[1] |
SMITH V H, TILMAN G D, NEKOLA J C. Eutrophication:Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems[J]. Environmental Pollution, 1999, 100(1-3):179-196.
|
[2] |
LÜRLING M, WAAJEN G, VAN OOSTERHOUT F. Humic substances interfere with phosphate removal by lanthanum modified clay in controlling eutrophication[J]. Water Research, 2014, 54:78-88.
|
[3] |
COPETTI D, FINSTERLE K, MARZIALI L, et al. Eutrophication management in surface waters using lanthanum modified bentonite:A review[J]. Water Research, 2016, 97:162-174.
|
[4] |
ZAMPARAS M, ZACHARIAS I. Restoration of eutrophic freshwater by managing internal nutrient loads. A review[J]. Science of the Total Environment, 2014, 496:551-562.
|
[5] |
WANG C H, BAI L L, JIANG H L, et al. Algal bloom sedimentation induces variable control of lake eutrophication by phosphorus inactivating agents[J]. Science of the Total Environment, 2016, 557-558:479-488.
|
[6] |
YIN H B, KONG M, HAN M X, et al. Influence of sediment resuspension on the efficacy of geoengineering materials in the control of internal phosphorous loading from shallow eutrophic lakes[J]. Environmental Pollution, 2016, 219:568-579.
|
[7] |
SU Y, ZHANG C, LIU J, et al. Assessing the impacts of phosphorus inactive clay on phosphorus release control and phytoplankton community structure in eutrophic lakes[J]. Environmental Pollution, 2016, 219:620-630.
|
[8] |
朱广伟, 李静, 朱梦圆, 等. 锁磷剂对杭州西湖底泥磷释放的控制效果[J]. 环境科学, 2017, 38(4):1451-1459.
ZHU G W, LI J, ZHU M Y, et al. Efficacy of Phoslock® on the reduction of sediment phosphorus release in West Lake, Hangzhou, China[J]. Environmental Science, 2017, 38(4):1451-1459(in Chinese).
|
[9] |
WANG C H, LIANG J C, PEI Y S, et al. A method for determining the treatment dosage of drinking water treatment residuals for effective phosphorus immobilization in sediments[J]. Ecological Engineering, 2013, 60:421-427.
|
[10] |
WANG C, QI Y, PEI Y. Laboratory investigation of phosphorus immobilization in lake sediments using water treatment residuals[J]. Chemical Engineering Journal, 2012, 209:379-385.
|
[11] |
WANG C, BAI L, PEI Y. Assessing the stability of phosphorus in lake sediments amended with water treatment residuals[J]. Journal of Environmental Management, 2013, 122:31-36.
|
[12] |
YIN H, KONG M. Reduction of sediment internal P-loading from eutrophic lakes using thermally modified calcium-rich attapulgite-based thin-layer cap[J]. Journal of Environmental Management, 2015, 151:178-185.
|
[13] |
刘新, 王秀, 赵珍, 等. 风浪扰动对底泥内源磷钝化效果的影响[J]. 中国环境科学, 2017, 37(8):3064-3071.
LIU X, WANG X, ZHAOZ, et al. Effect of wind and wave disturbance on passivation of internal phosphorus in sediment[J]. China Environmental Science, 2017, 37(8):3064-3071(in Chinese).
|
[14] |
杨孟娟, 林建伟, 詹艳慧, 等. 锆改性沸石活性覆盖控制重污染河道底泥氮磷释放研究[J]. 农业环境科学学报, 2013, 32(12):2460-2470.
YANG M J, LIN J W, ZHAN Y H, et al. Releases of ammonium and phosphorus from river sediments capped with zirconium-modified zeolite[J]. Journal of Agro-Environment Science, 2013, 32(12):2460-2470(in Chinese).
|
[15] |
FAN Y, LI Y W, WU D Y, et al. Application of zeolite/hydrous zirconia composite as a novel sediment capping material to immobilize phosphorus[J]. Water Research, 2017, 123:1-11.
|
[16] |
杨孟娟, 林建伟, 詹艳慧, 等. 铝和锆改性沸石对太湖底泥-水系统中溶解性磷酸盐的固定作用[J]. 环境科学研究, 2014, 27(11):1351-1359.
YANG M J, LIN J W, ZHAN Y H, et al. Immobilization of phosphate in Taihu Lake sediment-water systems using aluminum-modified zeolites and zirconium-modified zeolites as amendments[J]. Research of Environmental Sciences, 2014, 27(11):1351-1359(in Chinese).
|
[17] |
YANG M J, LIN J W, ZHAN Y H, et al. Adsorption of phosphate from water on lake sediments amended with zirconium-modified zeolites in batch mode[J]. Ecological Engineering, 2014, 71:223-233.
|
[18] |
YANG M J, LIN J W, ZHAN Y H, et al. Immobilization of phosphorus from water and sediment using zirconium-modified zeolites[J]. Environmental Science and Pollution Research, 2015, 22(5):3606-3619.
|
[19] |
章喆, 林建伟, 詹艳慧, 等. 锆改性高岭土覆盖对底泥与上覆水之间磷迁移转化的影响[J]. 环境科学, 2016, 37(4):1427-1436.
ZHANG Z, LIN J W, ZHAN Y H, et al. Effect of zirconium modified kaolin-based cap on migration and transformation of phosphorus between sediment and overlying water[J]. Environmental Science, 2016, 37(4):1427-1436(in Chinese).
|
[20] |
LIN J W, WANG H, ZHAN Y H, et al. Evaluation of sediment amendment with zirconium-reacted bentonite to control phosphorus release[J]. Environmental Earth Sciences, 2016, 75(11):942-958.
|
[21] |
LIN J W, HE S Q, ZHANG H, et al. Evaluation of phosphate adsorption on zirconium/magnesium-modified bentonite[J]. Environmental Technology, 2018, https://doi.org/10.1080/09593330.2018.1505966.
|
[22] |
TAN K L, HAMEED B H. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74:25-48.
|
[23] |
TRAN H N, YOU S J, HOSSEINI-BANDEGHARAEI A, et al. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions:A critical review[J]. Water Research, 2017, 120:88-116.
|
[24] |
ZAMPARAS M, GIANNI A, STATHI P, et al. Removal of phosphate from natural waters using innovative modified bentonites[J]. Applied Clay Science, 2012, 62-63:101-106.
|
[25] |
穆凯艳, 赵田甜, 张樱美, 等. 膨润土载锆除磷复合材料的研究[J]. 环境工程, 2014, 32(3):60-64.
MU K Y, ZHAO T T, ZHANG Y M, et al. Study on phosphorus removal using zirconium-modified bentonite as composite materials[J]. Environmental Engineering, 2014, 32(3):60-64(in Chinese).
|
[26] |
商丹红, 包敏. 铁基膨润土对水中磷酸根的吸附热力学及动力学研究[J]. 环境工程学报, 2014, 8(5):1982-1986.
SHANG D H, BAO M. Study on kinetics and thermodynamics for phosphate in aqueous solution adsorption onto iron-modified bentonite[J]. Chinese Journal of Environmental Engineering, 2014, 8(5):1982-1986(in Chinese).
|
[27] |
PAWAR R R, GUPTA P, LALHMUNSIAMA, et al. Al-intercalated acid activated bentonite beads for the removal of aqueous phosphate[J]. Science of the Total Environment, 2016, 572:1222-1230.
|
[28] |
YAN L G, XU Y Y, YU H Q, et al. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites[J]. Journal of Hazardous Materials, 2010, 179(1-3):244-250.
|
[29] |
HUANG W Y, CHEN J, HE F, et al. Effective phosphate adsorption by Zr/Al-pillared montmorillonite:Insight into equilibrium, kinetics and thermodynamics[J]. Applied Clay Science, 2015, 104:252-260.
|
[30] |
TIAN S, JIANG P, NING P, et al. Enhanced adsorption removal of phosphate from water by mixed lanthanum/aluminum pillared montmorillonite[J]. Chemical Engineering Journal, 2009, 151(1-3):141-148.
|
[31] |
MA L, ZHU J, XI Y, et al. Adsorption of phenol, phosphate and Cd(Ⅱ) by inorganic-organic montmorillonites:A comparative study of single and multiple solute[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 497:63-71.
|
[32] |
张文豪, 饶伟, 张亚楠, 等. 镁铝双氢氧化物和镁铁铝改性蒙脱土去除水体中磷的吸附效果研究[J]. 农业环境科学学报, 2011, 30(10):2061-2067.
ZHANG W H, RAO W, ZHANG Y N, et al. Adsorption effects of phosphate from aqueous solution using LDH and Mg/Fe/Al modified montmorillonite[J]. Journal of Agro-Environment Science, 2011,30(10):2061-2067(in Chinese).
|
[33] |
姜博汇, 林建伟, 詹艳慧, 等. 不同锆负载量锆改性膨润土对水中磷酸盐吸附作用的对比[J]. 环境科学, 2017, 38(6):2400-2411.
JINAG B H, LIN J W, ZHAN Y H, et al. Comparison of phosphate adsorption onto zirconium-modified bentonites with different zirconium loading levels[J]. Environmental Science, 2017, 38(6):2400-2411(in Chinese).
|
[34] |
LIN J W, ZHAN Y H, WANG H, et al. Effect of calcium ion on phosphate adsorption onto hydrous zirconium oxide[J]. Chemical Engineering Journal, 2017, 309:118-129.
|
[35] |
QIN K, LI F, XU S, et al. Sequential removal of phosphate and cesium by using zirconium oxide:A demonstration of designing sustainable adsorbents for green water treatment[J]. Chemical Engineering Journal, 2017, 322:275-280.
|
[36] |
JOHIR M A H, PRADHAN M, LOGANATHAN P, et al. Phosphate adsorption from wastewater using zirconium (IV) hydroxide:Kinetics, thermodynamics and membrane filtration adsorption hybrid system studies[J]. Journal of Environmental Management, 2016, 167:167-174.
|
[37] |
LIU H L, SUN X F, YIN C Q, et al. Removal of phosphate by mesoporous ZrO2[J]. Journal of Hazardous Materials, 2008, 151(2-3):616-622.
|
[38] |
ZONG E M, WEI D, WAN H Q, et al. Adsorptive removal of phosphate ions from aqueous solution using zirconia-functionalized graphite oxide[J]. Chemical Engineering Journal, 2013, 221:193-203.
|
[39] |
ZONG E M, LIU X H, JIANG J H, et al. Preparation and characterization of zirconia-loaded lignocellulosic butanol residue as a biosorbent for phosphate removal from aqueous solution[J]. Applied Surface Science, 2016, 387:419-430.
|
[40] |
FANG L P, WU B L, LO I M C. Fabrication of silica-free superparamagnetic ZrO2@Fe3O4 with enhanced phosphate recovery from sewage:Performance and adsorption mechanism[J]. Chemical Engineering Journal, 2017, 319:258-267.
|
[41] |
LIN J W, WANG X X, ZHAN Y H. Effect of precipitation pH and coexisting magnesium ion on phosphate adsorption onto hydrous zirconium oxide[J]. Journal of Environmental Science, 2018, https://doi.org/10.1016/j.jes.2018.04.023.
|