compounds, 2007, 38(39):15-40.
[41] RIVA M, HEALY R M, FLAUD P M, et al. Kinetics of the gas-phase reactions of chlorine atoms with naphthalene, acenaphthene, and acenaphthylene[J]. Journal of Physical Chemistry A, 2014, 118(20):3535-3540.
[42] PALM B B, CAMPUZANO-JOST P, DAY D A, et al. Secondary organic aerosol formation from in situ OH, O3, and NO3 oxidation of ambient forest air in an oxidation flow reactor[J]. Atmospheric Chemistry & Physics, 2017, 17(8):5331-5354.
[43] PALM B B, CAMPUZANOJOST P, ORTEGA A M, et al. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor[J]. Atmospheric Chemistry & Physics, 2016, 15(21):30409-30471.
[44] KROLL J H, SEINFELD J H. Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere[J]. Atmospheric Environment, 2008, 42(16): 3593-3624.
[45] HENZE D K, SEINFELD J H, NG N L, et al. Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: High- vs low-yield pathways[J]. Atmospheric Chemistry & Physics Discussions, 2008, 8(9):2405-2420.
[46] PYE H O T, SEINFELD J H. A global perspective on aerosol from low-volatility organic compounds[J]. Atmospheric Chemistry & Physics, 2010, 10(9):4377-4401.
[47] ORLANDO J J, TYNDALL G S. Laboratory studies of organic peroxy radical chemistry: An overview with emphasis on recent issues of atmospheric significance[J]. Chemical Society Reviews, 2012, 41(19):6294-6317.
[48] CHEN C L, KACARAB M, TANG P, et al. SOA formation from naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene photooxidation[J]. Atmospheric Environment, 2016, 131: 424-433.
[49] AREY J, ASCHMANN S M, KWOK E S C, et al. Alkyl nitrate, hydroxyalkyl nitrate, and hydroxycarbonyl formation from the NO<i>x-air photooxidations of C 5-C 8 n alkanes[J]. Journal of Physical Chemistry A, 2001, 105(6):1020-1027.
[50] CHAN A W H, CHAN M N, SURRATT J D, et al. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation[M].Atmospheric Chemistry & Physics. 2010:7169-7188.
[51] ZIEMANN P J. Evidence for low-volatility diacyl peroxides as a nucleating agent and major component of aerosol formed from reactions of O3 with cyclohexene and homologous compounds[J]. Journal of Physical Chemistry A, 2002, 106(17):4390-4402.
[52] WANG L, ATKINSON R, AREY J. Dicarbonyl products of the OH radical-initiated reactions of naphthalene and the C1- and C2-alkylnaphthalenes[J]. Environmental Science & Technology, 2007, 41(8):2803-2810.
[53] KAUTZMAN K E, SURRATT J D, CHAN M N, et al. Chemical composition of gas- and aerosol-phase products from the photooxidation of naphthalene[J]. Journal of Physical Chemistry A, 2010, 114(2):913-934.
[54] RIVA M, HEALY R M, FLAUD P M, et al. Gas- and particle-phase products from the chlorine-initiated oxidation of polycyclic aromatic hydrocarbons (PAHs)[J]. Journal of Physical Chemistry A, 2015, 119(45):11170-11181.
[55] RIVA M, HEALY R M, TOMAZ S, et al. Gas and particulate phase products from the ozonolysis of acenaphthylene[J]. Atmospheric Environment, 2016, 142:104-113.
[56] REISEN F, AREY J. Reactions of hydroxyl radicals and ozone with acenaphthene and acenaphthylene[J]. Environmental Science & Technology, 2002, 36(20):4302-4311.
[57] PHOUSONGPHOUANG P T, AREY J. Rate constants for the gas-phase reactions of a series of alkylnaphthalenes with the OH radica[J]. Environmental Science & Technology, 2002, 36(9):1947-1952.
[58] PHOUSONGPHOUANG P T, AREY J. Rate constants for the gas-phase reactions of a series of alkylnaphthalenes with the nitrate radical[J]. Environmental Science & Technology, 2003, 37(2):308-313.
[59] ZHOU S, WENGER J C. Kinetics and products of the gas-phase reactions of acenaphthene with hydroxyl radicals, nitrate radicals and ozone[J].Atmospheric Environment, 2013a, 72:97-104.
[60] ZHOU S, WENGER J C. Kinetics and products of the gas-phase reactions of acenaphthylene with hydroxyl radicals, nitrate radicals and ozone[J]. Atmospheric Environment, 2013b, 75:103-112.
[61] KLEINDIENST T E, JAOUI M, LEWANDOWSKI M, et al. The formation of SOA and chemical tracer compounds from the photooxidation of naphthalene and its methyl analogs in the presence and absence of nitrogen oxides[J]. Atmospheric Chemistry & Physics Discussions, 2012, 12(5):8711-8726.
[62] SHAKYA K M, GRIFFIN R J. Secondary organic aerosol from photooxidation of polycyclic aromatic hydrocarbons[J]. Environmental Science & Technology, 2010, 44(21): 8134-8139.
[63] TKACIK D S, PRESTO A A, DONAHUE N M, et al. Secondary organic aerosol formation from intermediate-volatility organic compounds: Cyclic, linear, and branched alkanes[J]. Environmental Science & Technology, 2012, 46(16): 8773-8781.
[64] PRESTO A A, MIRACOLO M A, DONAHUE N M, et al. Secondary organic aerosol formation from high-NOx photo-oxidation of low volatility precursors: n-alkanes[J].Environmental Science & Technology, 2010, 44(6): 2029-2034.
[65] PANKOW J F. An absorption-model of gas–particle partitioning of organic compounds in the atmosphere[J]. Atmospheric Environment, 1994, 28(2): 185-188.
[66] PANKOW J F. An absorption-model of the gas aerosol partitioning involved in the formation of secondary organic aerosol[J]. Atmospheric Environment, 1994, 28(2): 189-193.
[67] ODUM J R, HOFFMANN T, BOWMAN F, et al. Gas/particle partitioning and secondary organic aerosol yields[J]. Environmental Science & Technology, 1996, 30(8): 2580-2585.
[68] SCHAUER J J, KLEEMAN M J, CASS G R, et al. Measurement of emissions from air pollution sources. 2. C1 through C30 organic compounds from medium duty diesel trucks[J].Environmental Science Technology, 1999, 33(10): 1578-1587.
[69] SCHAUER J J, KLEEMAN M J, CASS G R, et al.Measurement of emissions from air pollution sources. 5. C1-C32 organic compounds from gasoline-powered motor vehicles[J].Environmental Science Technology, 2002, 36 (6): 1169-1180.
[70] RAVINDRA K, SOKHI R, GRIEKEN R V. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation[J]. Atmospheric Environment, 2008, 42(13): 2895-2921.
[71] PACIGA A, KARNEZI E, KOSTENIDOU E, et al. Volatility of organic aerosol and its components in the megacity of Paris[J].Atmospheric Chemistry & Physics, 2016, 16(4): 2013-2023.
[72] LIU H, MAN H Y, CUI H Y, et al. An updated emission inventory of vehicular VOCs and IVOCs in China[J].Atmospheric Chemistry & Physics, 2017, 17(20): 12709-12724.
[73] LOUVARIS E E, FLOROU K, KARNEZI E, et al. Volatility of source apportioned wintertime organic aerosol in the city of Athens[J].Atmospheric Environment, 2017, 158:138-147.
[74] HAYES P L, CARLTON A G, BAKER K R, et al. Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010[J].Atmospheric Chemistry & Physics, 2015, 15(10): 5773-5801.
[75] ORTEGA A M, HAYES P L, PENG Z, et al. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area[J].Atmospheric Chemistry & Physics, 2016, 16(11): 7411-7433.
[76] BAHREINI R, MIDDLEBROOK A M, GOUW J A D, et al. Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass[J].Geophysical Research Letters, 2012, 39: L06805, doi:10.1029/2011GL050718, 2012.
[77] RYERSON T B, ANDREWS A E, ANGEVINE W M, et al. The 2010 California research at the nexus of air quality and climate change (CalNex) field study[J].Journal of Geophysical Research Atmospheres, 2013, 118(11):5830-5866.
[78] MA P K, ZHAO Y, ROBINSON A L, et al. Evaluating the impact of new observational constraints on P-S/IVOC emissions, multi-generation oxidation, and chamber wall losses on SOA modeling for Los Angeles, CA[J]. Atmospheric Chemistry & Physics, 2017, 17(15):9237-9259.
[79] DZEPINA K, VOLKAMER R M, MADRONICH S, et al. Evaluation of recently-proposed secondary organic aerosol models for a case study in Mexico City[J].Atmospheric Chemistry & Physics, 2009, 9(15):5681-5709.
[80] GAYDOS T M, PINDER R W, KOO P B, et al. Development and application of a three-dimensional aerosol chemical transport model, PMCAMx[J]. Atmospheric Environment, 2007, 41(12): 2594-2611.
[81] SHRIVASTAVA M K, LANE T E, DONAHUE N M, et al. Effects of gas particle partitioning and aging of primary emissions on urban and regional organic aerosol concentrations[J]. Journal of Geophysical Research Atmospheres, 2008, 113(D18), doi: 10.1029/2007jd009735.
[82] HODZIC A, JIMENEZ J L, MADRONICH S, et al. Modeling organic aerosols in a megacity: Potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation[J].Atmospheric Chemistry & Physics, 2010, 10(1): 5491-5514.
[83] MURPHY B N, PANDIS S N. Simulating the formation of semivolatile primary and secondary organic aerosol in a regional chemical transport model[J].Environmental Science & Technology, 2009, 43(13): 4722-4728.
[84] ZHANG X, CAPPA C D, JATHAR S H, et al. Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(16):5802-5807.
[85] KRECHMER J E, PAGONIS D, ZIEMANN P J, et al. Quantification of gas-wall partitioning in teflon environmental chambers using rapid bursts of low-volatility oxidized species generated in situ[J]. Environmental Science & Technology, 2016, 50(11): 5757-5765.
[86] WORTON D R, ISAACMAN G, GENTNER D R, et al. Lubricating oil dominates primary organic aerosol emissions from motor vehicles[J]. Environmental Science & Technology, 2014, 48(7): 3698-3706.
[87] ZHAO Y, HENNIGAN C J, MAY A A, et al. Intermediate-volatility organic compounds: A large source of secondary organic aerosol[J].Environmental Science & Technology, 2014, 48(23): 13743-13750.
[88] TSIMPIDI A P, KARYDIS V A, ZAVALA M, et al. Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area[J].Atmospheric Chemistry & Physics, 2010, 10(2): 525-546.