[1] 任文杰, 滕应. 石墨烯的环境行为及其对环境中污染物迁移归趋的影响[J]. 应用生态学报, 2014, 25(9):2723-2732. REN W J, TENG Y. Environmental behavior of graphene and its effect on the transport and fate of pollutants in environment[J].Chinese Journal of Applied Ecology, 2014, 25(9):2723-2732(in Chinese).
[2] LEE D W, SEO J W, FELIX L L, et al. The structure of graphite oxide:Investigation of its surface chemical groups[J]. Journal of Physical Chemistry B, 2010, 114(17):5723-5728.
[3] SCHIRINZI G F, PÉREZ-P I, SANCHÍS J, et al. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells[J]. Environmental Research, 2017, 159:579-587.
[4] SINGH S K, SINGH M K, NAYAK M K, et al. Thrombus inducing property of atomically thin graphene oxide sheets[J]. ACS Nano, 2011, 5(6):4987-4996.
[5] MU L, GAO Y, HU X. Characterization of biological secretions binding to graphene oxide in water and the specific toxicological mechanisms.[J]. Environmental Science & Technology, 2016, 50(16):8530-8537.
[6] ARVIDSSON R, MOLANDER S, SANDEN B A, et al. Review of potential environmental and health risks of the nanomaterial graphene[J]. Human and Ecological Risk Assessment, 2013, 19(4):873-887.
[7] GUPTA K, KHATRI O P. REDUCED graphene oxide as an effective adsorbent for removal of malachite green dye:Plausible adsorption pathways[J]. J Colloid Interface Sci, 2017, 501:11-21.
[8] CHOWDHURY I, DUCH M C, MANSUKHANI N D, et al. Deposition and release of grapheme oxide nanomaterials using a quartz crystal microbalance[J]. Environmental Science & Technology, 2014, 48(2):961-969.
[9] TAN P, SUN J, HU Y, et al. Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes[J]. Journal of Hazardous Materials, 2015, 297:251-260.
[10] XU L, DUAN L, CHEN W. Carbon nanomaterials:Their environmental behavior and effects on the transport and fate of pollutants in environment[J]. Chinese Journal of Applied Ecology, 2009, 20(1):205-212.
[11] WANG H, ZHAO X, HAN X, et al. Effects of monovalent and divalent metal cations on the aggregation and suspension of Fe3O4 magnetic nanoparticles in aqueous solution[J]. Science of the Total Environment, 2017, 586:817-826.
[12] PALMIERI V, BUGLI F, LAURIOLA M C, et al. Bacteria meet graphene:Modulation of graphene oxide nanosheet interaction with human pathogens for effective antimicrobial therapy[J]. ACS Biomaterials Science & Engineering, 2017, 3(4):619-627.
[13] CHEN K L, ELIMELECH M. Aggregation and deposition kinetics of fullerene (C60) nanoparticles[J]. Langmuir, 2006, 22(26):10994-11001.
[14] WU L, LIU L, GAO B, et al. Aggregation kinetics of graphene oxides in aqueous solutions:Experiments, mechanisms, and modeling[J]. Langmuir, 2013, 29(49):15174-15181.
[15] TANG H, ZHAO Y, YANG X, et al. New insight into the aggregation of graphene oxide using molecular dynamics simulations and extended Derjaguin-Landau-Verwey-Overbeek Theory[J]. Environmental Science & Technology, 2017, 51(17):9674-9682.
[16] DEGUCHI S, ALARGOVA A R, TSUJⅡ K, et al. Stable dispersions of fullerenes, C60 and C70, in water. Preparation and characterization[J]. Langmuir, 2001, 17(19):6013-6017.
[17] FERIANCIKOVA L, XU S. Deposition and remobilization of graphene oxide within saturated sand packs[J]. Journal of Hazardous Materials, 2012, 235-236(2):194-200.
[18] 方华, 沈冰冰, 荆洁,等. 水中C60纳米颗粒的稳定性研究[J]. 环境科学, 2014, 35(4):1337-1342. FANG H, SHENG B B, JING J, et al. Stability of C60 nanoparticles in aquatic systems[J]. Environmental Science, 2014, 35(4):1337-1342(in Chinese).
[19] 方华, 孙宇心, 荆洁,等. 水中多壁碳纳米管的凝聚动力学[J]. 环境化学, 2015, 34(2):347-351. FANG H, SUN Y X, JING J, et al. Aggregation kinetics of multi-walled carbon nanotubes in aquatics system[J]. Environmental Chemistry, 2015, 34(2):347-351(in Chinese).
[20] XIE B, XU Z, GUO W, et al. Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles[J]. Environmental Science & Technology, 2008, 42(8):2853-2859.
[21] ALAMOUDI A S. Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes:A review[J]. Desalination, 2010, 259(1):1-10.
[22] KÖRDEL W, MANOS D, LINTELMANN J, et al. The importance of natural organic material for environmental processes in waters and soils (Technical Report)[J]. Pure & Applied Chemistry, 1997, 69(7):1571-1600.
[23] BORBA P A A, PINOTTI M, CAMPOS C E M D, et al. Sodium alginate as a potential carrier in solid dispersion formulations to enhance dissolution rate and apparent water solubility of BCS Ⅱ drugs[J]. Carbohydrate Polymers, 2016, 137:350-359.
[24] WANG X, SHU L, WANG Y, et al. Sorption of peat humic acids to multi-walled carbon nanotubes[J]. Environmental Science & Technology, 2011, 45(21):9276-9283.
[25] TAN X, FANG M, LI J, et al. Adsorption of Eu(Ⅲ) onto TiO2:Effect of pH, concentration, ionic strength and soil fulvic acid[J]. Journal of Hazardous Materials, 2009, 168(1):458-465.
[26] CHEN K L, ELIMELECH M. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions[J]. Journal of Colloid and Interface Science, 2007, 309(1):126-134.