[1] |
GLUD R N,RAMSING B N, GUNDERSEN K J, et al. Planar optrodes:a new tool for fine scale measurements of two-dimensional O2 distribution in benthic communities[J]. Marine Ecology Progress, 1996, 140(1-3):217-226.
|
[2] |
TAN S S S, HAUSER P C, WANG K, et al. Reversible optical sensing membrane for the determination of chloride in serum[J]. Analytica Chimica Acta, 1991, 255(1):35-44.
|
[3] |
HUBER C, WERNER T, KRAUSE C, et al. Overcoming the pH dependency of optical sensors:A pH-independent chloride sensor based on co-extraction[J]. Analytica Chimica Acta, 1999, 398(2):137-143.
|
[4] |
OGURI K, KITAZATO H, GLUD R N. Platinum octaetylporphyrin based planar optodes combined with an UV-LED excitation light source:An ideal tool for high-resolution O2, imaging in O2, depleted environments[J]. Marine Chemistry, 2006, 100(1-2):95-107.
|
[5] |
LOUISE A, BO E, RONNIEN G, et al. Soil heterogeneity effects on O2 distribution and CH4 emissions from wetlands:In situ and mesocosm studies with planar O2 optodes and membrane inlet mass spectrometry[J]. Soil Biology & Biochemistry, 2010, 42(12):2254-2265.
|
[6] |
SONG D H, KIM H D, KIM K C. Measurement of dissolved oxygen concentration field in a microchannel using PtOEP/PS film[M]. New York:Springer-Verlag, Inc. 2011.
|
[7] |
KERMIS H R, KOSTOV Y, HARMS P, et al. Dual excitation ratiometric fluorescent pH sensor for noninvasive bioprocess monitoring:development and application[J]. Biotechnology Progress, 2002, 18(5):1047-1053.
|
[8] |
BLOSSFELD S, GANSERT D. A novel non-invasive optical method for quantitative visualization of pH dynamics in the rhizosphere of plants[J]. Plant Cell & Environment, 2007, 30(2):176-186.
|
[9] |
BLOSSFELD S, PERRIGUEY J, STERCKEMAN T, et al. Rhizosphere pH dynamics in trace-metal-contaminated soils, monitored with planar pH optodes[J]. Plant & Soil, 2010, 330(1-2):173-184.
|
[10] |
MILLS A, CHANG Q, MCMURRAY N. Equilibrium studies on colorimetric plastic film sensors for carbon dioxide[J]. Analytical Chemistry, 1992, 64(13):1383-1389.
|
[11] |
STRÖMBERG N, HULTH S. Assessing an imaging ammonium sensor using time correlated pixel-by-pixel calibration[J]. Analytica Chimica Acta, 2005, 550(1-2):61-68.
|
[12] |
CAO Z, ZHU Q, ALLER R C, et al. A fluorosensor for two-dimensional measurements of extracellular enzyme activity in marine sediments[J]. Marine Chemistry, 2010, 123(1):23-31.
|
[13] |
SCHÄFERLING M, WU M, WOLFBEIS O S. Time-resolved fluorescent imaging of glucose[J]. Journal of Fluorescence, 2004, 14(5):561-568.
|
[14] |
KLEIN C, ENGLER R H, HENNE U, et al. Application of pressure-sensitive paint for determination of the pressure field and calculation of the forces and moments of models in a wind tunnel[J]. Experiments in Fluids, 2005, 39(2):475-483.
|
[15] |
YOUSHIMI I, YASUHIRO E, AKIRA N, et al. Optimization of temperature-sensitive paint formulation for large-scale cryogenic wind tunnels[C]. International Congress on Instrumentation in Aerospace Simulation Facilities. IEEE, 2003:70-76.
|
[16] |
RAMSING J K G N B, KLIMANT I. Planar optrodes:a new tool for fine scale measurements of two-dimensional O2 distribution in benthic communities[J]. Marine Ecology Progress, 1996, 140(1-3):217-226.
|
[17] |
BEHRENS J W, STAHL H J, STEFFENSEN J F, et al. Oxygen dynamics around buried lesser sandeels Ammodytes tobianus (Linnaeus 1785):mode of ventilation and oxygen requirements[J]. Journal of Experimental Biology, 2007, 210(6):1006-1014.
|
[18] |
FAN Y, ZHU Q, ALLER R C, et al. An in situ multispectral imaging system for planar optodes in sediments:examples of high-resolution seasonal patterns of pH[J]. Aquatic Geochemistry, 2011, 17(4-5):457-471.
|
[19] |
FISCHER J P, WENZHÖFER F. A novel planar optode setup for concurrent oxygen and light field imaging:Application to a benthic phototrophic community[J]. Limnology & Oceanography Methods, 2010, 8(1):254-268.
|
[20] |
LARSEN M, BORISOV S M, GRUNWALD B, et al. A simple and inexpensive high resolution color ratiometric planar optode imaging approach:Application to oxygen and pH sensing[J]. Limnology & Oceanography Methods, 2011, 9(9):348-360.
|
[21] |
HULTH S. A pH plate fluorosensor (optode) for early diagenetic studies of marine sediments[J]. Limnology & Oceanography, 2002, 47(1):212-220.
|
[22] |
ZHU Q Z, AND R C A, FAN Y. High-performance planar ph fluorosensor for two-dimensional ph measurements in marine sediment and water[J]. Environmental Science & Technology, 2005, 39(22):8906-8911.
|
[23] |
HAKONEN A, HULTH S, DUFOUR S. Analytical performance during ratiometric long-term imaging of pH in bioturbated sediments[J]. Talanta, 2010, 81(4-5):1393-1401.
|
[24] |
SCHRÖDER C R, POLERECKY L, KLIMANT I. Time-resolved pH/pO2 mapping with luminescent hybrid sensors[J]. Analytical Chemistry, 2007, 79(1):60-70.
|
[25] |
SCHRÖDER C R, WEIDGANS B M, KLIMANT I. pH fluorosensors for use in marine systems[J]. Analyst, 2005, 130(6):907-916.
|
[26] |
HAKONEN A, HULTH S. A high-performance fluorosensor for pH measurements between 6 and 9[J]. Talanta, 2010, 80(5):1964-1969.
|
[27] |
ZHU Q, ALLER R C, FAN Y. A new ratiometric, planar fluorosensor for measuring high resolution, two-dimensional pCO2, distributions in marine sediments[J]. Marine Chemistry, 2006, 101(1-2):40-53.
|
[28] |
STRÖMBERG N, HULTH S. A fluorescence ratiometric detection scheme for ammonium ions based on the solvent sensitive dye MC 540[J]. Sensors & Actuators B Chemical, 2003, 90(1):308-318.
|
[29] |
ZHU Q, ALLER R C. Planar fluorescence sensors for two-dimensional measurements of H2S distributions and dynamics in sedimentary deposits[J]. Marine Chemistry, 2013, 157(12):49-58.
|
[30] |
KAUTSKY H. Quenching of Luminescence by Oxygen[J]. Transactions Faraday Society, 1939, 35(1):216-219.
|
[31] |
JONES P F. On the use of phosphorescence quenching for determining permeabilities of polymeric films to gases[J]. Journal of Polymer Science Part B Polymer Letters, 1968, 6(7):487-491.
|
[32] |
POLLACK M, PRINGSHEIM P, TERWOORD D. A method for determining small quantities of oxygen[J]. Journal of Chemical Physics, 1944, 12(7):295-299.
|
[33] |
SHAW G. Quenching by oxygen diffusion of phosphorescence emission of aromatic molecules in polymethyl methacrylate[J]. Transactions of the Faraday Society, 1967, 63:2181-2189.
|
[34] |
XU W, RD M D R, LANGSDORF B, et al. Oxygen sensors based on luminescence quenching:Interactions of metal complexes with the polymer supports[J]. Analytical Chemistry, 1994, 66(23):4133-4141.
|
[35] |
BASU B J, ANANDAN C, RAJAM K S. Study of the mechanism of degradation of pyrene-based pressure sensitive paints[J]. Sensors & Actuators B Chemical, 2003, 94(3):257-266.
|
[36] |
MINGOARRANZ F J, MORENO-BONDI M C, GARCÍA-FRESNADILLO D, et al. Oxygen-sensitive layers for optical fibre devices[J]. Microchimica Acta, 1995, 121(1-4):107-118.
|
[37] |
ALFORD P C, COOK M J, LEWIS A P, et al. ChemInform Abstract:Luminescent metal complexes. part 5. luminescence properties of ring-substituted 1,10-phenanthroline tris-complexes of ruthenium(Ⅱ)[J]. 1985, 16(38):705-709.
|
[38] |
COOK M J, LEWIS A P, MCAULIFFE G S G, et al. Cheminform abstract:Luminescent metal complexes. part 1. Tris-chelates of substituted 2,2'-bipyridyls with ruthenium(Ⅱ) as dyes for luminescent solar collectors[J]. Cheminform, 1984, 15(47):1293-1301.
|
[39] |
XU W Y, KNEAS K A, DEMAS J N, et al. Oxygen sensors based on luminescence quenching of metal complexes:Osmium complexes suitable for laser diode excitation[J]. Analytical Chemistry, 1996, 68(15):2605-2609.
|
[40] |
DELYLE E, MARTIN G. Porphyrin:XVⅢ. Luminescence of (Co), (Ni), Pd, Pt complexes[J]. Journal of Molecular Spectroscopy, 1970, 35(3):359-375.
|
[41] |
PAPKOVSKY D B. New oxygen sensors and their application to biosensing[J]. Sensors & Actuators B Chemical, 1995, 29(1):213-218.
|
[42] |
BORISOV S M, KLIMANT I. Ultrabright oxygen optodes based on cyclometalated iridium(Ⅲ) coumarin complexes[J]. Analytical Chemistry, 2007, 79(19):7501-7509.
|
[43] |
WOLFBEIS O S. Acid-base titrations using fluorescent indicators and fiber optical light guides[J]. Fresenius Zeitschrift Für Analytische Chemie, 1985, 320(3):271-273.
|
[44] |
Wolfbeis O S. Fluorimetric Analysis, 1. A Study on Fluorescent Indicators for Measuring Near Neutral ("physiological") pH-values[J]. Fresenius Z.anal.chem, 1983(314):119-124.
|
[45] |
ZHU Q, ALLER R C, FAN Y. Two-dimensional pH distributions and dynamics in bioturbated marine sediments[J]. Geochimica Et Cosmochimica Acta, 2006, 70(19):4933-4949.
|
[46] |
SCHROEDER C R, NEURAUTER G, KLIMANT I. Luminescent dual sensor for time-resolved imaging of pCO2, and pO2, in aquatic systems[J]. Microchimica Acta, 2007, 158(3-4):205-218.
|
[47] |
HULTH S. A pH plate fluorosensor (optode) for early diagenetic studies of marine sediments[J]. Limnology & Oceanography, 2002, 47(1):212-220.
|
[48] |
MOHR G J, WERNER T, WOLFBEIS O S. Application of a novel lipophilized fluorescent dye in an optical nitrate sensor[J]. Journal of Fluorescence, 1995, 5(2):135-138.
|
[49] |
SCHRÖO1DER C R, POLERECKY L, KLIMANT I. Time-resolved pH/pO2 Mapping with Luminescent Hybrid Sensors[J]. Analytical Chemistry, 2007, 79(1):60-70.
|
[50] |
STAHL H, GLUD A, SCHRÖDER C R, et al. Time-resolved pH imaging in marine sediments with a luminescent planar optode[J]. Limnology & Oceanography Methods, 2006, 4(4):336-345.
|
[51] |
RUDOLPH-MOHR N, MORADI B A, NAGL S, et al. Spatio-temporal mapping of local soil pH changes induced by roots of lupin and soft-rush[J]. Plant & Soil, 2013, 369(1-2):669-680.
|
[52] |
AIGNER D, UNGERBÖCK B, MAYR T, et al. Fluorescent materials for pH sensing and imaging based on novel 1,4-diketopyrrolo-[3,4-c] pyrrole dyes Electronic supplementary information (ESI) available:NMR and MS spectra, further sensor characteristics and sensor long-time performance[J]. J Mater Chem C Mater Opt Electron Devices, 2013, 1(36):5685-5693..
|
[53] |
HAN C, YAO L, XU D, et al. High-resolution imaging of ph in alkaline sediments and water based on a new rapid response fluorescent planar optode[J]. Sci Rep, 2016, 6:26417:1-8.
|
[54] |
ANDREW M, QING CH. Fluorescence plastic thin-film sensor for carbon dioxide[J]. Analyst, 1993, 118(7):839-843.
|
[55] |
JENSEN M A, RECHNITZ G A. Response time characteristics of the pCO2 electrode[J]. Analytical Chemistry, 1979, 51(12):1972-1977.
|
[56] |
WHALEN W J, RILEY J, NAIR P. A microelectrode for measuring intracellular pH[J]. Advances in Experimental Medicine & Biology, 1967, 180(5):881-886.
|
[57] |
STRÖMBERG N, HAKONEN A. Plasmophore sensitized imaging of ammonia release from biological tissues using optodes[J]. Analytica Chimica Acta, 2011, 704(1-2):139-145.
|
[58] |
HUBER C, KLIMANT I, KRAUSE C, et al. Nitrate-selective optical sensor applying a lipophilic fluorescent potential-sensitive dye[J]. Analytica Chimica Acta, 2001, 449(1-2):81-93.
|
[59] |
CHOI M M F. Fluorimetric optode membrane for sulfide detection[J]. Analyst, 1998, 123(7):1631-1634.
|
[60] |
REIJA B, ALSOUFI W, MERCEDES NOVO A, et al. Specific interactions in the inclusion complexes of pyronines Y and B with β-cyclodextrin[J]. Journal of Physical Chemistry B, 2005, 109(4):1364-1370.
|
[61] |
GEDDES C D. REVIEW ARTICLE:, Optical halide sensing using fluorescence quenching:Theory, simulations and applications:A review[J]. Measurement Science & Technology, 2001, 12(9):R53-R88.
|
[62] |
HUBER C, KRAUSE C, WERNER T, et al. Serum chloride optical sensors based on dynamic quenching of the fluorescence of photo-immobilized Lucigenin[J]. Microchimica Acta, 2003, 142(4):245-253.
|
[63] |
STOY V A. New type of hydrogel for controlled drug delivery[J]. Journal of Biomaterials Applications, 1989, 3(4):552-604.
|
[64] |
ZHU Q, ALLER R C. Two-dimensional dissolved ferrous iron distributions in marine sediments as revealed by a novel planar optical sensor[J]. Marine Chemistry, 2012, s 136-137(2):14-23.
|
[65] |
YIN WENTING, CUI HAO, YANG ZHENG, et al. Facile synthesis and characterization of rhodamine-based colorimetric and "off-on" fluorescent chemosensor for Fe3+[J]. Sensors & Actuators B Chemical, 2011, 157(2):675-680.
|
[66] |
ZHANG X B, PENG J, HE C L, et al. A highly selective fluorescent sensor for Cu2+, based on 2-(2'-hydroxyphenyl)benzoxazole in a poly(vinyl chloride) matrix[J]. Analytica Chimica Acta, 2006, 567(2):189-195.
|
[67] |
ZHAO X H, MA Q J, ZHANG X B, et al. A highly selective fluorescent sensor for Cu2+ based on a covalently immobilized naphthalimide derivative[J]. Analytical Sciences, 2010, 26(5):585-590.
|
[68] |
DU P, LIPPARD S J. A Highly selective turn-on colorimetric, red fluorescent sensor for detecting mobile zinc in living cells[J]. Inorganic Chemistry, 2010, 49(23):10753-10755.
|
[69] |
CHAN W H, YANG R H, WANG K M. Development of a mercury ion-selective optical sensor based on fluorescence quenching of 5,10,15,20-tetraphenylporphyrin[J]. Analytica Chimica Acta, 2001, 444(2):261-269.
|
[70] |
SONG A, PARUS S, KOPELMAN R. High-performance fiber-optic pH microsensors for practical physiological measurements using a dual-emission sensitive dye[J]. Analytical Chemistry, 1997, 69(5):863-867.
|
[71] |
DELIN S, STRÖMBERG N. Imaging-optode measurements of ammonium distribution in soil after different manure amendments[J]. European Journal of Soil Science, 2011, 62(2):295-304.
|
[72] |
MEIER R J, SCHREML S, WANG X D, et al. Simultaneous photographing of oxygen and ph in vivo using sensor films[J]. Angewandte Chemie International Edition, 2011, 123(46):11085-11088.
|
[73] |
HOLST G, KOHLS O, KLIMANT I, et al. A modular luminescence lifetime imaging system for mapping oxygen distribution in biological samples[J]. Sensors & Actuators B Chemical, 1998, 51(1-3):163-170.
|
[74] |
WOODS R J, SCYPINSKI S, LOVE L J, et al. Transient digitizer for the determination of microsecond luminescence lifetimes[J]. Analytical Chemistry, 1984, 56(8):1395-1400.
|
[75] |
LIEBSCH G, KLIMANT I, CHRISTIAN KRAUSE A, et al. Fluorescent imaging of pH with optical sensors using time domain dual lifetime referencing[J]. Analytical Chemistry, 2001, 73(17):4354-4363.
|
[76] |
GLUD R N, SANTEGOEDS C M, BEER D D, et al. Oxygen dynamics at the base of a biofilm studied with planar optodes[J]. Aquatic Microbial Ecology, 1998, 14(3):223-233.
|
[77] |
ZHU Q, ALLER R C. A rapid response, planar fluorosensor for measuring two-dimensional pCO2, distributions and dynamics in marine sediments[J]. Limnology & Oceanography Methods, 2010, 8(7):326-336.
|
[78] |
STAAL M, PREST E I, Vrouwenvelder J S, et al. A simple optode based method for imaging O2 distribution and dynamics in tap water biofilms[J]. Water Research, 2011, 45(16):5027-5037.
|
[79] |
POLERECKY L, VOLKENBORN N, STIEF P. High temporal resolution oxygen imaging in bioirrigated sediments[J]. Environmental Science & Technology, 2006, 40(18):5763-5769.
|
[80] |
SCHRÖDER C R. Luminescent planar single and dual optodes for time-resolved imaging of pH, pCO2 and pO2 in marine systems[M]. Germany, Regensbury University,Inc.2006.
|
[81] |
NIKOLA L, PETER M, ROBERT J M, et al. Dynamics of oxygen and carbon dioxide in rhizospheres of lobelia dortmanna-a planar optode study of belowground gas exchange between plants and sediment[J]. New Phytologist, 2018, 218(1):131-141.
|
[82] |
WILLIAMS P N, SANTNER J, LARSEN M, et al. Localized flux maxima of arsenic, lead, and iron around root apices in flooded lowland rice[J]. Environmental Science & Technology, 2014, 48(15):8498-8506.
|
[83] |
HOEFER C, SANTNER J, BORISOV S M, et al. Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer[J]. Analytica Chimica Acta, 2016, 950(15):88-97.
|
[84] |
HAN C, REN J, WANG Z, et al. A novel hybrid sensor for combined imaging of dissolved oxygen and labile phosphorus flux in sediment and water[J]. Water Research, 2016, 108(1);179-188.
|
[85] |
XU W, LU S, CHEN Y, et al. Simultaneous color sensing of O2, and pH using a smartphone[J]. Sensors & Actuators B Chemical, 2015, 220:326-330.
|
[86] |
BORISOV S M, ROMAN S, INGO K. A novel planar optical sensor for simultaneous monitoring of oxygen, carbon dioxide, pH and temperature[J]. Analytical & Bioanalytical Chemistry, 2011, 400(8):2463-2474.
|
[87] |
STICH M I J, FISCHER L H, WOLFBEIS O S. Multiple fluorescent chemical sensing and imaging[J]. Chemical Society Reviews, 2010, 39(8):3102-3114.
|
[88] |
KOREN K, BRODERSEN K E, JAKOBSEN S L, et al. Optical Sensor nanoparticles in artificial sediments-a new tool to visualize O2 dynamics around the rhizome and roots of seagrasses[J]. Environmental Science & Technology, 2015, 49(4):2286-2292.
|
[89] |
FISCHER J P, KOOP-JAKOBSEN K. The multi fiber optode (MuFO):A novel system for simultaneous analysis of multiple fiber optic oxygen sensors[J]. Sensors & Actuators B Chemical, 2012, 168(12):354-359.
|
[90] |
KOOP-JAKOBSEN K K, FISCHER J, WENZHÖFER F. Survey of sediment oxygenation in rhizospheres of the saltmarsh grass-Spartina anglica[J]. Science of the Total Environment, 2017, 589:191-199.
|