[1] GUPTA R C. Handbook of toxicology of chemical warfare agents[M]. London:Academic Press, 2009.
[2] PRASAD G K, MAHATO T H, YADAV S S, et al. Sulphur mustard vapor breakthrough behaviour on reactive carbon systems[J]. Journal of Hazardous Materials, 2007, 143(1-2):150-155.
[3] SINGER B C, HODGSON A T, DESTAILLATS H, et al. Indoor sorption of surrogates for sarin and related nerve agents[J]. Environmental Science & Technology, 2005, 39(9):3203-3214.
[4] HERRMANN H W, SELWYN G S, HENINS I, et al. Chemical warfare agent decontamination studies in the plasma decon chamber[J]. Ieee Transactions on Plasma Science, 2002, 30(4):1460-1470.
[5] GOSWAMI S, MILLER C E, LOGSDON J L, et al. Atomistic approach toward selective photocatalytic oxidation of a mustard-gas simulant:A case study with heavy-chalcogen-containing PCN-57 analogues[J]. Acs Applied Materials & Interfaces, 2017, 9(23):19535-19540.
[6] UHM H S, SHIN D H, HONG Y C. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents[J]. Applied Physics Letters, 2006, 89(12):2284-2288.
[7] SMITH B M. Catalytic methods for the destruction of chemical warfare agents under ambient conditions[J]. Chemical Society Reviews, 2008, 37(3):470-478.
[8] KIM K, TSAY O G, ATWOOD D A, et al. Destruction and detection of chemical warfare agents[J]. Chemical Reviews, 2011, 111(9):5345-5403.
[9] TEMPLETON M K, WEINBERG W H. Adsorption and decomposition of dimethyl methylphosphonate on an aluminum oxide surface[J]. Journal of the American Chemical Society, 1985, 107(1):97-108.
[10] RUSU C N, YATES J T. Adsorption and decomposition of dimethyl methylphosphonate on TiO2[J]. Journal of Physical Chemistry B, 2000, 104(51):12292-12298.
[11] PANAYOTOV D A, MORRIS J R. Thermal decomposition of a chemical warfare agent simulant (DMMP) on TiO2:adsorbate reactions with lattice oxygen as studied by infrared spectroscopy[J]. Journal of Physical Chemistry C, 2009, 113(35):15684-15691.
[12] LI Y X, KOPER O, ATTEYA M, et al. Adsorption and decomposition of organophosphorus compounds on nanoscale metal-oxide particles-insitu GC-MS studies of pulsed microreactions over magnesium-oxide[J]. Chemistry of Materials, 1992, 4(2):323-330.
[13] MITCHELL M B, SHEINKER V N, MINTZ E A. Adsorption and decomposition of dimethyl methylphosphonate on metal oxides[J]. Journal of Physical Chemistry B, 1997, 101(51):11192-11203.
[14] CHEN D A, RATLIFF J S, HU X, et al. Dimethyl methylphosphonate decomposition on fully oxidized and partially reduced ceria thin films[J]. Surface Science, 2010, 604(5-6):574-587.
[15] SEGAL S R, CAO L, SUIB S L, et al. Thermal decomposition of dimethyl methylphosphonate over manganese oxide catalysts[J]. Journal of Catalysis, 2001, 198(1):66-76.
[16] CAO L, SEGAL S R, SUIB S L, et al. Thermocatalytic oxidation of dimethyl methylphosphonate on supported metal oxides[J]. Journal of Catalysis, 2000, 194(1):61-70.
[17] TESFAI T M, SHEINKER V N, MITCHELL M B. Decomposition of dimethyl methylphosphonate (DMMP) on alumina-supported iron oxide[J]. Journal of Physical Chemistry B, 1998, 102(38):7299-7302.
[18] MOTAMEDHASHEMI M M Y, EGOLFOPOULOS F, TSOTSIS T. Application of a flow-through catalytic membrane reactor (FTCMR) for the destruction of a chemical warfare simulant[J]. Journal of Membrane Science, 2011, 376(1-2):119-131.
[19] YOUSEF MOTAMEDHASHEMI M M, MONJI M, EGOLFOPOULOS F, et al. A hybrid catalytic membrane reactor for destruction of a chemical warfare simulant[J]. Journal of Membrane Science, 2015, 473:1-7.
[20] MONJI M, CIORA R, LIU P K T, et al. Thermocatalytic decomposition of dimethyl methylphosphonate (DMMP) in a multi-tubular, flow-through catalytic membrane reactor[J]. Journal of Membrane Science, 2015, 482:42-48.
[21] YOUSEF MOTAMEDHASHEMI M M, EGOLFOPOULOS F, TSOTSIS T. Flow-through catalytic membrane reactors for the destruction of a chemical warfare simulant:Dynamic performance aspects[J]. Catalysis Today, 2016, 268:130-141.
[22] LIM K I, SONG Y I, NAM I-S, et al. Effect of support on the decomposition of DMMP over Pt based catalysts, F, 1996[C]. National Technical Information Service.
[23] RYU S G, YANG J K, LEE H W, et al. Decomposition of dimethyl methylphosphonate over alumina-supported precious metal catalysts[J]. Hwahak Konghak, 1995, 33(4):462-470.
[24] RATLIFF J S, TENNEY S A, HU X, et al. Decomposition of dimethyl methylphosphonate on Pt, Au, and Au-Pt clusters supported on TiO2(110)[J]. Langmuir, 2009, 25(1):216-225.
[25] PANAYOTOV D A, MORRIS J R. Catalytic degradation of a chemical warfare agent simulant:Reaction mechanisms on TiO2-supported Au nanoparticles[J]. Journal of Physical Chemistry C, 2008, 112(19):7496-7502.
[26] GRAVEN W M, WELLER S W, PETERS D L. Catalytic conversion of an organophosphate vapor over platinum-alumina[J]. Industrial & Engineering Chemistry Process Design And Development, 1966, 5(2):183-189
[27] TZOU T Z, WELLER S W. Catalytic oxidation of dimethyl methylphosphonate[J]. Journal of Catalysis, 1994, 146(2):370-374.
[28] HSU C C, DULCEY C S, HORWITZ J S, et al. Mass-spectrometric characterization of performance of a low-temperature oxidation catalyst[J]. Journal of Molecular Catalysis, 1990, 60(3):389-398.
[29] CAO L, SUIB S L, TANG X, et al. Thermocatalytic decomposition of dimethyl methylphosphonate on activated carbon[J]. Journal of Catalysis, 2001, 197(2):236-243.
[30] TEMPLETON M K, WEINBERG W H. Adsorption and decomposition of dimethyl methylphosphonate on an aluminum-oxide surface[J]. Journal of the American Chemical Society, 1985, 107(1):97-108.
[31] SHEINKER V N, MITCHELL M B. Quantitative study of the decomposition of dimethyl methylphosphonate (DMMP) on metal oxides at room temperature and above[J]. Chemistry of Materials, 2002, 14(3):1257-1268.
[32] MA S, ZHOU J, KANG Y C, et al. Dimethyl methylphosphonate decomposition on Cu surfaces:Supported Cu nanoclusters and films on TiO2(110)[J]. Langmuir, 2004, 20(22):9686-9694.
[33] ZHOU J, MA S, KANG Y C, et al. Dimethyl methylphosphonate decomposition on titania-supported Ni clusters and films:A comparison of chemical activity on different Ni surfaces[J]. Journal of Physical Chemistry B, 2004, 108(31):11633-11644.
[34] LEE K Y, HOUALLA M, HERCULES D M, et al. Catalytic oxidative decomposition of dimethyl methylphosphonate over Cu-substituted hydroxyapatite[J]. Journal of Catalysis, 1994, 145(1):223-231.
[35] PALUCKA T P, EROR N G, MCNAMARA T A. Oxidative catalytic decomposition of toxic gases using hydroxyapatite and fluorhydroxyapatite[J]. Mrs Proceedings, 1994, 368:275-280.
[36] HENDERSON M A, JIN T, WHITE J M. A TPD/AES study of the interaction of dimethyl methylphosphonate with iron oxide (α-Fe2O3) and silicon dioxide[J]. Journal of Physical Chemistry, 1986, 90(19):4607-4611.
[37] HENDERSON M A, WHITE J M. Adsorption and decomposition of dimethyl methylphosphonate on platinum(111)[J]. Journal of the American Chemical Society, 1988, 110(21):6939-6947.
[38] GUO X, YOSHINOBU J, YATES J T. Decomposition of an organophosphonate compound (dimethylmethylphosphonate) on the nickel(111) and palladium(111) surfaces[J]. Journal of Physical Chemistry, 1990, 94(17):6839-6842.
[39] ZHAO H B, TONKYN R G, BARLOW S E, et al. Catalytic oxidation of HCN over a 0.5% Pt/Al2O3 catalyst[J]. Applied Catalysis B-Environmental, 2006, 65(3-4):282-290.
[40] KROECHER O, ELSENER M. Hydrolysis and oxidation of gaseous HCN over heterogeneous catalysts[J]. Applied Catalysis B-Environmental, 2009, 92(1-2):75-89.
[41] LIU N, YUAN X, CHEN B, et al. Selective catalytic combustion of hydrogen cyanide over metal modified zeolite catalysts:From experiment to theory[J]. Catalysis Today, 2017, 297:201-210.
[42] SONG Z, ZHANG Q, NING P, et al. Catalytic hydrolysis of HCN on ZSM-5 modified by Fe or Nb for HCN removal:Surface species and performance[J]. Rsc Advances, 2016, 6(112):111389-111397.
[43] HU Y, LIU J, CHENG J, et al. Coupling catalytic hydrolysis and oxidation of HCN over HZSM-5 modified by metal (Fe,Cu) oxides[J]. Applied Surface Science, 2018, 427:843-850.
[44] WANG X, JING X, WANG F, et al. Coupling catalytic hydrolysis and oxidation on metal-modified activated carbon for HCN removal[J]. Rsc Advances, 2016, 6(62):7108-7116.
[45] WANG L, WANG X, JING X, et al. Efficient removal of HCN through catalytic hydrolysis and oxidation on Cu/CoSPc/Ce metal-modified activated carbon under low oxygen conditions[J]. Rsc Advances, 2016, 6(115):113834-113843.
[46] WANG X, CHENG J, WANG X, et al. Mn based catalysts for driving high performance of HCN catalytic oxidation to N2 under micro-oxygen and low temperature conditions[J]. Chemical Engineering Journal, 2018, 333:402-413.
[47] LESTER G R, MARINANGELI R E, CRDECCR-87050[R]:US ArmyICRDEC (Aberdeen, MD), 1987.
[48] AGARWAL S K, SPIVEY J J, TEVAULT D E. Effect of water-vapor in the catalytic destruction of cyanogen chloride[J]. Journal of the Chemical Society Chemical Communications, 1993, 11:911-912.
[49] AGARWAL S K, SPIVEY J J, TEVAULT D E. Kinetics of the catalytic destruction of cyanogen chloride[J]. Applied Catalysis B Environmental, 1995, 5(4):389-403.
[50] GLUKHOVTSEV M N, BACH R D, NAGEL C J. A high-level computational study on the thermochemistry and thermal decomposition of sulfur mustard (2,2'-dichloroethyl sulfide):A chemical warfare agent[J]. Journal of Physical Chemistry A, 1998, 102(19):3438-3446.
[51] BATTIN-LECLERC F, BARONNET F, PATERNOTTE G, et al. Thermal decomposition of bis (2-chloroethyl) sulphide and bis (2-chloroethyl) ether between 300 and 500 degrees C[J]. Journal of Analytical and Applied Pyrolysis, 2000, 55(2):203-216.
[52] JUNG H, LEE H W, JEONG E A. Enhanced thermal degradation of 2,2-dichlorodiethyl sulfide (sulfur mustard, HD) with the presence of metal oxides[J]. Phosphorus Sulfur and Silicon and the Related Elements, 2016, 191(8):1137-1141.
[53] KLINGHOFFER A A, ROSSIN J A, ERDEC-CR-105[R]:US ArmyICRDEC (Aberdeen, MD), 1994.
[54] ROSSIN J A, ERDEC-CR-047[R]:U. S. Army Chemical and Biological Defense Command, 1993.
[55] KLINGHOFFER A A, ROSSIN J A, ERDEC-CR-209[R]:US ArmyICRDEC (Aberdeen, MD), 1995.