[1] SÁNCHEZ A I, STAMS A J M, WEIJMA J, et al. A case in support of implementing innovative bio-processes in the metal mining industry[J]. FEMS Microbiology Letters, 2016, 363(11): 1-4.
[2] 吴惠明,李晓,李锦文等.模拟风化过程硫铁矿尾矿的产酸性及污染物的释放行为[J].环境化学,2014,33(3): 447-451. WU H M, LI X, LI J W, et al. Acid generation behavior of pyrite tailing and characteristic of pollutant release during simulated weathering process[J].Environmental Chemistry, 2014, 33(3): 447-451(in Chinese).
[3] ROJO A, HANSEN H K. Electrodialytic remediation of copper mine tailings with sinusoidal electric field[J]. Journal of Applied Electrochemistry, 2010,40(6): 1095-1100.
[4] CASTILLO J, PÉREZLÓPEZ R, CARABALLO M A, et al. Biologically-induced precipitation of sphaleriteewurtzite nanoparticles by sulfate-reducing bacteria: implicationsfor acid mine drainage treatment[J]. Science of the Total Environment, 2012, 423(15): 176-184.
[5] DENG D, WEIDHAAS J L, LIN L S. Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage[J]. Journal of Hazardous Materials, 2016, 305: 200-208.
[6] KEFENI K K, MSAGATI T A M, MAMBA B B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review[J]. Journal of Cleaner Production, 2017, 151: 475-493.
[7] SÁNCHEZ A I, SANZ J L, MARTIJN F M, et al. Sulfate reduction at low pH to remediate acid mine drainage[J]. Journal of Hazardous Materials, 2014, 269: 98-109.
[8] ZHANG M, WANG H. Preparation of immobilized sulfate reducing bacteria(SRB)granules for effective bioremediation of acid mine drainage and bacterial community analysis[J]. Minerals Engineering, 2016, 92: 63-71.
[9] MILETTO M. Sulfate-reducing Prokaryotes in River Floodplains[D]. Utrecht: Utrecht University, 2007.
[10] ZHANG M, WANG H. Organic wastes as carbon sources to promote sulfate reducing bacterial activity for biological remediation of acid mine drainage[J]. Minerals Engineering, 2014, 69: 81-90.
[11] FLORENTINO A P, BRIENZA C, ALFONS J M, et al. Desulfurella amilsii sp. nov., a novel acidotolerant sulfur-respiring bacterium isolated from acidic river sediments[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(3): 1249-1253.
[12] SOROKIN D Y, MUYZER G. Desulfurispira natronophila gen. nov. sp. nov.: An obligately anaerobic dissimilatory sulfur-reducing bacterium from soda lakes[J]. Extremophiles, 2010, 14(4): 349-355.
[13] 张鹏飞. 硫生物还原的影响因素及其在酸性重金属废水处理中的作用[D]. 南京: 南京农业大学, 2017. ZHANG P F. Influence factors of biological sulfur reduction and its application in treatment of acidic wastewater[D]. Nanjing: Nanjing Agricultural University(in Chinese).
[14] FLORENTINO A P, WEIJMA J, ALFONS J M, et al. Sulfur Reduction in Acid Rock Drainage Environments[J]. Environmental Science & Technology, 2015, 49(19):11746-11755.
[15] RAINEY F, HOLLEN B. Bergey's Manual of Systematics of Archaea and Bacteria[M].Hoboken: John Wiley & Sons, Ltd, 2015.
[16] PFENNIG N, BIEBL H. Desulfuromonas acetoxidansgen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate oxidizing bacterium[J]. Archives of Microbiology, 1976, 110: 3-12.
[17] HEDDERICH R, KLIMMEK O, KRÖGER Ac, et al. Anaerobic respiration with elemental sulfur and with disulfides[R].FEMS Microbiology Reviews,1998, 22(5): 353-381.
[18] 李 陛,吴文芳,李金华,等. 温度和电子传递体AQDS对铁还原细菌Shewanella putrefaciens CN32矿化产物的影响[J].地球物理学报,2011, 54(10): 2631-2638. LI B, WU F W, LI J H, et al. Effects of temperature on biomineralization of iron reducing bacteria Shewanella putrefaciens CN32[J]. Chinese Journal of Geophysics, 2011,54(10): 2631-2638(in Chinese).
[19] FAUQUE G D, BARTON L L. Chapter 1-hemoproteins in dissimilatory sulfate- and sulfur-reducing prokaryotes[J]. Advances in Microbial Physiology, 2012, 60: 1-90.
[20] FLORENTINO A P WEIJMA J, ALFONS J M, et al. Biotechnology of Extremophiles[M].Berlin: Springer, 2016: 141-175.
[21] FANG D, ZHANG R C, ZHOU L X, et al. A combination of bioleaching and bioprecipitation for deep removal of contaminating metals from dredged sediment[J]. Journal of Hazardous Materials 2011, 192(1): 226-233.
[22] SUN R R, ZHANG L, ZHANG Z F, et al. Realizing high-rate sulfur reduction under sulfate-rich conditions in abiological sulfide production system to treat metal-laden wastewater deficient in organic matter[J]. Water Research, 2018, 131: 239-245.