[1] |
CAO X, ZHEN L I, REN Q, et al. The study of reasons and countermeasures for the abuse of antibiotics[J]. China Health Standard Management, 2015,6(13):162-163.
|
[2] |
LOZANO I, DIAZ N F, MUÑOZ S, et al. Antibiotic Use in Animals [M]. New York, INTECH. 2018.
|
[3] |
KIM N, KIM J M, KIM C H, et al. Institutional difference of antibiotic resistance of Helicobacter pylori strains in Korea[J]. Korean J Gastroenterol. 2011, 57(4):221-229.
|
[4] |
ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of china: source analysis, multimedia modeling,and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782.
|
[5] |
ZHOU L J, YING G G, LIU S, et al. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China[J]. Science of the Total Environment, 2013, 444(2):183-195.
|
[6] |
HU X, ZHOU Q, YI L. Occurrence and source analysis of typical veterinary antibiotics in manure,soil,vegetables and groundwater from organic vegetable bases,northern China[J]. Environmental Pollution, 2010, 158(9):2992-2998.
|
[7] |
SUN J, ZENG Q, TSANG D, et al. Antibiotics in the agricultural soils from the Yangtze River Delta, China[J]. Chemosphere, 2017, 189:301-308.
|
[8] |
PETRIE B, BARDEN R, KASPRZYK-HORDERN B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring[J]. Water Research, 2015, 72:3-27.
|
[9] |
ALTENBURGER R, AITAISSA S, ANTCZAK P, et al. Future water quality monitoring-adapting tools to deal with mixtures of pollutants in water resource management[J]. Science of the Total Environment, 2015, 512-513:540-551.
|
[10] |
何勇田, 熊先哲. 复合污染研究进展[J]. 环境科学, 1994, 15(6):79-83.
HE Y T, XIONG X Z. Advance in the study on compounded pollutions[J]. Environmental Science, 1994, 15(6):79-83(in Chinese).
|
[11] |
DU L, LIU W. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review[J]. Agronomy for Sustainable Development, 2012, 32(2): 309-327.
|
[12] |
刘博, 薛南冬, 张石磊,等. 热处理技术去除鸡粪中氟喹诺酮类抗生素及影响因素研究[J]. 环境工程, 2015, 33(2):84-87.
LIU B, XUE N D, ZHANG S L, et al. Study on influent factors on removal of fluoroquinolones from chicken feces by thermal treatment technology[J]. Environmental Engineering, 2015, 33(2):84-87(in Chinese).
|
[13] |
陈瑞萍, 张丽, 于洁, 等. 活性污泥对四环素的吸附性能研究[J]. 环境科学, 2012, 33(1):156-162.
CHEN R P, ZHANG L, YU J, et al. Study on the sorption behavior of tetracycline onto activated sludge[J]. Environmental Science, 2012, 33(1):156-162(in Chinese).
|
[14] |
ZHU Y G, JOHNSON TA, SU J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9):3435-3340.
|
[15] |
CHENG L, JIAYI C, JIHUA W, et al. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment[J]. Science of the Total Environment, 2015, 521-522:101-107.
|
[16] |
陈海燕, 花日茂, 李学德, 等. 不同类型菜地土壤中3种磺胺类抗生素污染特征研究[J]. 安徽农业科学, 2011, 39(23):14224-14226.
CHENG H, HUA R M, LI X D, et al. Study on pollution characteristic of three sulfonamides antibiotics in different soils of vegetable plot[J]. Journal of Anhui Agricultural Sciences, 2011, 39(23):14224-14226(in Chinese).
|
[17] |
应光国. 中国抗生素使用与流域污染[C]. 中国化学会第30届学术年会摘要集-第二十六分会:环境化学. 北京, 中国化学会, 2016:1. YING G G. Antibiotic use and pollution in the river basins of China[C]. Summary of the 30th annual academic meeting of the Chinese Chemical Society -The 26th session: Environmental Chemistry. Beijing, Annual Meeting of Chinese Chemical Society. 2016
:1(in Chinese).
|
[18] |
LI Y X, ZHANG X L, LI W, et al. The residues and environmental risks of multiple veterinary antibiotics in animal feces[J]. Environmental Monitoring & Assessment, 2013, 185(3):2211-2220.
|
[19] |
CHEN Y S, ZHANG H B, LUO Y M, et al. Occurrence and assessment of veterinary antibiotics in swine manures: A case study in East China[J]. Chinese Science Bulletin, 2012, 57(6):606-614.
|
[20] |
国彬, 姚丽贤, 刘忠珍, 等. 广州市兽用抗生素的环境残留研究[J]. 农业环境科学学报, 2011, 30(5):938-945.
GUO B, YAO L X, LIU Z Z, et al. Environmental residues of veterinary antibiotics in Guangzhou City, China[J]. Journal of Agro-Environment Science, 2011, 30(5):938-945(in Chinese).
|
[21] |
尹春艳, 骆永明, 滕应, 等. 典型设施菜地土壤抗生素污染特征与积累规律研究[J]. 环境科学, 2012, 33(8):2810-2816.
YIN C Y, LUO Y M, TENG Y, et al. Pollution characteristics and accumulation of antibiotics in typical protected vegetable soils[J]. Environmental Science, 2012, 33(8):2810-2816(in Chinese).
|
[22] |
赵方凯, 陈利顶, 杨磊, 等. 长三角典型城郊不同土地利用土壤抗生素组成及分布特征[J]. 环境科学, 2017, 38(12):5237-5246.
ZHAO F K, CHEN L D, YANG L, et al. Composition and distribution of antibiotics in soils under different land use types in typical peri-urban area of yangtze river delta[J]. Environmental Science, 2017, 38(12):5237-5246(in Chinese).
|
[23] |
李彦文, 莫测辉, 赵娜, 等. 菜地土壤中磺胺类和四环素类抗生素污染特征研究[J]. 环境科学, 2009, 30(6):1762-1766.
LI Y W, MO C H, ZHAO N, et al. Investigation of sulfonamides and tetracyclines antibiotics in soils from various vegetable fields[J]. Environmental Science, 2009, 30(6):1762-1766(in Chinese).
|
[24] |
邰义萍, 罗晓栋, 莫测辉, 等. 广东省畜牧粪便中喹诺酮类和磺胺类抗生素的含量与分布特征研究[J]. 环境科学, 2011, 32(4):1188-1193.
TAI Y P, LUO X D, MO C H, et al. Occurrence of quinolone and sulfonamide antibiotics in swine and cattle manures from large-scale feeding operations of Guangdong province[J]. Environmental Science, 2011, 32(4):1188-1193(in Chinese).
|
[25] |
张树清, 张夫道, 刘秀梅, 等. 规模化养殖畜禽粪主要有害成分测定分析研究[J]. 植物营养与肥料学报, 2005, 11(6):882-829.
ZHANG S Q, ZHANG F D, LIU X M, et al. Determination and analysis on main harmful composition in excrement of scale livestock and poultry feedlots[J]. Plant Nutrition and Fertilizer Science, 2005, 11(6):882-829(in Chinese).
|
[26] |
BACKHAUS T, PORSBRING T, ARRHENIUS A, et al. Single-substance and mixture toxicity of five pharmaceuticals and personal care products to marine periphyton communities[J]. Environmental Toxicology & Chemistry, 2011, 30(9):2030-2040.
|
[27] |
GEIGER E, HORNEK-GAUSTERER R, SAÇAN M T. Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris[J]. Ecotoxicology & Environmental Safety, 2016, 129:189-198.
|
[28] |
GONZÁLEZPLEITER M, GONZALO S, RODEAPALOMARES I, et al. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment[J]. Water Research, 2013, 47(6):2050-2064.
|
[29] |
李学德. 典型磺胺类抗生素在土壤-蔬菜系统中的环境行为研究[D]. 南京: 南京大学, 2015. LI X D. Environmental behavior of typical sulfonamide antibiotics in soil-vegetable system[D]. Nanjing: Nanjing University, 2015(in Chinese).
|
[30] |
KUMAR K, GUPTA S C, BAIDOO S K, et al. Antibiotic uptake by plants from soil fertilized with animal manure[J]. Journal of Environmental Quality, 2005, 34(6):2082-2085.
|
[31] |
LIANG Y C, ZHAO-JUN L I, XIE X Y, et al. Wheat growth and photosynthesis as affected by oxytetracycline as a soil contaminant[J]. Pedosphere, 2011, 21(2):244-250.
|
[32] |
金彩霞, 毛蕾, 司晓薇. 3种磺胺类兽药单一及复合污染对不同作物根尖细胞的微核效应研究[J]. 农业环境科学学报, 2015, 34(4):666-671.
JIN C X, MAO L, SI X W. Effects of single and combined pollution of three common sulfonamide veterinary drugs on root apical cell micronuclei of different crops[J]. Journal of Agro-Environment Science, 2015, 34(4):666-671(in Chinese).
|
[33] |
WANG X, MA Y, LIU J, et al. Reproductive toxicity of β-diketone antibiotic mixtures to zebrafish[J]. Ecotoxicology & Environmental Safety, 2017, 141:160-170.
|
[34] |
ZHANG Y, WANG X, YIN X, et al. Toxicity assessment of combined fluoroquinolone and tetracycline exposure in zebrafish (Danio rerio)[J]. Environmental Toxicology, 2016, 31(6):736-750.
|
[35] |
WILDE M L, SCHNEIDER M, KÜMMERER K. Fenton process on single and mixture components of phenothiazine pharmaceuticals: Assessment of intermediaries, fate, and preliminary ecotoxicity[J]. Science of the Total Environment, 2017, 583:36-52.
|
[36] |
JENSEN J. Veterinary medicines and soil quality: The danish situation as an example[J]. Acs Symposium, 2001, 791:282-302.
|
[37] |
PENG S, WANG Y, ZHOU B, et al. Long-term application of fresh and composted manure increase tetracycline resistance in the arable soil of eastern China[J]. Science of the Total Environment, 2015, 506-507(4):279-286.
|
[38] |
唐非凡. 金霉素、磺胺嘧啶在土壤中的降解特征及其对土壤微生物的影响[D]. 杭州: 浙江大学, 2012. TANG F F. Degradation of chlortetracycline and sulfadiazine in soil and their effects on soil microorganisms[D]. Hangzhou: Zhejiang University, 2012 (in Chinese).
|
[39] |
鲍陈燕. 猪粪对抗生素在农田系统中行为的影响[D]. 杭州: 浙江大学, 2016. BAO C Y. effects of pig manure on antibiotics behaviors in the farmland ecology environment[D]. Hangzhou: Zhejiang University, 2016(in Chinese).
|
[40] |
WEI X, WU S C, NIE X P, et al. The effects of residual tetracycline on soil enzymatic activities and plant growth[J]. Journal of Environmental Science & Health Part B, 2009, 44(5):461-471.
|
[41] |
WEI X, WU S C, NIE X P, et al. Effects of sulfamethoxazole on soil microbial communities after adding substrate[J]. Soil Biology & Biochemistry, 2009, 41(4):840-848.
|
[42] |
SELVAM A, XU D, ZHAO Z, et al. Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure[J]. Bioresource Technology, 2012, 126(4):383-390.
|
[43] |
纪占华. 金霉素、四环素及磺胺嘧啶对土壤生物的生态毒性效应[D]. 北京: 中国科学院大学, 2015. JI Z H. Ecotoxicological effects of chlortetracycline, tetracycline and sulfadiazine on soil organisms[D]. Beijing: Chinese Academy of Sciences University, 2015(in Chinese).
|
[44] |
郑佳伦, 刘超翔, 刘琳, 等. 畜禽养殖业主要废弃物处理工艺消除抗生素研究进展[J]. 环境化学, 2017, 36(1):37-47.
ZHEN J J, LIU C X, LIU L, et al. Removal of antibiotics in waste and wastewater treatment facilities of animal breeding industry: A review[J]. Environmental Chemistry, 2017, 36(1):37-47(in Chinese).
|
[45] |
孟磊, 杨兵, 薛南冬, 等. 高温堆肥对鸡粪中氟喹诺酮类抗生素的去除[J]. 农业环境科学学报, 2015, 34(2):377-383.
MENG L, YANG B, XUE N D, et al. Effect of high temperature composting on removal of fluoroquinolones in chicken manures[J]. Journal of Agro-Environment Science, 2015, 34(2):377-383(in Chinese).
|
[46] |
SELVAM A, ZHAO Z, LI Y, et al. Degradation of tetracycline and sulfadiazine during continuous thermophilic composting of pig manure and sawdust[J]. Environmental Technology, 2013, 34(16):2433-2441.
|
[47] |
CHU Y, FANG C, WANG H, et al. Effects of anaerobic composting on tetracycline degradation in swine manure[J]. Chinese Journal of Chemical Engineering, 2017, 25(10):1505-1511.
|
[48] |
FENG L, CASAS M E, LDM O, et al. Removal of antibiotics during the anaerobic digestion of pig manure[J]. Science of the Total Environment, 2017, 603:219-225.
|
[49] |
张树清, 张夫道, 刘秀梅, 等. 高温堆肥对畜禽粪中抗生素降解和重金属钝化的作用[J]. 中国农业科学, 2006, 39(2):337-343.
ZHANG S Q, ZHANG FD, LIU X M, et al. Degradation of antibiotics and passivation of heavy metals during thermophilic composting process[J]. Scientia Agricultura Sinica, 2006, 39(2):337-343(in Chinese).
|
[50] |
ERKAN H S, ONKAL E G, INCE M, et al. Effect of carbon to nitrogen ratio of feed wastewater and sludge retention time on activated sludge in a submerged membrane bioreactor[J]. Environmental Science & Pollution Research International, 2016, 23(11):10742-10752.
|
[51] |
GUO R, LI G, JIANG T, et al. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost[J]. Bioresource Technology, 2012, 112:171-178.
|
[52] |
KIM K R, OWENS G, OK Y S, et al. Decline of extractable antibiotics in manure-based composts during composting. Waste Manage[J]. Waste Management, 2011, 32(1):110-116.
|
[53] |
许晓玲, 李卫芬, 雷剑, 等.四环素降解菌的选育,鉴定及其降解特性[J]. 农业生物技术学报, 2011, 19(3):549-556.
XU X L, LI W F, LEI J, et al. Screening, identification and degradation characteristics of tetracycline-degrading strains[J]. Journal of Agricultural Biotechnology, 2011, 19(3):549-556(in Chinese).
|
[54] |
张欣阳, 蔡婷静, 许旭萍. 一株高效四环素降解菌的分离鉴定及其降解性能研究[J]. 生物技术通报, 2015, 31(1):173-180.
ZHANG X Y, CAI T J, XU X P. Isolation and identification of a tetracycline-degrading bacterium and optimizing condition for tetracycline degradation[J]. Biotechnology Bulletin, 2015, 31(1):173-180(in Chinese).
|
[55] |
WITHEY J M, MUGO S M, ZHOU T, et al. Depletion of hormones and antimicrobials in cattle manure using thermophilic anaerobic digestion[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(9):2404-2411.
|
[56] |
YUAN J, CHADWICK D, ZHANG D, et al. Effects of aeration rate on maturity and gaseous emissions during sewage sludge composting[J]. Waste Management, 2016, 56:403-410.
|
[57] |
TURKER G, AYDIN S, ÇAČRI AKYOL, et al. Changes in microbial community structures due to varying operational conditions in the anaerobic digestion of oxytetracycline-medicated cow manure[J]. Applied Microbiology & Biotechnology, 2016, 100(14):6469-6479.
|
[58] |
ARIKAN O A, MULBRY W, RICE C. Management of antibiotic residues from agricultural sources: Use of composting to reduce chlortetracycline residues in beef manure from treated animals[J]. Journal of hazardous materials, 2009, 164(2-3):483-489.
|
[59] |
WU X, WEI Y, ZHENG J, et al. The behavior of tetracyclines and their degradation products during swine manure composting[J]. Bioresource Technology, 2011, 102(10):5924-5931.
|
[60] |
PATEL R M. The effect of composting on the degradation of a veterinary pharmaceutical[J]. Bioresource Technology, 2010, 101(7):2294-2299.
|
[61] |
BING Y, LEI M, XUE N D. Removal of five fluoroquinolone antibiotics during broiler manure composting[J]. Environmental Technology, 2017, 39 (3):1-9.
|
[62] |
WIDYASARIMEHTA A, SUWITO H R K A, KREUZIG R. Laboratory testing on the removal of the veterinary antibiotic doxycycline during long-term liquid pig manure and digestate storage[J]. Chemosphere, 2016, 149:154-160.
|
[63] |
ARIKAN O A, SIKORA L J, MULBRY W, et al. Composting rapidly reduces levels of extractable oxytetracycline in manure from therapeutically treated beef calves[J]. Bioresource Technology, 2007, 98(1):169-176.
|
[64] |
CHEN J, LIU Y S, ZHANG J N, et al. Removal of antibiotics from piggery wastewater by biological aerated filter system: Treatment efficiency and biodegradation kinetics[J]. Bioresource Technology, 2017, 238:70-77.
|
[65] |
JOY S R, LI X, SNOW D D, et al. Fate of antimicrobials and antimicrobial resistance genes in simulated swine manure storage[J]. Science of the Total Environment, 2014, 481(2):69-74.
|
[66] |
DOLLIVER H, GUPTA S, NOLL S. Antibiotic degradation during manure composting[J]. Journal of Environmental Quality, 2008, 37(3):1245-1253.
|
[67] |
INGERSLEV F, HALLING-SØRENSEN B. Biodegradability properties of sulfonamides in activated sludge[J]. Environmental Toxicology & Chemistry, 2000, 19(10):2467-2473.
|
[68] |
PÉREZ S, EICHHORN P, AGA D S. Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment[J]. Environmental Toxicology & Chemistry, 2005, 24(6):1361-1367.
|
[69] |
潘兰佳, 唐晓达, 汪印. 畜禽粪便堆肥降解残留抗生素的研究进展[J]. 环境科学与技术, 2015, 38(S2):191-198.
PAN L D, TANG X D, WANG Y. Research progress of residual antibiotics degradation in livestock and poultry feces composting[J]. Environmental Science & Technology, 2015, 38(S2):191-198(in Chinese).
|