[1] GOUIN T, MACKAY D, JONES K C, et al. Evidence for the "grasshopper" effect and fractionation during long-range atmospheric transport of organic contaminants[J]. Environmental Pollution, 2004, 128(1-2):139-148.
[2] SCHERINGER M, SALZMANN M, STROEBE M, et al. Long-range transport and global fractionation of POPs:insights from multimedia modeling studies[J]. Environmental Pollution, 2004, 128(1-2):177-188.
[3] MCLACHLAN M S, HORSTMANN M. Forests as filters of airborne organic pollutants:A model[J]. Environmental Science & Technology,1998, 32(3):413-420.
[4] LIU X, LI J, ZHENG Q, et al. Forest filter effect versus cold trapping effect on the altitudinal distribution of PCBs:A case study of Mt. Gongga, eastern Tibetan Plateau[J]. Environmental Science & Technology, 2014, 48(24):14377-14385.
[5] WEGMANN F, SCHERINGER M, MÖLLER A, et al. Influence of vegetation on the environmental partitioning of DDT in two global multimedia models[J]. Environmental Science & Technology 2004, 38(5):1505-1512.
[6] NIZZETTO L, CASSANI C, GUARDO A D. Deposition of PCBs in mountains:The forest filter effect of different forest ecosystem types[J]. Ecotoxicology & Environmental Safety, 2006, 63(1):75-83.
[7] HUANG T, ZHANG X, LING Z, et al. Impacts of large-scale land-use change on the uptake of polycyclic aromatic hydrocarbons in the artificial three northern regions shelter forest across Northern China[J]. Environmental Science & Technology, 2016, 50(23):12885-12893.
[8] SU Y, WANIA F, HARNER T, et al. Deposition of polybrominated diphenyl ethers, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons to a boreal deciduous forest[J]. Environmental Science & Technology, 2007, 41(2):534-540.
[9] PICHLER M, GUGGENBERGER G, HARTMANN R, et al. Polycyclic aromatic hydrocarbons (PAH) in different forest humus types[J]. Environmental Science & Pollution Research, 1996, 3(1):24-31.
[10] HOLOUBEK I, DUŠEK L, SÁNKA M, et al. Soil burdens of persistent organic pollutants-their levels, fate and risk. Part Ⅰ. Variation of concentration ranges according to different soil uses and locations[J]. Environmental Pollution, 2009, 157(12):3207-3217.
[11] COUSINS I T, GEVAO B, JONES K C. Measuring and modelling the vertical distribution of semi-volatile organic compounds in soils. Ⅰ:PCB and PAH soil core data[J]. Chemosphere, 1999, 39(14):2507-2518.
[12] SIMONICH S L, HITES R A. Organic pollutant accumulation in vegetation[J]. Environmental Science & Technology, 1995, 29(12):2905-2914.
[13] BRORSTRÖM-LUNDÉN E, LÖFGREN C. Atmospheric fluxes of persistent semivolatile organic pollutants to a forest ecological system at the Swedish west coast and accumulation in spruce needles[J]. Environmental Pollution, 1998, 102(1):139-149.
[14] SU Y, WANIA F. Does the forest filter effect prevent semivolatile organic compounds from reaching the Arctic?[J]. Environmental Science & Technology, 2005, 39(18):7185-7193.
[15] HORSTMANN M, MCLACHLAN M S. Atmospheric deposition of semivolatile organic compounds to two forest canopies[J]. Atmospheric Environment, 1998, 32(10):1799-1809.
[16] AND M H, MCLACHLAN M S. Evidence of a novel mechanism of semivolatile organic compound deposition in coniferous forests[J]. Environmental Science & Technology, 1996, 30(5):1794-1796.
[17] BESSAGNET B, SEIGNEUR C, MENUT L. Impact of dry deposition of semi-volatile organic compounds on secondary organic aerosols[J]. Atmospheric Environment, 2010, 44(14):1781-1787.
[18] ZHENG Q, NIZZETTO L, LIU X, et al. Elevated mobility of persistent organic pollutants in the soil of a tropical rainforest[J]. Environmental Science & Technology, 2015, 49(7):4302-4309.
[19] WANIA F, MCLACHLAN M S. Estimating the influence of forests on the over all fate of semivolatile organic compounds using a multimedia fate model[J]. Environmental Science & Technology, 2001, 35(3):582-590.
[20] AND M H, MCLACHLAN M S. Evidence of a novel mechanism of semivolatile organic compound deposition in coniferous forests[J]. Environmental Science & Technology, 1996, 30(5):1794-1796.
[21] BESSAGNET B, SEIGNEUR C, MENUT L. Impact of dry deposition of semi-volatile organic compounds on secondary organic aerosols[J]. Atmospheric Environment, 2010, 44(14):1781-1787.
[22] ISHIHARA M I, HIURA T. Modeling leaf area index from litter collection and tree data in a deciduous broadleaf forest[J]. Agricultural & Forest Meteorology, 2011, 151(7):1016-1022.
[23] MOECKEL C, NIZZETTO L, STRANDBERG B, et al. Air-boreal forest transfer and processing of polychlorinated biphenyls[J]. Environmental Science & Technology, 2009, 43(14):5282-5289.
[24] UNSWORTH M H. Principles of environmental physics[J]. Plant Growth Regulation, 1991, 10(2):177-178.
[25] MENESES M, SCHUHMACHER M, DOMINGO J L. A design of two simple models to predict PCDD/F concentrations in vegetation and soil[J]. Chemosphere, 2002, 46(9-10):1393-1402.
[26] 张淑娟, 杨瑞强. 苔藓和地衣在指示偏远地区大气持久性有机污染物中的应用[J]. 环境化学, 2014, 33(1):37-45. ZHANG S J,YANG R Q. Application of lichens and mosses as biomonitors of atmospheric POPs pollution in remote areas:A review[J]. Environmental Chemistry, 2014, 33(1):37-45(in Chinese).
[27] NIZZETTO L, STROPPIANA D, BRIVIO P A, et al. Tracing the fate of PCBs in forest ecosystems[J]. Journal of Environmental Monitoring Jem, 2007, 9(6):542.
[28] WENZEL K D, MANZ M, HUBERT A, et al. Fate of POPs (DDX, HCHs, PCBs) in upper soil layers of pine forests[J]. Science of the Total Environment, 2002, 286(1-3):143-154.
[29] HARNER T, MACKAY D, JONES K C. Model of the long-term exchange of PCBs between soil and the atmosphere in the southern U.K.[J]. Environmental Science & Technology, 1995, 29(5):1200-1209.
[30] LIU X, WANG S, JIANG Y, et al. Polychlorinated biphenyls and polybrominated diphenylethers in soils from planted forests and adjacent natural forests on a tropical island[J]. Environmental Pollution, 2017, 227:57-63.
[31] HARNER T, BIDLEMAN T F, JANTUNEN L M M, et al. Soil-air exchange model of persistent pesticides in the United States cotton belt[J]. Environmental Toxicology & Chemistry, 2001, 20(7):1612-1621.
[32] TERZAGHI E, MORSELLI M, SEMPLICE M, et al. SoilPlusVeg:An integrated air-plant-litter-soil model to predict organic chemical fate and recycling in forests[J]. Science of the Total Environment, 2017, 595:169-177.
[33] MCLACHLAN M S. Framework for the interpretation of measurements of SOCs in plants[J]. Environmental Science & Technology, 1999, 33(11):1799-1804.
[34] SYED J H, IQBAL M, ZHONG G, et al. Polycyclic aromatic hydrocarbons (PAHs) in Chinese forest soils:Profile composition, spatial variations and source apportionment[J]. Sci Rep, 2017, 7(1):2692.
[35] LEVY W, HENKELMANN B, BERNHÖFT S, et al. Persistent aryl hydrocarbon receptor inducers increase with altitude, and estrogen-like disrupters are low in soils of the Alps[J]. Environmental Science & Pollution Research International, 2011, 18(1):99-110.
[36] NIZZETTO L, LIU X, ZHANG G, et al. Accumulation kinetics and equilibrium partitioning coefficients for semivolatile organic pollutants in forest litter[J]. Environmental Science & Technology, 2014, 48(1):420-428.
[37] XUE Y, WANG X, PING G, et al. Distribution and vertical migration of polycyclic aromatic hydrocarbons in forest soil pits of southeastern Tibet[J]. Environmental Geochemistry & Health, 2017(12):1-13.
[38] GHIRARDELLO D, MORSELLI M, SEMPLICE M, et al. A dynamic model of the fate of organic chemicals in a multilayered air/soil system:Development and illustrative application[J]. Environmental Science & Technology, 2010, 44(23):9010-9017.
[39] MOECKEL C, NIZZETTO L, DI G A, et al. Persistent organic pollutants in boreal and montane soil profiles:Distribution, evidence of processes and implications for global cycling[J]. Environmental Science & Technology, 2015, 42(22):8374-8380.
[40] ZHENG Q, NIZZETTO L, LI J, et al. Spatial distribution of old and emerging flame retardants in Chinese forest soils:Sources, trends and processes[J]. Environmental Science & Technology, 2015, 49(5):2904-2911.
[41] JACOB M, WELAND N, PLATNER C, et al. Nutrient release from decomposing leaf litter of temperate deciduous forest trees along a gradient of increasing tree species diversity[J]. Soil Biology & Biochemistry, 2009, 41(10):2122-2130.
[42] AICHNER B, BUSSIAN B M, LEHNIK-HABRINK P, et al. Regionalized concentrations and fingerprints of polycyclic aromatic hydrocarbons (PAHs) in German forest soils[J]. Environmental Pollution, 2015, 203(5620):31-39.
[43] MCLACHLAN M S, CZUB G, WANIA F. The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils[J]. Environmental Science & Technology, 2002, 36(22):4860-4867.
[44] WANG X, XUE Y, GONG P, et al. Organochlorine pesticides and polychlorinated biphenyls in Tibetan forest soil:Profile distribution and processes[J]. Environmental Science & Pollution Research International 2013;21:1897-1904.
[45] KOMPRDOVÃ K, KOMPRDA J, MENŠÍK L, et al. The influence of tree species composition on the storage and mobility of semivolatile organic compounds in forest soils[J]. Science of the Total Environment,2016,553:532-540.
[46] MATOS D C L, FERREIRA L V, SALOMÃO R D P. Influence of geographical distance in richness and composition of tree species in a tropical rain forest in eastern Amazonia[J]. Rodriguésia, 2013, 64(2):357-367.
[47] KRAUSS M, WILCKE W, ZECH W. Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in forest soils:Depth distribution as indicator of different fate[J]. Environmental Pollution, 2000, 110(1):79-88.
[48] ZHANG X, HUANG T, ZHANG L, et al. Three northern regions shelter forest contributed to long-term increasing trend of biogenic isoprene emissions in Northern China[J]. Atmospheric Chemistry & Physics, 2016, 12(4):1-35.
[49] MEIJER S N, STEINNES E, OCKENDEN W A, et al. Influence of environmental variables on the spatial distribution of PCBs in norwegian and U.K. soils:Implications for global cycling[J]. Environmental Science & Technology, 2002, 36(10):2146-2153.
[50] 王春辉, 吴绍华, 周生路,等. 典型土壤持久性有机污染物空间分布特征及环境行为研究进展[J]. 环境化学, 2014,33(11):1828-1840. WANG C H,WU S H,ZHOU S L,et al.A review on spatial distribution and environmental behavior of typical persistent organic pollutants in soil[J]. Environmental Chemistry, 2014,33(11):1828-1840(in Chinese).
[51] CHEN J, ZHOU H C, WANG C, et al. Short-term enhancement effect of nitrogen addition on microbial degradation and plant uptake of polybrominated diphenyl ethers (PBDEs) in contaminated mangrove soil[J]. Journal of Hazardous Materials, 2015, 300:84-92.
[52] SLATER H, GOUIN T, LEIGH M B. Assessing the potential for rhizoremediation of PCB contaminated soils in northern regions using native tree species[J]. Chemosphere, 2011, 84(2):199-206.
[53] OKERE U V, SCHUSTER J K, OGBONNAYA U O, et al. Indigenous 14C-phenanthrene biodegradation in "pristine" woodland and grassland soils from Norway and the United Kingdom[J]. Environmental Science Processes & Impacts, 2017, 19(11):1437-1444.
[54] DONNELLY P K, HEGDE R S, FLETCHER J S. Growth of PCB-degrading bacteria on compounds from photosynthetic plants[J]. Chemosphere, 1994, 28(5):981-988.
[55] SATO Y. Degradation of fenitrothion by bacteria isolated from forest Soil[J]. Journal of the Japanese Forestry Society, 1992, 74:482-487.
[56] LEIGH M B, PROUZOVÁ P, MACKOVÁ M, et al. Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site[J]. Appl Environ Microbiol, 2006, 72(4):2331-2342.
[57] 宋孟珂. 土壤POPs的生物降解及功能微生物研究[D]. 北京:中国科学院大学硕士学位论文, 2014. SONG M K.Biodegradation and functional microbial study of soil POPs[D].Beijing:Chinese Academy of Sciences,2014(in Chinese).
[58] YU H Y, WANG Y K, CHEN P C, et al. The effect of ammonium chloride and urea application on soil bacterial communities closely related to the reductive transformation of pentachlorophenol[J]. Journal of Hazardous Materials, 2014, 272(4):10-19.
[59] HUANG W, PENG P, YU Z, et al. Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments[J]. Applied Geochemistry, 2003, 18(7):955-972.
[60] 高慧鹏. 土壤中持久性有机污染物生物可利用性的预测及其生物降解的促进方法[D]. 大连:大连理工大学博士学位论文, 2014. GAO H P.Prediction of bioavailability of persistent organic pollutants in soil and method for promoting biodegradation[D]. Dalian:University of Technology,2014(in Chinese).
[61] 罗东霞, 张淑娟, 杨瑞强. 藏东南色季拉山土壤中有机氯农药和多环芳烃的浓度分布及来源解析[J]. 环境科学, 2016, 37(7):2745-2755. LUO D X, ZHANG S J, YANG R Q. distribution and source analysis of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in soils from Shergyla Mountain, Southeast Tibetan Plateau[J]. Environmental Chemistry, 2016, 37(7):2745-2755(in Chinese).
[62] JONER E J, CORGIE S C, AMELLAL N, et al. Nutritional constraints to degradation of polycyclic aromatic hydrocarbons in a simulated rhizosphere[J]. Soil Biology & Biochemistry, 2002, 34(6):859-864.
[63] LOCK K, JANSSEN C R. Zinc and cadmium body burdens in terrestrial oligochaetes:use and significance in environmental risk assessment[J]. Environmental Toxicology & Chemistry, 2001, 20(9):2067-2072.
[64] YONG B K, PARK K Y, YONG C, et al. Phytoremediation of anthracene contaminated soils by different plant species[J]. Journal of Plant Biology, 2004, 47(3):174-178.
[65] MIYA R K, Firestone M K. Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris[J]. Journal of Environmental Quality, 2001, 30(6):1911-1918.
[66] SALONIUS P O. Effect of DDT and fenitrothion on forest-soil microflora[J]. Journal of Economic Entomology, 1972, 65(4):1089-1090.
[67] VARELA A, MARTINS C, SILVA P C. A three-act play:Pentachlorophenol threats to the cork oak forest soils mycobiome[J]. Current Opinion in Microbiology, 2017, 37:142-149.
[68] 颜增光, 何巧力, 李发生. 蚯蚓生态毒理试验在土壤污染风险评价中的应用[J]. 环境科学研究, 2007, 20(1):134-142. YAN Z G, HE Q L, LI F S. The use of earthworm ecotoxicological test in risk assessment of soil contamination[J].Environmental Science Research, 2007, 20(1):134-142(in Chinese).
[69] 史志明, 徐莉, 胡锋. 蚯蚓生物标记物在土壤生态风险评价中的应用[J]. 生态学报, 2014, 34(19):5369-5379. SHI Z M, XU L, HU F. Progress in earthworm biomarker studies and theirs applications in soil pollution risk assessment[J].Journal of Ecology, 2014, 34(19):5369-5379(in Chinese).
[70] ZHANG B, LI H, WEI Y, et al. Bioaccumulation kinetics of polybrominated diphenyl ethers and decabromodiphenyl ethane from field-collected sediment in the oligochaete, Lumbriculus variegatus[J]. Environmental Toxicology & Chemistry, 2013, 32(12):2711-2718.
[71] ČUPR P, BARTOŠ T, SÁŇKA M, et al. Soil burdens of persistent organic pollutants-Their levels, fate and risks:Part Ⅲ. Quantification of the soil burdens and related health risks in the Czech Republic[J]. Science of the Total Environment 2010;408(3):486-494.
[72] 薛永刚, 龚平, 王小萍,等. 持久性有机污染物在森林生态系统中的环境行为研究[J]. 地理科学进展, 2013, 32(2):278-287. XUE Y G, GONG P, WANG X P,et al. Environmental behavior of persistent organic pollutants in forest ecosystems[J].Advances in Geographical Science, 2013, 32(2):278-287(in Chinese).
[73] KELSEY J W, COLINO A, WHITE J C. Effect of species differences, pollutant concentration, and residence time in soil on the bioaccumulation of 2,2-bis (p-chlorophenyl)-1,1-dichloroethylene by three earthworm species[J]. Environmental Toxicology & Chemistry 2010;24(3):703-708.
[74] LAW R J, ALAEE M, ALLCHIN C R, et al. Levels and trends of polybrominated diphenylethers and other brominated flame retardants in wildlife[J]. Environment International, 2003, 29(6):757-770.
[75] YU L H, LUO X J, WU J P, et al. Biomagnification of higher brominated PBDE congeners in an urban terrestrial food Web in North China based on field observation of prey deliveries[J]. Environmental Science & Technology, 2011, 45(12):5125-5131.
[76] VERMEULEN F, COVACI A, D'HAVÉ H, et al. Accumulation of background levels of persistent organochlorine and organobromine pollutants through the soil-earthworm-hedgehog food chain[J]. Environment International, 2010, 36(7):721-727.