[1] 谢晟瑜, 张佳丽, 沈昊宇, 等. 氯酚类污染物的性质, 危害及其检测方法研究进展[J]. 分析试验室, 2017, 36(11):1351-1355. XIE S, ZHANG J, SHEN H, et al. Research progress on the properties, harmfulness, and the determination methods of chlorophenols[J]. Chinese Journal of Analysis Laboratory, 2017, 36(11):1351-1355 (in Chinese).
[2] AHMED S, RASUL M G, BROWN R, et al. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater:A short review[J]. Journal of Environmental Management, 2011, 92(3):311-330.
[3] 龚睿, 孙凯, 谢道月. 真菌漆酶在绿色化学中的研究进展[J]. 生物技术通报, 2018, 34(3):1-6. GONG R, SUN K, XIE D. Applications of fungal laccase in green chemistry[J]. Biotechnology Bulletin, 2018, 34(3):1-6 (in Chinese).
[4] GARCIA H A, HOFFMAN C M, KINNEY K A, et al. Laccase-catalyzed oxidation of oxybenzone in municipal wastewater primary effluent[J]. Water Research, 2011, 45(5):1921-1932.
[5] SUN K, LUO Q, GAO Y, et al. Laccase-catalyzed reactions of 17β-estradiol in the presence of humic acid:Resolved by high-resolution mass spectrometry in combination with 13C labeling[J]. Chemosphere, 2016, 145:394-401.
[6] 张彤, 赵庆祥, 黄慧, 等. 辣根过氧化物酶处理酚和氯酚的催化特性研究[J]. 环境科学, 1998, 19(1):25-29. ZHANG T, ZHAO Q, HUANG H, et al. Kinetic study on the removal of toxic phenol and chlorophenol from waste water by horseradish peroxidase[J]. Environmental Science, 1998, 19(1):25-29 (in Chinese).
[7]
[8] MAI C, SCHORMANN W, MILSTEIN O, et al. Enhanced stability of laccase in the presence of phenolic compounds[J]. Applied Microbiology and Biotechnology, 2000, 54(4):510-514.
[9] SHELDON R A, VAN PELT S. Enzyme immobilisation in biocatalysis:Why, what and how[J]. Chemical Society Reviews, 2013, 42(15):6223-6235.
[10] 罗成, 李艳, 龙建纲. 纳米材料模拟酶的应用研究进展[J]. 中国科学:化学, 2015, 45(10):1026-1041. LUO C, LI Y, LONG J. Recent advances in applications of nanoparticles as enzyme mimetics[J]. Scientia Sinica Chimica, 2015, 45(10):1026-1041 (in Chinese).
[11] GAO L, ZHUANG J, NIE L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nature Nanotechnology, 2007, 2(9):577-583.
[12] ASATI A, SANTRA S, KAITTANIS C, et al. Oxidase-like activity of polymer-coated cerium oxide nanoparticles[J]. Angewandte Chemie, 2009, 121(13):2344-2348.
[13] WAN Y, QI P, ZHANG D, et al. Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay[J]. Biosensors and Bioelectronics, 2012, 33(1):69-74.
[14] HE Y, WANG Z, LONG D. Direct visual detection of MnO2 nanosheets within seconds[J]. Analytical and Bioanalytical Chemistry, 2016, 408(4):1231-1236.
[15] SAPUTRA E, MUHAMMAD S, SUN H, et al. A comparative study of spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions[J]. Journal of Colloid and Interface Science, 2013, 407:467-473.
[16] 李海涛, 李玉平, 曹宏斌,等. 过氧化物酶-辅酶NADH催化O2/H2O2产生羟基自由基研究及其氯苯处理初探[J]. 光谱学与光谱分析, 2010, 30(11):3119-3123. LI H, LI Y, CAO H, et al. The production of hydroxyl radical in HRP-NADH-H2O2/O2 systems and its application in chlorobenzene removal[J]. Spectroscopy and Spectral Analysis, 2010, 30(11):3119-3123 (in Chinese).
[17] RAO M A, SCELZA R, ACEVEDO F, et al. Enzymes as useful tools for environmental purposes[J]. Chemosphere, 2014, 107:145-162.
[18] MUKHERJEE S, BASAK B, BHUNIA B, et al. Potential use of polyphenol oxidases (PPO) in the bioremediation of phenolic contaminants containing industrial wastewater[J]. Reviews in Environmental Science & Bio/Technology, 2013, 12(1):61-73.
[19] BOLLAG J M. Enzyme catalyzing oxidative into soil humus[J]. Metal Ions in Biological Systems, 1992, 28:205-217.
[20] DEC J, BOLLAG J M. Phenoloxidase-mediated interactions of phenols and anilines with humic materials[J]. Journal of Environmental Quality, 2000, 29(30):665-676.
[21] 冯义平, 毛亮, 董仕鹏, 等. 过氧化物酶催化去除水体中酚类内分泌干扰物的研究进展[J]. 环境化学, 2013, 32(7):1218-1225. FENG Y, MAO L, DONG S, et al. Peroxidase-catalyzed removal of phenolic endocrine disrupting chemicals from water[J]. Environmental Chemistry, 2013, 32(7):1218-1225 (in Chinese).
[22] VEITCH N C. Horseradish peroxidase:A modern view of a classic enzyme[J]. Phytochemistry, 2004, 65(3):249-259.
[23]
[24] 王晓明, 刘小勇. 辣根过氧化物酶生物降解五氯酚[J]. 化学与生物工程, 2008, 25(2):48-50. WANG X, LIU X. Biodegradation of pentachlorophenol by horseradish peroxidase[J]. Chemistry & Bioengineering, 2008, 25(2):48-50 (in Chinese).
[25] LI J, PENG J, ZHANG Y, et al. Removal of triclosan via peroxidases-mediated reactions in water:Reaction kinetics, products and detoxification[J]. Journal of Hazardous Materials, 2016, 310:152-160.
[26] 杨梅, 吴永贵, 熊键. 改性蒙脱土固定化辣根过氧化物酶对2,4,6-三氯苯酚的催化去除及其影响因素研究[J]. 环境科学学报, 2014, 34(6):1414-1420. YANG M, WU Y, XIONG J. Removal and influences of 2,4,6-trichlorophenol catalyzed by horseradish peroxidase immobilized on modified montmorillonite[J]. Acta Scientiae Circumstantiae, 2014, 34(6):1414-1420 (in Chinese).
[27] DUARTE-VáZQUEZ M A, ORTEGA-TOVAR M A, GARCíA-ALMENDAREZ B E, et al. Removal of aqueous phenolic compounds from a model system by oxidative polymerization with turnip (Brassica napus L var purple top white globe) peroxidase[J]. Journal of Chemical Technology and Biotechnology, 2003, 78(1):42-47.
[28] LI J, ZHANG Y, HUANG Q, et al. Degradation of organic pollutants mediated by extracellular peroxidase in simulated sunlit humic waters:A case study with 17β-estradiol[J]. Journal of Hazardous Materials, 2017, 331:123-131.
[29] FOROOTANFAR H, MOVAHEDNIA M M, YAGHMAEI S, et al. Removal of chlorophenolic derivatives by soil isolated ascomycete of Paraconiothyrium variabile and studying the role of its extracellular laccase[J]. Journal of Hazardous Materials, 2012, 209:199-203.
[30] BAO W, PENG R, ZHANG Z, et al. Expression, characterization and 2,4,6-trichlorophenol degradation of laccase from Monilinia fructigena[J]. Molecular Biology Reports, 2012, 39(4):3871-3877.
[31] KIM Y J, NICELL J A. Laccase-catalysed oxidation of aqueous triclosan[J]. Journal of Chemical Technology and Biotechnology, 2006, 81(8):1344-1352.
[32] ARCA-RAMOS A, EIBES G, FEIJOO G, et al. Potentiality of a ceramic membrane reactor for the laccase-catalyzed removal of bisphenol A from secondary effluents[J]. Applied Microbiology and Biotechnology, 2015, 99(21):9299-9308.
[33] CHOINOWSKI T, BLODIG W, WINTERHALTER K H, et al. The crystal structure of lignin peroxidase at 1.70 Ǻ resolution reveals a hydroxy group on the Cβ, of tryptophan 171:A novel radical site formed during the redox cycle[J]. Journal of Molecular Biology, 1999, 286(3):809-827.
[34] COLOSI L M, HUANG Q, WEBER W J. Quantitative structure-activity relationship based quantification of the impacts of enzyme-substrate binding on rates of peroxidase-mediated reactions of estrogenic phenolic chemicals[J]. Journal of the American Chemical Society, 2006, 128(12):4041-4047.
[35] AMMANN E M, GASSER C A, HOMMES G, et al. Immobilization of defined laccase combinations for enhanced oxidation of phenolic contaminants[J]. Applied Microbiology & Biotechnology, 2014, 98(3):1397-1406.
[36] 张敏, 肖亚中, 龚为民. 真菌漆酶的结构与功能[J]. 生物学杂志, 2003, 20(5):6-8. ZHANG M, XIAO Y, GONG W. Advances on the structure and function of fungal laccase[J]. Journal of Biology, 2003, 20(5):6-8 (in Chinese).
[37] RIVA S. Laccases:Blue enzymes for green chemistry[J]. Trends in Biotechnology, 2006, 24(5):219-226.
[38] 孙凯, 李舜尧. 漆酶催化氧化水溶液中三氯生转化的作用理[J]. 中国环境科学, 2017, 37(8):2947-2954. SUN K, LI S. Laccase-mediated transformation mechanism of triclosan in aqueous solution[J]. China Environmental Science, 2017, 37(8):2947-2954 (in Chinese).
[39] DU P, ZHAO H, LIU C, et al. Transformation and products of captopril with humic constituents duringlaccase-catalyzed oxidation:Role of reactive intermediates[J]. Water Research, 2016, 106:488-495.
[40] FENG Y, COLOSI L M, GAO S, et al. Transformation and removal of tetrabromobisphenol A from water in the presence of natural organic matter via laccase-catalyzed reactions:Reaction rates, products, and pathways[J]. Environmental Science & Technology, 2013, 47(2):1001-1008.
[41] GULKOWSKA A, SANDER M, HOLLENDER J, et al. Covalent binding of sulfamethazine to natural and synthetic humic acids:Assessing laccase catalysis and covalent bond stability[J]. Environmental Science & Technology, 2013, 47(13):6916-6924.
[42] GU L, HUANG B, XU Z, et al. Dissolved organic matter as a terminal electron acceptor in the microbial oxidation of steroid estrogen[J]. Environmental Pollution, 2016, 218:26-33.
[43] WEI H, WANG E. Nanomaterials with enzyme-like characteristics (nanozymes):Next-generation artificial enzymes[J]. Chemical Society Reviews, 2013, 42(14):6060-6093.
[44] 高利增, 阎锡蕴. 纳米酶的发现与应用[J]. 生物化学与生物物理进展, 2013, 40(10):892-902. GAO L, YAN X. Discovery and current application of nanozyme[J]. Progress in Biochemistry and Biophysics, 2013, 40(10):892-902 (in Chinese).
[45] LIU J, MENG L, FEI Z, et al. MnO2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione[J]. Biosensors and Bioelectronics, 2017, 90:69-74.
[46] CHEN W, CHEN J, FENG Y B, et al. Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose[J]. Analyst, 2012, 137(7):1706-1712.
[47] DONG J, SONG L, YIN J J, et al. Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay[J]. ACS Applied Materials & Interfaces, 2014, 6(3):1959-1970.
[48] HUANG L, ZHANG W, CHEN K, et al. Facet-selective response of trigger molecule to CeO2 {1 1 0} for up-regulating oxidase-like activity[J]. Chemical Engineering Journal, 2017, 330:746-752.
[49] VALLABANI N V S, KARAKOTI A S, SINGH S. ATP-mediated intrinsic peroxidase-like activity of Fe3O4-based nanozyme:One step detection of blood glucose at physiological pH[J]. Colloids and Surfaces B:Biointerfaces, 2017, 153:52-60.
[50] BAIG R B N, VARMA R S. A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica:Aqueous hydration of nitriles to amides[J]. Chemical Communications, 2012, 48(50):6220-6222.
[51] LIU S, LU F, XING R, et al. Structural effects of Fe3O4 nanocrystals on peroxidase-like activity[J]. Chemistry-A European Journal, 2011, 17(2):620-625.
[52] HE W, WU X, LIU J, et al. Design of AgM bimetallic alloy nanostructures (M=Au, Pd, Pt) with tunable morphology and peroxidase-like activity[J]. Chemistry of Materials, 2010, 22(9):2988-2994.
[53] YU F Q, HUANG Y Z, COLE A J, et al. The artificial peroxidaseactivity of magnetic iron oxide nanoparticles and its application toglucose detection[J]. Biomaterials, 2009, 30(27):4716-4722.
[54] MU J, WANG Y, ZHAO M, et al. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles[J]. Chemical Communications, 2012, 48(19):2540-2542.
[55] ZHANG J B, ZHUANG J, GAO L Z, et al. Decomposing phenol by the hidden talent of ferromagnetic nanoparticles[J]. Chemosphere, 2008, 73(9):1524-1528.
[56] PEREZ J M, ASATI A, NATH S, et al. Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties[J]. Small, 2008, 4(5):552-556.
[57] HE L, LU Y, WANG F, et al. Colorimetric sensing of silver ions based on glutathione-mediated MnO2 nanosheets[J]. Sensors and Actuators B:Chemical, 2018, 254:468-474.
[58] ZHU P, CHEN Y, SHI J. Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation[J]. ACS Nano, 2018, 12(4):3780-3795.
[59] WANG F, DAI H, DENG J, et al. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies:Highly effective catalysts for the removal of toluene[J]. Environmental Science & Technology, 2012, 46(7):4034-4041.
[60] FANG H, PAN Y, SHAN W, et al. Enhanced nonenzymatic sensing of hydrogen peroxide released from living cells based on Fe3O4/self-reduced graphene nanocomposites[J]. Analytical Methods, 2014, 6(15):6073-6081.
[61] LIU J, ZHAO Z, SHAO P, et al. Activation of peroxymonosulfate with magnetic Fe3O4-MnO2 core-shell nanocomposites for 4-chlorophenol degradation[J]. Chemical Engineering Journal, 2015, 262:854-861.
[62] SUN K, LIANG S, KANG F, et al. Transformation of 17β-estradiol in humic acid solution by ε-MnO2 nanorods as probed by high-resolution mass spectrometry combined with 13C labeling[J]. Environmental Pollution, 2016, 214:211-218.
[63] HU X, LIU B, DENG Y, et al. Adsorption and heterogeneous Fenton degradation of 17α-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution[J]. Applied Catalysis B:Environmental, 2011, 107(3-4):274-283.
[64] WANG X, LIU J, QU R, et al. The laccase-like reactivity of manganese oxide nanomaterials for pollutant conversion:Rate analysis and cyclic voltammetry[J]. Scientific Reports, 2017, 7(1):7756.
[65] SUN K, LI S, WAIGI M G, et al. Nano-MnO2-mediated transformation of triclosan with humic molecules present:Kinetics, products, and pathways[J]. Environmental Science and Pollution Research, 2018, 25(15):14416-14425.
[66] LIU J, ZHAO Z, SHAO P, et al. Activation of peroxymonosulfate with magnetic Fe3O4-MnO2, core-shell nanocomposites for 4-chlorophenol degradation[J]. Chemical Engineering Journal, 2015, 262(9):854-861.
[67] MAHAMALLIK P, SAHA S, PAL A. Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly[J]. Chemical Engineering Journal, 2015, 276:155-165.
[68] SAPUTRA E, ZHANG H, LIU Q, et al. Egg-shaped core/shell α-Mn2O3@α-MnO2 as heterogeneous catalysts for decomposition of phenolics in aqueous solutions[J]. Chemosphere, 2016, 159:351-358.
[69] WU G W, HE S B, PENG H P, et al. Citrate-capped platinum nanoparticle as a smart probe for ultrasensitive mercury sensing[J]. Analytical Chemistry, 2014, 86(21):10955-10960.
[70] ZHUANG J, FAN K, GAO L, et al. Ex vivo detection of iron oxide magnetic nanoparticles in mice using their intrinsic peroxidase-mimicking activity[J]. Molecular Pharmaceutics, 2012, 9(7):1983-1989.
[71] CHANG Q, DENG K, ZHU L, et al. Determination of hydrogen peroxide with the aid of peroxidase-like Fe3O4 magnetic nanoparticles as the catalyst[J]. Microchimica Acta, 2009, 165(3-4):299-305.