[1] 陈如亮. 新能源电池技术的研究[J]. 科技视界, 2015, 5(27):271-288. CHEN R L. Study on new energy battery technology[J]. Science and Technology Vision, 2015, 5(27):271-288(in Chinese).
[2] NETO S A, FORTI J C, ANDRADE A R D. An overview of enzymatic biofuel cells[J]. Electrocatalysis, 2010, 1(1):87-94.
[3] 刘强, 许鑫华, 任光雷, 等. 酶生物燃料电池[J]. 化学进展, 2006, 18(11):1530-1537. LIU Q, XU X H, REN G L, et al. Enzyme biofuel cell[J]. Progress in Chemistry, 2006, 18 (11):1530-1537(in Chinese).
[4] CARRETTE L, FRIEDRICH K A, STIMMING U. Fuel cells-fundamentals and applications[J]. Fuelcells, 2001, 1(1):35-39.
[5] 钟登杰, 刘雅琦, 廖新荣, 等. 金属及其化合物修饰微生物燃料电池阳极的研究进展[J]. 环境化学, 2017, 36(7):1636-1647. ZHONG D J, LIU Y Q, LIAO X R, et al. Research progress in anodes modified by metals and metals and metal compounds for microbialfuel cells[J]. Environmental Chemistry, 2017, 36(7):1636-1647(in Chinese).
[6] 吕娜. 氧化铜基复合纳米材料的制备及其无酶葡萄糖传感性质研究[D]. 长春:东北师范大学, 2016. LU N. Preparation of copper oxide-based composite nanomaterials and its enzyme-free glucose sensing properties[D]. Changchun:Northeast Normal University, 2016(in Chinese).
[7] PARK S, CHUNG T D, KIM H C. Nonenzymatic glucose detection using mesoporous platinum[J]. Analytical Chemistry, 2003, 75(13):3046-3049.
[8] BROUZGOU A, TSIAKARAS P. Electrocatalysts for glucose electrooxidation reaction:a review[J]. Topics in Catalysis, 2015, 58(18-20):1311-1327.
[9] 王蕊. Pt-Pb纳米花修饰无酶葡萄糖传感器的研究[D]. 天津:天津大学, 2010. WANG R. Study on Pt-Pb nanometer flower modified enzyme-free glucose sensor[D]. Tianjin:Tianjin University, 2010(in Chinese).
[10] XIA Y, HUANG W, ZHENG J, et al. Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method[J]. Biosensors & Bioelectronics, 2011, 26(8):3555-3561.
[11] PARK S, PARK S, JEONGR A, et al. Nonenzymatic continuous glucose monitoring in human whole blood using electrified nanoporous Pt[J]. Biosensors & Bioelectronics, 2012, 31(1):284-291.
[12] 王艺兰, 包晓玉, 杨妍, 等. 电沉积纳米NiOx无酶葡萄糖传感器的性能[J]. 分析试验室, 2014, 33(7):799-802. WANG Y L, BAO X Y, YANG Y, et al. Performance of a nonenzymatic glucose sensor based on structure of electrodeposited nickel oxide nanostructure[J]. Chinese Journal of Analysis Laboratory, 2014, 33(7):799-802(in Chinese).
[13] VRUBEL H, HU X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions[J]. Angewandte Chemie, 2012, 124(51):12875-12878.
[14] XIAO P, GE X, WANG H, et al. Novel molybdenum carbide-tungsten carbide composite nanowires and their electrochemical activation for efficient and stable hydrogen evolution[J]. Advanced Functional Materials, 2015, 25(10):1520-1526.
[15] KUDOT, KAWAMURA G, OKAMOTO H. A New (W, Mo) C electrocatalyst synthesized by a carbonyl process:Its activity in relation to H2, HCHO, and CH3OH Electro-Oxidation[J]. Journal of the Electrochemical Society, 1983, 130(7):1491-1497.
[16] MA F X, WU H B, XIA B Y, et al. Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production[J]. Angewandte Chemie International Edition, 2015, 54(51):15395-15399.
[17] CUI W, CHENG N, LIU Q, et al. Mo2C nanoparticles decorated graphitic carbon sheets:Biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation[J]. ACS Catalysis, 2014, 4(8):2658-2661.
[18] LIU Y, WANG M, ZHAO F, et al. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix[J]. Biosensors and Bioelectronics, 2005, 21(6):984-988.
[19] GAO Z, LIN Y, HE Y, et al. Enzyme-free amperometric glucose sensor using a glassy carbon electrode modified with poly (vinyl butyral) incorporating a hybrid nanostructure composed of molybdenum disulfide and copper sulfide[J]. Microchimica Acta, 2017, 184(3):807-814.
[20] KATZ E, LIOUBASHEVSKI O, Willner I. Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems:Enhanced performance of biofuel cells[J]. Journal of the American Chemical Society, 2005, 127(11):3979-3988.
[21] 董绍俊. 化学修饰电极[J]. 化学通报, 1981, 28(12):713-721. Dong S J. Chemically modified electrode[J]. Chemistry, 1981, 28(12):713-721(in Chinese).
[22] BASU D, BASU S. Performance studies of Pd-Pt and Pt-Pd-Au catalyst for electro-oxidation of glucose in direct glucose fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(5):4678-4684.
[23] ZHAO Y, FAN L, HONG B, et al. Three-dimensional porous palladium foam-like nanostructures as electrocatalysts for glucose biofuel cells[J]. Energy Technology, 2016, 4(2):249-255.
[24] YANG L, ZHANG Y, CHU M, et al. Facile fabrication of network film electrodes with ultrathin Au nanowires for nonenzymatic glucose sensing and glucose/O2 fuel cell[J]. Biosensors and Bioelectronics, 2014, 52:105-110.
[25] CUI S, WEN Z, MAO S, et al. One-pot synthesis of high-performance Co/graphene electrocatalysts for glucose fuel cells free of enzymes and precious metals[J]. Chemical Communications, 2015, 51(45):9354-9357.
[26] KLOKE A, KOHLER C, ZENGERLE R, et al. Porous Platinum electrodes fabricated by cyclic electrodeposition of Pt-Cu alloy:Application to implantable glucose fuel cells[J]. Journal of Physical Chemistry C, 2015, 116(37):19689-19698.
[27] WEN D, XU, DONG S. A single-walled carbon nanohorns-based miniature glucose/air biofuel cell harvesting energy from soft drinks[J]. Energy & Environmental Science, 2011, 4(4):1358-1363.
[28] 许凯歌, 张笛, 雷杰, 等. Au Nanowires-MWCNTs修饰电极对葡萄糖的催化氧化[J]. 高等学校化学学报, 2017, 38(10):1864-1871. XU K G, ZHANG D, LEI J, et al. Au nanowires-MWCNTs modified electrode for catalyzing the oxidization of glucose[J]. Chemical Journal of Chinese Universities, 2017, 38(10):1864-1871(in Chinese).
[29] 陆天虹. 能源电化学[M]. 北京:化学工业出版社, 2014. LU T H. Energy Electrochemistry[M]. Beijing:Chemical Industry Press, 2014(in Chinese).