[1] JÄRUP L. Hazards of heavy metal contamination[J]. British Medical Bulletin, 2003, 6890(1):167-182.
[2] SURANJANA A R, MANAS K R. Bioremediation of heavy metal toxicity with special reference to chromium[J]. Al Ameen Journal of Medical Sciences, 2009, 2(2):57-63.
[3] 赵庆龄, 张乃弟, 路文如. 土壤重金属污染研究回顾与展望Ⅱ——基于三大学科的研究热点与前沿分析[J]. 环境科学与技术, 2010, 33(7):102-106. ZHAO Q L, ZHANG N D, LU W R. Research review and prospect on soil heavy metals pollution Ⅱ-Research focus and analysis based on three major disciplines[J]. Environmental Science & Technology, 2010, 33(7):102-106(in Chinese).
[4] 贾鹏, 俞马宏. 柠檬酸盐络合铜在污泥上的吸附[J]. 环境工程学报, 2013, 7(7):2733-2737. JIA P, YU M H. Adsorption of Cu (Ⅱ) onto sludge in the presence of citrate[J]. Chinese Journal of Environmental Engineering, 2013, 7(7):2733-2737(in Chinese).
[5] 国家环境保护总局. 水和废水监测分析方法.第4版[M]. 北京:中国环境科学出版社, 2002. State Environmental Protection Administration. Analysis methods of water and wastewater monitoring[M]. Beijing:China Environmental Science Press, 2002(in Chinese).
[6] HAWARI A H, MULLIGAN C N. Biosorption of lead (Ⅱ), cadmium (Ⅱ), copper (Ⅱ) and nickel (Ⅱ) by anaerobic granular biomass[J]. Bioresource Technology, 2006, 97(4):692-700.
[7] 饶清华, 林秀珠, 邱宇, 等. 活性污泥对Pb2+的生物吸附特征研究[J]. 工业用水与废水, 2009, 40(6):53-56. RAO Q H, LIN X Z, QIU Y, et al. Character of Pb2+ biosorption by activated sludge[J]. Industrial Water & Wastewater, 2009, 40(6):53-56(in Chinese).
[8] 吴海锁, 张鸿, 张爱茜, 等. 活性污泥对重金属离子混合物的生物吸附[J]. 环境化学, 2002, 21(6):528-532. WU H S, ZHANG H, ZHANG A Q, et al. Biosorption of heavy metal mixture by activated sludge[J]. Environmental Chemistry, 2002, 21(6):528-532(in Chinese).
[9] 史广宇, 程媛媛, 史琦, 等. 铜绿假单胞菌对铜和铅的吸附[J]. 环境科学学报, 2017, 37(6):2107-2113. SHI G Y, CHENG Y Y, SHI Q, et al. Study of the biosorption of copper and lead by Pseudomonas aeruginosa[J]. Acta Scientiae Circumstantiae, 2017, 37(6):2107-2113(in Chinese).
[10] 周东琴, 魏德洲. 沟戈登氏菌对重金属的生物吸附-浮选和解吸性能[J]. 环境科学, 2006, 27(5):960-964. ZHOU D Q, WEI D Z. Biosorptive-flotation and desorption operation of heavy metals from wastewater effluents by gordona amarae[J]. Environmental Science, 2006, 27(5):960-964(in Chinese).
[11] 贾成光. 一株耐镍菌的分离鉴定及其除镍特性与机理研究[D]. 厦门:集美大学, 2014. JIA C G. Isolation and identification of a nickel-resistant strain and its characterization and mechanism of nickel removal[D]. Xiamen:JiMei University, 2014(in Chinese).
[12] ALDRICH C, FENG D. Removal of heavy metals from wastewater effluents by biosorptive flotation[J]. Minerals Engineering, 2000, 13(10-11):1129-1138.
[13] BARKER D, STUCKEY D. A review of soluble microbial products (SMP) in wastewater treatment systems[J]. Water Research, 1999, 33(14):3063-3082.
[14] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environment Science & Technology, 2003, 37:5701-5710.
[15] WANG Z, ZHANG T. Characterization of soluble microbial products (SMP) under stressful conditions[J]. Water Research, 2010, 44:5499-5509.
[16] PAN X H, CHEN Z, CHEN Y J, et al. The analysis of the immobilization mechanism of Ni(Ⅱ)on Bacillus cereus[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(4):3597-3603.
[17] BAHARI Z M, ALTOWAYTI W, IBRAHIM Z, et al. Biosorption of As(Ⅲ)by non-living biomass of an arsenic-hypertolerant Bacillus cereus strain SZ2 isolated from a gold mining environment:Equilibrium and kinetic study[J]. Applied Biochemistry and Biotechnology, 2013, 8:2247-2261.
[18] JOO J, HASSAN S H A, OH S. Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus[J]. International Biodeterioration and Biodegradation, 2010, 64(8):734-741.
[19] BAI J, YANG X H, DU R Y, et al. Biosorption mechanisms involved in immobilization of soil Pb by Bacillus subtilis DBM in a multi-metalcontaminated soil[J]. Journal of Eevironmental Sciences, 2014, 10:2056-2064.
[20] YAO M, LIN J, ZHANG C, et al. Cd(Ⅱ) and As(Ⅲ) bioaccumulation by recombinant Escherichia coli expressing oligomeric human metallothioneins[J]. Journal of Hazardous Materials, 2011, 185(2-3):1605-1608.
[21] SUN H K, JEONG J C, AHN Y O, et al. Differential responses of three sweetpotato metallothionein genes to abiotic stress and heavy metals[J]. Molecular Biology Reports, 2014, 41(10):6957-6966.
[22] HANSEN B H, RMMA S, GARMO Ø A, et al. Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta ) from three rivers with different heavy metal levels[J]. Comparative Biochemistry & Physiology Part C, 2006, 143(3):263-274.
[23] ATIF F, KAUR M, YOUSUF S, et al. In vitro free radical scavenging activity of hepatic metallothionein induced in an Indian freshwater fish, Channa punctata Bloch[J]. Chemico-Biological Interactions, 2006, 162(2):172-180.
[24] WANG C, ZHANG F, CAO W, et al. The identification of metallothionein in rare minnow (Gobiocypris rarus) and its expression following heavy metal exposure[J]. Environmental Toxicology & Pharmacology, 2014, 37(3):1283-1291.
[25] LAVRADAS R T, HAUSERDAVIS R A, LAVABDIER R C, et al. Metal, metallothionein and glutathione levels in blue crab (Callinectes sp.) specimens from southeastern Brazil[J]. Ecotoxicology & Environmental Safety, 2014, 107(9):55-60.
[26] GUPTA V K, RASTOGI A. Biosorption of lead from aqueous solutions by green algae Spirogyra species:Kinetics and equilibrium studies[J]. Journal of Hazardous Materials, 2008, 152:407-414.
[27] VALENZUELA C, CAMPOS V, YANEZ J, et al. Isolation of arseniteoxidizing bacteria from arsenic-enriched sediments from Camarones River, Northern Chile[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82(5):593-596.