1 025 t/h四角切圆煤粉炉内空气过量系数对NO生成的影响

张俊霞,郭雷雷,宁少帅,雷 彻 (榆林学院能源工程学院,陕西 榆林 719000)

摘要:文章采用计算流体力学软件Fluent数值模拟了1 025 t/h四角切圆煤粉炉内的湍流扩散燃烧,分析了空气过量系数对炉内烟气速度、烟气温度和氮氧化物组分的影响。结果表明:空气过量系数会对炉内流场的空气动力学特性和 温度场分布均匀性产生显著影响。煤粉炉膛最佳空气过量系数为1.07,此时炉内温度场、速度场和浓度场的分布可使 燃烧中间产物HCN和NH,较好的将燃料型NO还原为N₂,来充分发挥空气分级燃烧降低NO排放的功效。

关键词:燃烧学;数值模拟;四角切圆煤粉炉;空气过量系数

中图分类号: X701.7 文献标志码: A

DOI:10.16803/j.cnki.issn.1004-6216.2017.02.015

Impact of Air Excess Coefficients on NO Generation in 1 025 t/h Tangentially-fired Boilers

Zhang Junxia, Guo Leilei, Ning Shaoshuai, Lei Che

(School of Energy Engineering, Yulin University, Yulin 719000, China)

Abstract: In this paper, Fluent software was applied to simulate a turbulent diffusion flame in a 1 025 t/h tangentially-fired boiler. Combustion characteristics were analyzed at various air excess coefficients, including gas velocity, gas temperature and nitrogen oxide composition. The results showed that the air excess coefficients significantly affected the air dynamic characteristics of the flow field and the distribution uniformity of the temperature field in the furnace. The optimum air excess coefficient was 1.07, at which there were fit temperature, velocity and concentration fields in the boiler which was helpful for the intermediate products HCN and NH₃ to reduce NO into N₂ during the generation of NO, indicating that the efficiency of NO emission reduction was achieved by means of air-staged combustion at air excess coefficients of 1.07.

Keywords: Combustion; Numerical Simulation; Tangentially–fired Boiler; Air Excess Coefficient CLC number: X701.7

燃烧在冶金和电力领域有着广泛应用,近年 来新颖的燃烧技术^[1-3]不断涌现,特别是如何实现 高效、低污染地燃烧是众多学者研究的重点^[4-7]。 鉴于四角切圆煤粉炉具有炉内烟温分布均匀和空 气动力学特性良好的优点,该种炉型较多应用于 电站锅炉和供暖锅炉。四角切圆煤粉炉内的燃烧 过程属于复杂湍流流动和燃烧化学反应相互耦合 的过程,再加之实际运行中炉内速度场、温度场 和浓度场的测量存在耗时长和工作量大的缺点, 使得现有针对该种炉型内部燃烧过程的研究多采 用实验观测和数值模拟相结合的方法。 在燃烧过程中,空气过量系数对炉膛内部温 度分布会有重要影响。在丙烷/氧气预混燃烧实验 中,火焰脉动会增大流场的湍流脉动⁽⁴⁾。在 MILD燃烧中,当一次风与二次风平行或背离入 射时,提高一次风风速会使炉内峰值温度下降。 然而,当一次风朝向二次风入射时,提高一次风 速会使炉内温度峰值先下降后升高^[5]。在旋流燃 烧中,二次风配风存在最佳直流风速,可产生较 大回流区,延长煤粉颗粒在炉内的停留时间,有 利于形成强还原气氛,使NO降到最低^[6]。李德波 等^[7]数值分析了不同风速下220 t/h四角切圆煤粉

收稿日期: 2016-11-09

基金项目:陕西省科技厅工业攻关项目(2015GY099)基金资助

作者简介: 张俊霞(1974-), 女, 博士、副教授。研究方向: 燃烧数值模拟。

炉内的燃烧特性,发现随着燃烧器喷口处射流速 度的提高,炉膛内形成的切圆半径并没改变,圆 心仍在炉膛中心。随空气过量系数增大,炉膛内 和炉膛出口处平均温度均下降,空气总量增加会 降低烟气温度。

文章采用Fluent软件数值模拟1025 t/h四角切圆煤粉炉内的湍流扩散火焰,分析空气过量系数 对炉内燃烧参数和NO生成的影响。

1 1025t/h四角切圆燃煤锅炉燃烧数值模拟

1.1 锅炉几何参数及模拟方案

图1 锅炉炉膛纵截面

锅炉高度为35 m,宽度为11.05 m,长度为 10.54 m,炉膛出口高度为6.3 m。锅炉燃烧器煤 粉喷口自下而上分两组布置,第一组燃烧器从下 往上分别为二次风、一次风、二次风、一次风、 二次风,共五层燃烧器;第二组燃烧器从下部 10.06 m处开始布置,往上依次为二次风、一次 风、二次风、二次风、三次风、三次风、共六层燃 烧器。一次风和三次风喷口的高:宽=0.49:0.48 m, 二次风喷口的高:宽=0.27:0.48 m。一次风中煤粉 的体积比为80%,二次风和三次风为空气。此 外,安装在顶部的2个三次风烧嘴,被用作燃尽 风。一二次风占到约70%的总风,燃尽风占到约 30%的总风。

1.2 数值模拟方案

文章采用大型流体力学软件Fluent对1 025 t/h 四角切圆煤粉炉进行数值模拟,燃烧器射流速度 参数,见表1。

表1 燃烧器射流速度参数			
空气过量	风速/m・s⁻¹		
系数 α	一次风	二次风	三次风
1.07	19.2	31.2	36.6
1.17	21	34.1	40
1.25	22.4	36.4	42.7
1.36	24.3	39.6	46.4

模拟中使用了神木煤,该种煤的挥发分为 22.7%,固定炭为64.4%,水分为1.5%,灰分为 11.4%。首先采用Gambit前处理软件对图1的煤粉 锅炉进行网格划分,网格类型采用T-Grid,Spacing项选择Interval size,并填入0.25。 模拟过程流场求解计算采用速度-压力耦合的 SMIPLE算法,求解器选择基于压力的分离求解 器。湍流流动采用Realizable k-湍流双方程模 型,辐射传热采用P1辐射模型,煤粉粒子的输运 采用离散相模型,气相湍流扩散采用EDC模型, 煤粉燃烧采用动力/扩散控制燃烧模型。11层烧 嘴分别给定速度入口的边界条件,炉膛出口被设 置为压力出口的边界条件,炉膛底部设置为绝热 壁面。一次风和三次风温设定为350 K,二次风 温设定为570 K。

2 数值模拟结果分析

2.1 炉内速度场分布

Z=6 m截面上炉膛的烟气速度分布,见图 2。随着空气过量系数增加,炉膛上方烟气流速 增加。

(a) *a*=1.07 (b) *a*=1.17 (c)*a*=1.25 (d)*a*=1.36 图2 Z=6 m截面上炉膛的烟气速度分布 (m・s⁻¹)

由图2可见,烟气在炉膛折焰角下方燃烧器 区域附近的炉膛中心速度较高,而在贴近壁面 处,烟气速度相对较低,这将有利于沿着炉膛高 度方向形成富氧区和富燃区。显然,在燃烧器区 域,烟气速度相对较低,有利于实现富燃料燃 烧;而在炉膛上方的折焰角附近,烟气速度相对 较高,有利于实现富氧贫燃燃烧。由此,实现了 四角切圆煤粉炉内轴向空气分级燃烧。其次,在 折焰角处,气流在此回转,形成旋转场,有利于 延长煤粉在炉膛中的停留时间,使煤粉燃烧更加 充分。此外,随着空气过量系数增大,炉膛出口 的烟气速度增大,炉膛内部主燃区的烟气流速也 增加,炉膛上方烟气速度也升高,这将不利于煤 粉在炉内的充分燃烧。

2.2 炉内温度场分布

(a)a=1.07

(b)*a*=1.17

1200 1600 1400

1300

I RAA

(c) *a*=1.25 (d) *a*=1.36

主燃区在折焰角附近;沿炉膛高度方向温度 逐渐升高。当空气过量系数为1.07时,炉膛主燃 区温度最高,这表明煤粉在此区域可以较好的燃 烧;在炉膛出口处,未燃尽的煤粉颗粒在二次风 和三次风的作用下再次燃烧,引起炉膛出口温度 升高,形成较好的空气分级燃烧效果。当空气过 量系数大于1.07时,由于烟气流速的升高,较多 低温空气流入炉内,煤粉在主燃区的燃烧逐渐减 弱,相应主燃区的温度稍有下降,部分未燃尽的 煤粒在折焰角附近继续燃烧,进一步提高了炉内 温度。然而随着过量空气系数的增加,炉内和炉 膛出口的烟气温度稍有降低。

图3 Z=6 m炉膛截面的温度分布(K)

2.3 NO质量分数分布

Z=6 m处的炉膛截面NO质量分数分布,见图 4。与空气过量系数大于1.07的几组图相比,空 气过量系数为1.07时的炉膛内部和炉膛出口的 NO质量分数均较低。这可能是因为较高的空气 过量系数将较多的煤粉吹入炉膛上方空间中,提高了主燃烧区位置处的空气量,减弱了主燃烧区的富燃料水平,促进了燃料型NO的生成。而较多煤粉集中在炉膛上方的高温区,又促进了热力型NO的生成,从而引起炉内NO总量的增加。此外,燃料型NO在煤粉炉燃烧中大约占到全部NO生成的75%~95%。因此,随着空气过量系数的增大,燃料型NO的质量分数升高,从而引起炉内NO质量分数升高。尽管空气过量系数为1.07的炉内温度和炉膛出口温度均较高,会引起热力型NO的升高。然而,由于热力型NO仅占到全部NO生成量的5%~25%的份额,从而并未引起空气过量系数为1.07时炉内NO总质量分数升高。

图5 炉膛出口NO质量分数随空气过量系数的变化

显然,在空气过量系数为1.07时,炉膛出口的NO质量分数较低。随着空气过量系数的增加,炉膛出口NO质量分数逐渐升高,相应炉膛内部的平均NO质量分数也显著升高。

2.4 HCN和NH。质量分数分布

当煤粉燃烧时,煤中的氮首先分解为HCN、

NH₃和CN等中间产物,随着挥发分氮释放出来,最 终被氧化成NO,焦炭氮残留在半焦中。因此,燃 料型NO主要来自挥发分氮。而焦炭的还原作用以 及催化作用往往会促使焦炭氮生成的NO被还原为 N₂。挥发分氮中最主要的氮化合物就是HCN和NH₃。

Z=6 m处炉膛截面HCN质量分数分布,见图6。

图6 Z=6 m炉膛截面HCN质量分数分布

图6可见,在4种空气过量系数下,炉内主燃 烧区处HCN的质量分数几乎一致,而炉膛上方的 HCN质量分数随空气过量系数的增加而下降。由 于HCN遇到0,会转化为NO,化学方程式如下:

HCN+O₂→NO+CO+H (1) 因此,在空气过量系数为1.17~1.36变化时,

HCN与过量O₂在炉膛上方发生上述反应(1)生成燃料型NO。

此外, 较多的HCN还会促进NO还原为 N₂,反应方程式如如下:

 $HCN+NO \rightarrow N_2+CO+H$ (2)

因此,空气过量系数为1.07时炉膛上方有较 多的HCN,有助于将NO还原为N₂,降低燃料型 NO的生成。

Z=6m处炉膛内部NH。的质量分数分布,见图7。

在4种空气过量系数下,炉内主燃烧区位置 处的NH₃质量分数变化很小。然而,在炉内主燃 烧区上方,随着空气过量系数增大,炉内NH₃质 量分数逐渐降低。由于NH₃有显著的脱硝作用, 因此,空气过量系数为1.07时的炉内拥有的较高 NH₃将有助于NO还原为N₂,也是降低燃料型 NO的主要原因之一。

3 结论

文章数值模拟了1025 t/h四角切圆煤粉炉的 燃烧过程,计算了不同空气过量系数时的速度 场、温度场和浓度场分布,分析了空气过量系数 对炉内流场、温度场和浓度场分布的影响规律, 结论如下。

(1)随着空气过量系数增大,炉膛出口、 炉膛上方和炉膛内部主燃区的烟气流速增加,这 将不利于煤粉在炉内的充分燃烧。

(2)随着空气过量系数的增加,炉内和炉 膛出口的烟气温度稍有降低。

(3)随着空气过量系数的增大,燃料型 NO的质量分数升高,炉内和炉膛出口的NO平均 质量分数升高。

(4)在4种空气过量系数下,炉内主燃烧区 处HCN和NH₃的质量分数几乎一致,而炉膛上方 的HCN和NH₃质量分数下降。

综合速度场、温度场和浓度场的分布结果, 发现空气过量系数为1.07时可降低炉内温度水平, 使燃料型NO的中间产物HCN和NH₃较好的还原为 N₂,充分发挥空气分级燃烧降低NO排放的功效。

参考文献

- [1]赵义琴,温 治.脉冲蓄热式燃烧技术在台车退火炉上的应用[J].冶 金能源,2014,33(4):35-39.
- [2]何森棋,牟乃剑,宋新义,等. 三元燃烧技术在烧结点火炉上的应用[J]. 冶金能源,2015,34(3):36-38.
- [3]曲 超,李丽丽,黄显保. 0₂/CO₂燃煤锅炉燃烧过程的数值模拟[J]. 冶 金能源,2015,34(1):28-32.
- [4]龚志军,武文斐,李保卫. 预混燃烧对湍流影响的实验研究[J]. 冶金能 源,2013,32(2):21-24.
- [5]梅振锋,王飞飞,张健鹏,等.一次风风速对高温预热空气下的煤粉 MILD燃烧的影响[J]. 工程热物理学报,2014,35(4):782-786.
- [6]周志军,周丛丛,邵 杰,等. 旋流燃烧器中二次直流风速对NO,生成 的影响[J]. 热力发电,2010,39(3):23-29.
- [7]李德波,徐齐胜,沈跃良,等. 变风速下四角切圆锅炉燃烧特性的数值 模拟[J]. 动力工程学报,2013,33(3):172-177.