

・环境综合整治・

海藻酸钠基多孔碳气凝胶的制备及其对水中四环素去除

李永通1,庄 媛1,马大卫2,3,石宝友1,郝昊天1,陈 剑2,3,杨 娴2,3

(1. 中国科学院生态环境研究中心工业废水无害化与资源化国家工程研究中心,北京 100085;
 2. 安徽新力电业科技咨询有限责任公司,安徽 合肥 230601;
 3. 国网安徽省电力有限公司电力科学研究院,安徽 合肥 230601)

摘 要:采用脱硫废水中的重金属污染物原位交联使海藻酸钠形成水凝胶,再将该水凝胶在 800 ℃ 的条件下制备为海 藻酸钠基多孔碳气凝胶,利用场发射扫描电子显微镜(SEM)、比表面积分析仪、X 射线衍射(XRD)和傅里叶红外光谱 (FTIR)对该气凝胶进行了表征分析,并考察了该气凝胶对溶液中四环素的吸附行为。结果表明,该碳气凝胶具有丰富的 孔隙结构,比表面积可以达到 52.37 m²/g。随着溶液初始 pH 值的增大,碳气凝胶对四环素的吸附量逐渐降低。碳气凝胶 对四环素的吸附行为更符合准二级动力学方程(R²=0.825 7),最大吸附量可以达到 112 mg/g,等温吸附过程对 Freundlich 等温吸附模型比对 Langmuir 等温吸附模型拟合度更高,说明利用处理脱硫废水的凝胶废弃物制备的海藻酸钠基多孔碳气凝 胶在去除水环境中的抗生素方面有较好的应用前景,实现了脱硫废水凝胶废弃物的资源化利用。

关键词: 脱硫废水; 海藻酸钠; 碳气凝胶; 四环素; 吸附; 资源化利用 中图分类号: X703.1 文献标志码: A DOI: 10.16803/j.cnki.issn.1004-6216.2022.04.009

Preparation of sodium alginate-based porous carbon aerogel and its removal of tetracycline from aqueous solution

LI Yongtong¹, ZHUANG Yuan¹, MA Dawei^{2,3}, SHI Baoyou¹, HAO Haotian¹, CHEN Jian^{2,3}, YANG Xian^{2,3} (1. National Engineering Research Center of Industrial Wasterwater Detoxcation and Resource Recovery, Beijing 100085, China; 2. Anhui Xinli Electric Technology Consulting Co. Ltd., Hefei 230601, China; 3. Power Science Research Institute of State Grid Anhui Electric Power Co. Ltd., Hefei 230601, China)

Abstract: Sodium alginate hydrogel was formed by *in situ* cross-linking of heavy metal pollutants in desulfurization wastewater, and sodium alginate-based porous carbon aerogel was prepared at 800 °C. Then the removal effect of sodium alginate hydrogel on tetracycline in solution were studied. The carbon aerogel was characterized by scanning electron microscopy (SEM), accelerated surface area and porosimetry system, X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. The results showed that the sodium alginate-based carbon aerogel had a rich pore structure, and the specific surface area could reach 52.37 m²/g. With the increase of the initial pH of the solution, the adsorption capacity of tetracycline by the carbon aerogel gradually decreased. The adsorption kinetic of tetracycline onto sodium alginate-based porous carbon aerogel was fitted to pseudo-second-order models (R^2 =0.825 7). The maximum adsorption capacity could reach 112 mg/g. The adsorption isotherm process was more in line with the Freundlich isotherm adsorption model than the Langmuir model, thus indicating that the sodium alginate-based porous carbon aerogel prepared by the gel waste of desulfurization wastewater had a good application prospect in removing antibiotics in the water environment. The desulfurization wastewater gel waste could be recycled as the resource.

Keywords: desulfurization wastewater; sodium alginate; carbon aerogel; tetracycline; adsorption; resource utilization CLC number: X703.1

随着全球医疗技术的发展和抗生素的广泛使用,医疗废水尤其是抗生素废水对人类和生态环境 造成了严重的危害^[1]。四环素作为世界上应用比较 广泛的一类抗生素,主要用来治疗各种人类和动物 疾病,然而研究表明,动物不能完全吸收和代谢摄 入的抗生素,大部分抗生素则是以粪便的形式排放

收稿日期: 2021-09-29

通信作者: 庄 媛(1989-),女,博士、副研究员。研究方向:水处理技术与原理。E-mail: yuanzhuang@rcees.ac.cn

基金项目: 国家自然科学基金青年基金资助项目 (51808538)

作者简介: 李永通(1997-), 男, 硕士研究生。研究方向: 水处理技术与原理。E-mail: ytlimail@163.com

引用格式: 李永通, 庄 媛, 马大卫, 等. 海藻酸钠基多孔碳气凝胶的制备及其对水中四环素去除[J]. 环境保护科学, 2022, 48(4): 52 - 58.

到环境中,四环素在环境中的积累会对土壤和自然 水体造成污染,从而对人类的健康构成潜在威胁^[2-4]。

目前有很多方法被应用在四环素的去除方面, 包括吸附法、生物降解法、光降解法和氧化降解法 等^[5-8]。其中吸附法由于其操作简单、成本低、效 率高和无副产物残留风险等优点得到了研究者的 广泛关注^[9-10]。在众多吸附材料中,碳材料凭借制 备简单、吸附效果好和绿色环保等优点在吸附材料 方面更占优势,常见的碳材料分为活性炭、石墨 烯、生物炭和一些有机复合材料^[11-12]。

海藻酸钠是一种能直接从褐藻中提取的天然 生物大分子,无毒无害而且具有很好的生物相容 性[13-14]。研究表明,海藻酸钠可以与多种金属离子 发生凝胶反应,包括 Mg²⁺、Ca²⁺、Ba²⁺、Co²⁺、Cu²⁺、 Ni²⁺和 Fe²⁺等^[15-17]。燃煤电厂脱硫废水是工业水处 理中比较难处理的一类水体,具有成分复杂、含盐 量高、重金属污染物浓度高和腐蚀性强等特点,海 藻酸钠可以有效利用脱硫废水中的重金属污染物 作为交联剂原位实现海藻酸钠的凝胶化[18-20]。本 研究采用与脱硫废水中重金属污染物络合形成的 海藻酸钠水凝胶,通过碳化的方式来制备海藻酸钠 基多孔碳气凝胶,在实现脱硫废水深度处理的同时 有效利用处理完脱硫废水的凝胶废弃物。利用 SEM、XRD、FTIR 和 BET 等表征手段研究了海藻 酸钠基多孔碳气凝胶的结构特征,通过一系列实验 考察了在不同 pH 和反应时间的条件下海藻酸钠基 多孔碳气凝胶对溶液中四环素的吸附效果,并对吸 附动力学和吸附等温线进行了数据分析,最后通过 结构特征和吸附效果来探究海藻酸钠基多孔碳气 凝胶对水中抗生素的去除机理。

1 实验部分

1.1 实验试剂

本研究中使用的化学试剂纯度均为分析纯。 其中四环素(TC, C₂₂H₂₄N₂O₈,相对分子质量为 444.44, CAS 号为 60-54-8)购自 Macklin 生化有限 公司 (中国上海),海藻酸钠、盐酸和氢氧化钠均购 自国药集团化学试剂有限公司,研究用水均为超纯 水。脱硫废水取自安徽某发电厂进入三联箱处理 工艺之前的脱硫废水蓄水箱,水质情况: COD 值为 300~400 mg/L,硬度(以 CaCO₃ 计)为 7 600~ 8000 mg/L,pH 为 7.6~7.8, Ca²⁺为 1 200~1 500 mg/L, Mg²⁺为 1 000~ 1 200 mg/L, Ni²⁺的含量为 0.06~ 0.08 mg/L, Zn²⁺的含量为 0.3~0.4 mg/L, As³⁺的含量 为 0.02~0.03 mg/L, Cd²⁺的含量为 0.16~0.18 mg/L, Pb²⁺的含量为 0.18~0.2 mg/L, Cr³⁺的含量为 0.005~ 0.006 mg/L, SO₄²⁻的浓度为 2 200~2 300 mg/L。

1.2 材料制备与表征

材料的制备过程主要分为两部分。首先用电 子天平(ME104E/02, Mettler-Toledo)称取 60 g 的海 藻酸钠投加到1000 mL的超纯水中,利用机械搅 拌器(OS20-S, DRAGONLAB)使其完全溶解形成 均一溶液,得到 60 g/L 的海藻酸钠溶液。将海藻酸 钠溶液通过蠕动泵(BT100-2J, Longer Pump)抽成 均匀丝状投加到脱硫废水中,并用磁力搅拌器(90-4,上海振荣)进行搅拌,保证材料与脱硫废水充分 接触,形成海藻酸钠水凝胶;其次,将上述丝状水凝 胶进行冷冻干燥,先将丝状水凝胶放入超低温冰箱-40 ℃ 下冷冻 12 h, 然后放入冷冻干燥机(LGJ-10, 北京松源)中干燥 24 h。将冷干之后的水凝胶用泡 沫镍进行包裹保护,放入管式炉(YMG10/6,合肥费 舍罗),在 30 mL/min恒定流量的氮气保护下进行碳 化。管式炉的升温程序: 先将样品以 10 °C/min 的 升温速率加热至 400 °C,并保持 1 h。然后,以相同 的升温速率将温度升至800℃,并在800℃下保 持4h。反应结束且待管式炉温度冷却至室温后, 将样品取出备用。

用场发射扫描电子显微镜(FE-SEM, JEOL, JSM-7001F)对所制备的海藻酸钠基多孔碳气凝胶 进行表面形貌的分析;场发射扫描电镜连接 X 射线 光电子能谱(SEM-EDS)用来测定凝胶表面的元素 种类与含量分析;用全自动比表面积与孔隙度仪 (ASAP-2460,美国麦克)对凝胶的比表面积和孔径 分布进行分析测定;用 X 射线衍射仪(D8 advance, 布鲁克)对材料的物相组成和晶化程度进行分析; 用红外光谱仪(Vertex 70, 布鲁克)来检测凝胶的傅 里叶变换红外 (FTIR)光谱图。

1.3 实验设计

通过设计一系列批量实验来考察海藻酸钠基 多孔碳气凝胶在不同的条件下对四环素的去除 效果。

1.3.1 吸附动力学 取 100 mg 的海藻酸钠基多孔 碳气凝胶投加到 100 mL 的 1 mg/L 的四环素溶液 中,于恒温振荡箱(DLHR-Q200, HDL Appatatus)中

在 25 ℃ 的条件下以 160 r/min 的振荡频率避光振 荡。在振荡第 10、30、60、120、240、360 和 480 min 的时候进行取样分析。每组实验分别设置空白对 照和 3 个平行实验,浓度取平行实验的平均值进行 分析。用准一级动力学模型和准二级动力学模型 对实验数据进行拟合,探究海藻酸钠基多孔碳气凝 胶吸附溶液中四环素的动力学行为。

1.3.2 吸附等温线 分别配制 1、5、10、50、100 和 200 mg/L 浓度的四环素溶液。取 100 mg 的海藻酸 钠基多孔碳气凝胶投加到 100 mL 的上述四环素溶 液中,于恒温振荡箱中在 25 ℃ 的条件下以 160 r/min 的振荡频率避光振荡,反应 8 h 的时候进行取样。 每组实验分别设置空白对照和 3 个平行实验,浓度 取平行实验的平均值进行分析,将得到的实验数据 用 Langmuir 和 Freundlich 模型进行拟合。

1.3.3 溶液初始 pH 对吸附效果的影响 用0.05 mol/L 的 NaOH 溶液和 0.1 mol/L 的 HCl 溶液来调节 1 mg/L 四环素 溶液的 pH 值。利用台式 pH 计(LE438, Mettler-Toledo)测定溶液的 pH 值,将溶液的初始 pH 值分别调至 2、4、6、8 和 10,然后称取 100 mg 海藻酸钠基多孔碳气凝胶投加到 100 mL 的上述四 环素溶液中,于恒温振荡箱中在 25 ℃ 的条件下以 160 r/min 的振荡频率避光振荡,反应 6 h 的时候进 行取样分析。每组实验分别设置空白对照和 3 个 平行实验,浓度取平行实验的平均值进行分析。

1.4 分析方法

将所取水样用 0.45 μm 的水相滤头进行海藻酸 钠基多孔碳气凝胶和四环素溶液的固液分离,然后 用紫外分光光度计(UV-6100,上海美普达)在 358 nm 的波长下分析滤液中剩余四环素的浓度。

1.5 数据处理方法

海藻酸钠基多孔碳气凝胶对溶液中的四环素的去除率和吸附容量(q)的计算方法,见式(1~2):

去除率 =
$$\frac{C_0 - C_t}{C_0} \times 100\%$$
 (1)

$$q = \frac{(C_0 - C_t) V}{m} \tag{2}$$

式中: q 为吸附容量, mg/g; $C_0 和 C_t 分别为初始时$ 的溶液中四环素的浓度和平衡时的四环素浓度,<math>mg/L; V 为四环素溶液的体积, L; m 为凝胶的投加 量, g_o

为了确定达到吸附平衡的时间,了解吸附过程

的特点,将四环素的吸附动力学过程利用准一级动力学模型和准二级动力学模型进行模拟,具体模型见式(3~4):

$$\log(Q_e - Q_t) = \log Q_e - k_1 t \tag{3}$$

$$\frac{t}{Q_t} = \frac{1}{k_2 Q_e^2} + \frac{t}{Q_e}$$
(4)

式中: Q_e 为四环素的平衡吸附量, mg/g; Q_t 为 t 时刻 四环素的吸附量, mg/g; t 为吸附时间, min; k_1 为准 一级动力学速率常数, min⁻¹; k_2 为准二级动力学速 率常数, g/(mg·min);

利用 Langmuir 模型和 Freundich 模型拟合海 藻酸钠基多孔碳气凝胶对四环素溶液的等温吸附 过程。

Langmuir 具体模型, 见式(5):

$$q_e = \frac{q_{\max}K_{\rm L}C_e}{(1+K_{\rm L}C_e)} \tag{5}$$

转换为线性模型,见式(6):

$$\frac{1}{q_e} = \frac{1}{q_{\max} \times K_{\rm L}} \times \frac{1}{C_e} + \frac{1}{q_{\max}} \tag{6}$$

式中: q_e 为平衡吸附容量, mg/g; q_{max} 为最大吸附容量, mg/g; K_L 为 Langmuir 吸附平衡常数; C_e 为平衡时溶液中四环素的质量浓度, mg/L。

使用平衡参数 R_L 来评价吸附的可行性,见式(7):

$$R_{\rm L} = \frac{1}{1 + K_{\rm L} C_0} \tag{7}$$

式中: R_L 的值表示吸附等温线的类型。 $R_L = 0$ 表示 吸附不可逆; $0 < R_L < 1$ 表示对吸附起促进作用; $R_L = 1$ 表示吸附呈线性相关; $R_L > 1$ 表示对吸附起 抑制作用。

基于在非均匀表面上的吸附, Freundlich 等温 线以线性形式表示, 见式(8):

$$\ln q_e = \ln K_{\rm F} + \frac{1}{n} \ln C_e \tag{8}$$

式中, $K_{\rm F}$ 和 n 均为 Freundlich 常数, mg^(1-1/n) L^{1/n} /g。

2 结果与分析

2.1 海藻酸钠多孔碳气凝胶的表征

材料的制备过程见图 1。首先将海藻酸钠投加 到脱硫废水中,与脱硫废水中的重金属污染物迅速 交联形成图 1(a)中的水凝胶,之后将处理过脱硫废 水的废弃水凝胶进行冷冻干燥,再用管式炉 800 ℃ 进行碳化,最终得到海藻酸钠基多孔碳气凝胶。

图 1 材料的制备过程

2.1.1 SEM 及凝胶表面元素含量分析 海藻酸钠 基多孔碳气凝胶的 SEM, 见图 2。通过观察凝胶的 微观形貌结构, 可以看出凝胶具有比较丰富的孔隙 结构, 虽然无序, 但是孔径比较大, 这样的结构有利 于提高凝胶的吸附能力。对比图 2(a)和(b)发现, 吸附后的海藻酸钠基多孔碳气凝胶的孔隙率明显 减少。海藻酸钠基多孔碳气凝胶的孔隙率明显 减少。海藻酸钠基多孔碳气凝胶的元素组成, 见表1。 表1可知, 吸附前的凝胶元素组成主要是 C和 O, 同时附带着 Ca、Mg 等金属元素, 说明海藻酸钠凝 胶成功络合了脱硫废水中的重金属污染物。对比 吸附四环素后的海藻酸钠基多孔碳气凝胶发现, 金 属元素的含量明显降低, C和 O 的含量显著升高, 推测是因为四环素成功占据了碳气凝胶上的活性 位点。

图 2 吸附前(a)高倍吸附前(b)高倍吸附后(c)海 藻酸钠基多孔碳气凝胶 SEM 图

表 1 吸附前	后海藻酸钠基多孔碳	气凝胶元素组成	%
元素种类	吸附前凝胶	吸附后凝胶	
С	11.60	22.70	
Mg	16.67	9.30	
Cl	13.86	0.57	
Ca	11.43	0.88	
0	46.44	66.55	

2.1.2 海藻酸钠基多孔碳气凝胶比表面积分析 以氮气为吸附介质,在77K和相对压力为10⁻⁶~
1.0 的范围内进行氮气吸附脱附测定凝胶的比表面 积和孔结构。经过测定,海藻酸钠基多孔碳气凝胶 的比表面积是52.37 m²/g。碳气凝胶对氮气的吸附 脱附等温线见图3,等温线存在一个明显的滞后回 环,这是IV类等温线的一个特征,表明海藻酸钠基 多孔碳气凝胶的孔结构为中孔结构。

2.1.3 海藻酸钠基多孔碳气凝胶 XRD 分析 对海 藻酸钠基多孔碳气凝胶进行 X 射线粉末衍射分析 见图 4。碳气凝胶在 2θ 为 32°、42.5°和 62.5°附近 均出现衍射峰。通过与标准 PDF 卡片对比可知,海 藻酸钠基多孔碳气凝胶中存在 MgO、NaCl 和 CaCO₃ 晶体,同时在碳化的过程中还生成了 C₆₀。

2.1.4 海藻酸钠基多孔碳气凝胶 FTIR 分析 为了 进一步研究海藻酸钠基多孔碳气凝胶中各组分的 相互作用,对其进行 FTIR 分析,见图 5。碳气凝胶 在 3 423 cm⁻¹ 处存在羟基(—OH)的伸缩振动峰,而 在 1 632 cm⁻¹ 处出现的微弱吸收峰,则与环状结构 上的 C=C 和羰基(C=O)的伸缩振动峰有关^[21-22]。

2.2 吸附动力学研究结果

海藻酸钠基多孔碳气凝胶对四环素的吸附动 力学研究见图 6,碳气凝胶对水中四环素的吸附容 量在短时间内随着反应时间的增加而迅速增大,去 除率也随之增大,在反应时间到达 240 min 之后反 应逐渐趋于平缓。这是由于在反应初期,凝胶上有 相对较多的活性位点,四环素可以迅速与凝胶上的

活性位点结合,达到去除的效果。从图中可以看出 海藻酸钠基多孔碳气凝胶对溶液中的四环素去除 率可以达到 95% 以上。

将海藻酸钠基多孔碳气凝胶对溶液中的四环 素的吸附过程利用准一级动力学模型和准二级动 力学模型进行拟合,拟合曲线见图 7,具体数据见 表 2。比较两个动力学模型的可决系数(*R*²)可知, 海藻酸钠基多孔碳气凝胶对溶液中的四环素的吸 附行为更符合准二级动力学方程,而且拟合所得的 平衡吸附量与实验所得的最大吸附量非常接近,且 吸附过程以较快的速率进行,这与四环素本身含有 较多的芳环结构有关,有研究表明抗生素的芳香环 越多,碳基材料对它们的吸附速率越快,本研究中 的海藻酸钠基多孔碳气凝胶和四环素上的芳环结 构可以通过 π-π 作用结合进而去除溶液中的四 环素^[23]。

图 7 动力学拟合结果

表 2 海藻酸钠基多孔碳气凝胶的吸附动力学参数

项目	准一级动力学模型	准二级动力学模型
$q_e/\mathrm{mg}\cdot\mathrm{g}^{-1}$	0.8590	0.9690
k/\min^{-1}	0.0150	0.0210
R^2	0.7218	0.8257

2.3 吸附等温线研究结果

用 Langmuir 和 Freundlich 等温吸附模型对海 藻酸钠基多孔碳气凝胶吸附四环素的过程进行拟 合,见图 8。2 种模型的具体参数见表 3,对比 R² 可 以看出, Freundlich 模型的 R² 为 0.979 8, 而 Langmuir 模型的 R² 为 0.913 0, 从拟合可以看出, 用 Freundlich 等温吸附模型的拟合比 Langmuir 模型更高。因此 海藻酸钠基多孔碳气凝胶对四环素的吸附过程更 符合 Freundlich 模型, 说明吸附过程是发生在非均 匀表面的多分子层吸附^[24]。

表 3 海藻酸钠基多孔碳气凝胶对四环素的 吸附等温线参数

项目	Langmuir模型	Freundlich模型
$K_{\rm L}/{ m mg}\cdot{ m L}^{-1}$	0.0886	_
$K_{\mathrm{F}}/(\mathrm{mg}^{1\cdot 1/\mathrm{n}}\cdot\mathrm{L}^{1/\mathrm{n}})\cdot\mathrm{g}^{-1}$	_	9.5860
$q_m/\mathrm{mg}\cdot\mathrm{g}^{-1}$	112	_
1/ <i>n</i>	_	0.5229
R^2	0.9130	0.9798

2.4 溶液初始 pH 对吸附效果的影响

由于在不同的 pH 条件下四环素的存在形态以 及生物炭的表面电荷不同,所以溶液的初始 pH 会 影响海藻酸钠基多孔碳气凝胶的吸附效果。溶液 初始 pH 在 2~10 范围内,碳气凝胶对四环素的吸 附情况见图 9。碳气凝胶对四环素的吸附量随着溶 液pH的升高而逐渐降低。当溶液的pH在 2~6的范围内时,凝胶对四环素有着较高的吸附 量,且随 pH 的升高,吸附量下降缓慢;当溶液的 pH继续升高到10附近时,凝胶对四环素吸附量的 下降趋势更加明显。这种趋势与四环素在不同的 pH下的存在形态有关,当pH<4时,存在TCH; 形态,阳离子与碳气凝胶发生强烈的静电吸附作 用,因此在低 pH 的环境下,海藻酸钠基多孔碳气凝 胶对四环素的吸附效果更好;当 pH>8 时,主要存 在 TCH²-形态, 阴离子与凝胶之间存在静电排斥作 用,而且碱性过强时凝胶表面的活性位点会发生钝 化,从而导致海藻酸钠基多孔碳气凝胶对四环素的 吸附能力下降[25-26]。

3 结论

(1)利用与脱硫废水中重金属污染物络合形成 的海藻酸钠水凝胶制备的海藻酸钠基多孔碳气凝 胶的比表面积为 52.37 m²/g,具有丰富的多孔结 构。同时碳气凝胶中存在 MgO、NaCl 和 CaCO₃ 晶 体以及 C₆₀。通过 FTIR 分析,碳气凝胶中含有羟基 (—OH)、C=C 和羰基(C=O)结构。

(2)海藻酸钠基多孔碳气凝胶在较宽的 pH 范 围内(2~6)均对溶液中的四环素具有良好的吸附 能力,随着溶液 pH 值的增大,碳气凝胶对四环素的 吸附量逐渐降低。海藻酸钠基多孔碳气凝胶对四 环素 的吸附过程更符合准二级动力学方程 (*R*²=0.8257),等温吸附过程更符合 Freundlich 等温 吸附模型(*R*²=0.9798)。

(3)本研究提出的海藻酸钠基多孔碳气凝胶可 以有效利用处理完脱硫废水的凝胶废弃物,不但可 以实现脱硫废水处理的资源化利用,也可以为污水 中抗生素污染物的处理提供新思路。

参考文献

- WANG X, LIU B, SHI B, et al. Transformation of leaf waste into 3D graphene for water treatment[J]. Desalination and Water Treatment, 2019, 168: 348 – 356.
- [2] LIANG Y, PEI M, WANG D, et al. Improvement of soil ecosystem multifunctionality by dissipating manure-induced antibiotics and resistance genes[J]. Environmental Science & Technology, 2017, 51(9): 4988 – 4998.
- [3] 程扬, 沈启斌, 刘子丹, 等. 两种生物炭的制备及其对水溶液中四环素去除的影响因素[J]. 环境科学, 2019, 40(3): 1328-1336.
- [4] 周启星, 罗义, 王美娥. 抗生素的环境残留、生态毒性及抗性基因污染[J]. 生态毒理学报, 2007, 2(3): 243-251.
- [5] KHAN M, BAE H, JUNG J. Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway[J]. Journal of Hazardous Materials, 2010, 181(1-3): 659 – 665.
- [6] 张树清, 张夫道, 刘秀梅, 等. 高温堆肥对畜禽粪中抗生素降解和重金属钝化的作用 [J]. 中国农业科学, 2006, 39(2): 337-343.
- [7] ZHUANG Y, YU F, MA J, et al. Facile synthesis of threedimensional graphene –soy protein aerogel composites for tetracycline adsorption[J]. Desalination and Water Treatment, 2016, 57: 9510 – 9519.
- [8] 张玮玮, 弓爱君, 邱丽娜, 等. 废水中抗生素降解和去除方法的 研究进展[J]. 中国抗生素杂志, 2013, 38(6): 401-410.
- [9] PUTRA E, PRANOWO R, SUNARSO J, et al. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics[J]. Water Research, 2009, 43(9): 2419 – 2430.
- [10] AKSU Z, TUNC Ö. Application of biosorption for penicillin G removal: comparison with activated carbon[J]. Process Biochemistry, 2005, 40(2): 831 – 847.
- [11] ÁLVAREZ-TORRELLAS S, RIBEIRO R S, GOMES H, et al. Removal of antibiotic compounds by adsorption using glycerolbased carbon materials[J]. Chemical Engineering Journal, 2016, 296: 277 – 288.
- [12] YU F, LI Y, HAN S, et al. Adsorptive removal of antibiotics from aqueous solution using carbon materials[J]. Chemosphere, 2016, 153: 365 – 385.
- [13] ZHUANG Y, YU F, CHEN H, et al. Alginate/graphene doublenetwork nanocomposite hydrogel beads with low-swelling, enhanced mechanical properties, and enhanced adsorption capacity[J]. Journal of Materials Chemistry A, 2016, 4(28):

10885 - 10892.

- [14] NAKAUMA M, FUNAMI T, FANG Y, et al. Calcium binding and calcium-induced gelation of sodium alginate modified by low molecular-weight polyuronate[J]. Food Hydrocolloids, 2016, 55: 65 – 76.
- [15] LI X, QI Y, LI Y, et al. Novel magnetic beads based on sodium alginate gel crosslinked by zirconium(IV) and their effective removal for Pb²⁺ in aqueous solutions by using a batch and continuous systems[J]. Bioresource Technology, 2013, 142: 611-619.
- [16] KONG Y, ZHUANG Y, SHI B. Tetracycline removal by doublemetal-crosslinked alginate/graphene hydrogels through an enhanced Fenton reaction[J]. Journal of Hazardous Materials, 2020, 382: 121060.
- [17] CRUZ A, COUTO L, ESPLUGAS S, et al. Study of the contribution of homogeneous catalysis on heterogeneous Fe(III)/alginate mediated photo-Fenton process[J]. Chemical Engineering Journal, 2017, 318: 272 – 280.
- [18] 叶春松, 黄建伟, 刘通, 等. 燃煤电厂烟气脱硫废水处理方法与 技术进展[J]. 环境工程, 2017, 35(11): 10-13+51.
- [19] 杨跃伞, 苑志华, 张净瑞, 等. 燃煤电厂脱硫废水零排放技术研 究进展[J]. 水处理技术, 2017, 43(6): 29-33.
- [20] 李兵,张其龙,王学同,等. 燃煤电厂废水零排放处理技术[J]. 水处理技术, 2017, 43(6): 24-28+33.
- [21] LIU H, YANG F, ZHENG Y, et al. Improvement of metal adsorption onto chitosan/Sargassum sp. composite sorbent by an innovative ion-imprint technology[J]. Water Research, 2011, 45(1): 145 – 154.
- [22] 丁文川, 田秀美, 王定勇, 等. 腐殖酸对生物炭去除水中 Cr(VI) 的影响机制研究[J]. 环境科学, 2012, 33(11): 3847 3853.
- [23] PENG B, CHEN L, QUE C, et al. Adsorption of antibiotics on graphene and biochar in aqueous solutions induced by π - π interactions[J]. Scientific Reports, 2016, 6(1): 1 10.
- [24] WANG H, FANG C, WANG Q, et al. Sorption of tetracycline on biochar derived from rice straw and swine manure[J]. RSC Advances, 2018, 8(29): 16260 – 16268.
- [25] OCAMPO-PÉREZ R, LEYVA-RAMOS R, RIVERA-UTRILLA J, et al. Modeling adsorption rate of tetracyclines on activated carbons from aqueous phase[J]. Chemical Engineering Research and Design, 2015, 104: 579 – 588.
- [26] LI H, HU J, MENG Y, et al. An investigation into the rapid removal of tetracycline using multilayered graphene-phase biochar derived from waste chicken feather[J]. Science of the Total Environment, 2017, 603-604: 39 – 48.