[1] ZHANG S J, LIU X T, WANG M S, et al. Correction to diketone-mediated photochemical processes for target-selective degradation of dye pollutants[J]. Environmental Science & Technology, 2014, 1(2):167-171.
[2] WANG M S, LIU X T, PAN B C, et al. Photodegradation of acid orange 7 in a UV/Acetylacetone process[J]. Chemosphere, 2013, 93(11):2877-2882.
[3] CHEN Z H, SONG X J, ZHANG S J, et al. Acetylacetone as an efficient electron shuttle for concerted redox conversion of arsenite and nitrate in the opposite direction[J]. Water Research, 2017, 124:331-340.
[4] SONG X J, WU B D, ZHANG S J. Decoloration of alizarin red (an anthraquinone dye) with the UV/Acetylacetone process[J]. Acta Chimica Sinica, 2014, 72(4):461-466.
[5] MOFADDEL N, BAR N, VILLEMIN D, et al. Determination of acidity constants of enolisable compounds by capillary electrophoresis[J]. Analytical & Bioanalytical Chemistry, 2004, 380(4):664-668.
[6] 韩春霞, 塔娜, 李城镐.染料降解产物鉴定方法及降解机理研究进展[J]. 环境化学, 2017, 36(5):1156-1165. HAN C X, TA N, LI C H. Research progress on identification methods and degradation mechanism of dye degradation products[J]. Environmental Chemistry, 2017, 36(5):1156-1165(in Chinese).
[7] 陈晔, 陈刚, 陈亮, 等. 菌株 Enterobactor sp. S8 对不同结构偶氮染料脱色性能的影响[J]. 环境化学, 2011, 30(4):838-842. CHEN Y, CHEN G, CHEN L, et al. Decolorization of azo dyes with different molecular structure by Enterobactor sp. S8 [J]. Environmental Chemistry, 2011, 30(4):838-842(in Chinese).
[8] 邢其毅, 裴伟伟, 徐瑞秋, 等.基础有机化学[M].北京: 高等教育出版社, 2005:243-244. XING Q Y, PEI W W, XU R Q, et al. Basic organic chemistry[M]. Beijing: Higher Education Press, 2005:243 -244(in Chinese).
[9] ELOVITZ M S, FISH W. Redox interactions of Cr(Ⅵ) and substituted phenols: Kinetic investigation[J]. Environmental Science & Technology, 1994, 28(12):2161-2169.
[10] ELOVITZ M S, FISH W. Redox interactions of Cr(Ⅵ) and substituted phenols: Products and mechanism[J]. Environmental Science & Technology, 1995, 29(8):1933-1943.
[11] LIU X T, SONG X J, ZHANG S J, et al. Non-hydroxyl radical mediated photochemical processes for dye degradation[J]. Physical Chemistry Chemical Physics, 2014, 16(16):7571-7577.
[12] SUN H F, HUANG W G, YANG H, et al. Co-immobilization of laccase and mediator through a self-initiated one-pot process for enhanced conversion of malachite green[J]. Journal of Colloid and Interface Science, 2016, 471:20-28.
[13] POCKER Y, SPYRIDIS G T. Modulation of tautomeric equilibria by ionic clusters. Acetylacetone in solutions of lithium perchlorate-diethyl ether[J]. Journal of the American Chemical Society, 2002, 124(35):10373-10380.
[14] WU B D, ZHANG G Y, ZHANG S J. Fate and implication of acetylacetone in photochemical processes for water treatment[J]. Water Research, 2016, 101:233-240.
[15] ZEPP R G, SCHLOTZHAUER P F, SINK R M. Photosensitized transformations involving electronic energy transfer in natural waters: Role of humic substances[J]. Environmental Science & Technology, 1985, 19(1):74-81.
[16] MILLER P L, CHIN Y P. Photoinduced degradation of carbaryl in a wetland surface water[J]. Journal of Agricultural & Food Chemistry, 2002, 50(23):6758-6765.
[17] HU C, MULLER-KARGER F E, ZEPP R G. Absorbance, absorption coefficient and apparent quantum yield: A comment on common ambiguity in the use of these optical concepts[J]. Limnology & Oceanography, 2002, 47(4):1261-1267.
[18] GRANDBOIS M, LATCH D E, MCNEILL K. Microheterogeneous concentrations of singlet oxygen in natural organic matter isolate solutions[J]. Environmental Science & Technology, 2008, 42(24):9184-9190.
[19] BORDWELL F G, MCCOLLUM G J. Carbon acids. 10. Resonance saturation of substituent effects in the fluorene series[J]. The Journal of Organic Chemistry, 1976,41(14):2391-2397.
[20] HANSCH C, LEO A, TAFT R W. A survey of Hammett substituent constants and resonance and field parameters[J]. Cheminform, 1991, 22(39):165-172.