

中高温鸡粪厌氧消化微生物调节机制对比及耐热机理研究

王晓鑫1,王 建1,马 峰2,张延平2,王志鹏2,党小燕2,姚 赛2,朱 彤2,王有昭2,李 旭2

(1. 包头市再生水资源及污水处理有限责任公司,包头 014000;
2. 东北大学机械工程与自动化学院,沈阳 110168)

摘 要: 温度对厌氧消化系统内微生物调节机制的影响尚不清楚,通过对比中高温厌氧消化实验,分析了其各自微生物调节机制以及高温厌氧消化耐热机理。结果表明,在底物浓度相同的情况下高温厌氧消化比中温提前6天达到产甲烷峰值,高温条件能够缩短厌氧消化反应周期,更有利于有机物的水解酸化和甲烷的生成; Defluviitoga 作为高温厌氧消化过程 水解阶段优势菌种,对高温环境具有较好的抗逆性,可将大部分多糖类物质当作电子受体,并降解为醋酸盐、H₂和 CO₂; Methanosarcina 作为中高温厌氧消化产甲烷阶段优势菌种,能够适应中温高温两种不同环境,且可利用所有甲烷代谢途径 (食乙酸、食氢、食甲基化合物),产甲烷潜力巨大。

关键词: 消化温度; 厌氧消化; 菌群丰度; 微生物多样性; 耐热机制 中图分类号: X705 文献标志码: A DOI: 10.16803/j.cnki.issn.1004-6216.202303048

Comparison of microbial regulation mechanisms and heat-resistant mechanism of anaerobic digestion of chicken manure at medium and high temperature

WANG Xiaoxin¹, WANG Jian¹, MA Feng², ZHANG Yanping², WANG Zhipeng²,

DANG Xiaoyan², YAO Sai², ZHU Tong², WANG Youzhao², LI Xu²

(1. Baotou Renewable Water Resources and Sewage Treatment Co., LTD, Baotou 110168, China; 2. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China)

Abstract: The influence of temperature on the microbial regulation mechanism in the anaerobic digestion system is unclear. The microbial regulation mechanisms and the mechanism of heat resistance of high-temperature anaerobic digestion by comparing the anaerobic digestion experiments at medium and high temperatures were analyzed. The results showed that under the condition of the same substrate concentration, high-temperature anaerobic digestion reached the peak of methane production 6 days earlier than medium-temperature, and high-temperature conditions could shorten the reaction cycle, which was more conducive to the hydrolysis and acidification of organic matter and the formation of methane. *Defluviitoga*, as the dominant strain in the hydrolysis stage of the high-temperature anaerobic digestion process, had good stress resistance to high-temperature and could use most polysaccharides as electron acceptors and degrade them into acetate, H₂ and CO₂. *Methanosarcina*, as the dominant strain in the methanogenic stage of medium-high temperature anaerobic digestion, could adapt to two different environments, use all methane metabolic pathways (eating acetic acid, hydrogen, and methyl compounds), and has great potential for methane production.

Keywords: digestion temperature; anaerobic digestion; flora abundance; microbial diversity; heat-resistant mechanism CLC number: X705

生物质能作为世界能源消费体系中的第四大 能源,仅次于煤炭、石油和天然气,近年来得到了国 家的重点鼓励和扶持,在未来能源结构中,生物质 能作为可再生能源将发挥不可替代的作用^[1-2]。近 十年来,我国畜禽粪便年产量基本稳定在 37 亿吨, 畜禽粪便中含有丰富的水分(50.5%)、有机质(25.5%)、

收稿日期: 2023-03-18 录用日期: 2023-05-19

基金项目:国家重点研发计划课题(2020YFC1806402);沈阳市重大关键核心技术攻关项目(20-202-4-37)

作者简介: 王晓鑫(1975—), 男, 本科、高级工程师。研究方向: 从事污水处理、固体废弃物处理处置科研和管理。E-mail: 517892956@qq.com

通信作者: 李 旭(1996—), 男, 博士研究生。研究方向: 固废处理与循环经济。E-mail: lixu_one@163.com

引用格式: 王晓鑫, 王 建, 马 峰, 等. 中高温鸡粪厌氧消化微生物调节机制对比及耐热机理研究[J]. 环境保护科学, 2023, 49(4): 74-84.

氮(1.63%)、磷(1.54%)、硫化氢以及大量的病原菌 等,由于产量巨大且综合利用率不足,是造成环境 污染的主要污染源之一^[3],主要表现为易产生面源 污染、粪便中病原体释放、气味恶劣等^[4-5],存在分 散性、累积性和模糊性等特点,控制难度较大^[6]。然 而其作为一种生物质能,得到有效利用可以缓解能 源紧张带来的压力并减少其对环境造成的污染。 厌氧消化作为畜禽粪便等有机污染物的处置方法 之一,可以将有机物转化为 CH₄、CO₂ 和各类小分 子脂肪酸,实现资源的进一步利用^[7]。

温度作为厌氧消化的主要影响因素之一,将厌 氧消化划分为常温厌氧消化(15~25℃)、中温厌 氧消化(30~40℃)和高温厌氧消化(50~60℃)^[8], 由于常温厌氧消化甲烷产量和有机物降解效率较 低,中高温厌氧消化目前应用较为广泛。近年来很 多研究表明,在高温厌氧消化过程中,有机物的降 解效率、甲烷产量以及挥发性脂肪酸(VFAs)的去除 率均高于中温厌氧消化^[9-10]。KJERSTADIUS et al^[11] 通过在 35、55 和 60 ℃ 下进行厌氧消化实验发现 高温能够很好地减少沙门氏菌及大肠杆菌等病原 体的释放。FERNÁNDEZ-RODRIGUEZ et al^[12] 利用 Romero 模型对中高温厌氧消化微生物最大生 长速率(mu(MAX))进行拟合,结果表明高温过程生 长速率较中温过程提高 27%~60%,并在更短时间 内实现相同水平有机物的降解;同时 WANG et al^[13] 指出通过改变温度进而改变水解酸化细菌和产甲 烷菌相对丰度来提高厌氧消化工艺性能。但高温 厌氧消化中的菌群易受外部环境的影响,其在厌氧 消化过程中的耐热机理及微生物调节机制还有待 进一步研究。所以本研究通过对比中高温厌氧消 化产气特性及微生物群落结构变化,从分子生物学 角度分析其各自微生物调节机制以及高温厌氧消 化耐热机理,为实际沼气工程提供理论指导,实现 能源高效回收。

1 材料与方法

1.1 实验材料

原材料鸡粪取自沈阳市某养鸡场,接种污泥取 自沈阳市北部污水处理厂污泥浓缩池,取回后利用 鸡粪进行驯化处理,保持接种污泥中微生物活性, 鸡粪与接种污泥特性,见表1。

	Tab	ole 1	Pro	pertie	perties of chicken manure and				
	inoculated sludge							%	
实验 材料	TS	VS	pН	С	N	粗蛋白	粗脂肪	粗纤维	钙
鸡粪	27.29	23.33	-	46.07	4.73	22.34	2.44	10.72	10.00
接种 污泥	18.12	8.36	6.41	-	-	-	-	-	-

边娄与控和 完況 的 性 质

1.2 实验设计

主 1

本实验采用自行设计的 4 个 3 L 独立厌氧消化 反应器, 见图 1。

1.取料口; 2.恒温培养箱; 3.厌氧消化反应罐; 4.进料口; 5.搅拌器; 6.排气口; 7.湿式气体流量计

图 1 厌氧消化实验装置 Fig. 1 Diagram of anaerobic digestion experiment device

罐体容积为 3 L,反应有效容积为 2.5 L,反应 器设置 2 组,每组反应器内一次性添加鸡粪 150 g、 接种污泥 500 mL,后用去离子水定容至 2.5 L,启动 前通过向其通入氮气,保证其严格厌氧的环境。温 度分别设置为 37 和 55 ℃,每组实验设置一组平行 实验,实验结果取其平均值。实验过程中每隔 6 h 搅拌一次,每次 2 min,待测样品由取料口取出,产 生沼气通过湿式气体流量计实时监测,并定期检测 pH、SCOD、氨氮、VFAs、菌群多样性等参数变化。

1.3 分析方法

沼气产量通过湿式气体流量计(LMF-1)测得, 甲烷产量通过甲烷气体检测仪(JK60-CH4)测量并 计算测得,物料初始 TS 和 VS 通过重量法(GB/T 28731—2012)测得,溶解性化学需氧量(SCOD)采 用重铬酸钾法进行测量(GB/T32208—2015),利用 纳氏试剂分光光度法测量氨氮(TAN)(HJ535—2009), 利用比色法测量总挥发性脂肪酸(VFAs)。

采用 16S rRNA 基因测序来分析微生物多样性,首先将样品中的 DNA 采用 CATB 方法进行提取^[14],并用琼脂糖电泳检测 DNA 的纯度和浓度。

选用特异引物分别对细菌和古菌进行 PCR 扩增。 PCR 产物用 2% 的琼脂糖凝胶进行电泳检测,后进 行文库的构建和上机测序。并利用 PICRCUt 进行 基因代谢功能预测,将本实验的基因测序数据与代 谢功能已知的菌群全谱系基因功能预测谱数据库 进行对比,从而实现对基因代谢功能的预测。其中 中高温微生物群落样本分别用 M(Medium)和 H(High)表示, M1—M8 与 H1—H8 分别代表中高 温序批式厌氧消化实验随时间变化的 8 次测量结果。

2 结果与讨论

2.1 中高温厌氧消化产甲烷性能对比

温度是影响厌氧消化过程有机物降解效率的 关键因素,中高温厌氧消化过程中甲烷产量、pH、 SCOD、氨氮等常规参数的变化,见图 2。

图 2(a) 可知, 在实验前期底物基质相同的情况 下,中高温甲烷日产量变化趋势大致相同,在实验 中期高温组甲烷日产量于第19天率先达到峰值, 产量为 39.77 mL/gVS, 中温组于第 25 d 达到峰值, 产量为 43.18 mL/gVS, 结果表明高温对厌氧消化中 有机物具有更高的降解效率[15],但倘若反应系统内 有机质含量过高,高温厌氧消化内会出现较高的碱 度和氨氮水平,从而对微生物活性产生抑制。图 2(b) 可知,中高温厌氧消化累计产甲烷量分别为734.75 和 699.50 mL/gVS,由于底物中有机质含量较高,首 先在高温条件下嗜热菌群对温度具有较高耐受性 展现出强大的活性,其他菌群在高温环境下会通过 提高自身新陈代谢来提高自身耐受性,使系统产生 更多的 VFAs, 从而影响有机质的降解效率^[16]; 但与 中温组相比,高温组累计产甲烷量曲线能够较快增 长并趋于平缓,同样表明高温下有机物降解率更 高,能够有效缩短厌氧消化反应周期。

厌氧消化系统内最适 pH 为 6.8 ~ 7.2, 过高或 过低的 pH 均会对水解酸化细菌和产甲烷菌等微生 物产生不同程度的抑制效果。图 2(c)反映了 pH 和 VFAs 的变化关系, 研究发现中高温实验组 pH 均呈现出前期较低对着反应进行逐渐升高的变 化趋势, VFAs 也整体呈现出先上升后下降的变化 趋势。这是由于大分子有机物在水解酸化细菌的 作用下降解为脂肪酸等小分子有机物, 从而使 VFAs 含量逐步上升, 其间同时产生大量游离 H⁺导 致 pH 下降。随着反应进行, 产甲烷菌逐渐适应了 环境并开始利用系统中游离的 H⁺与 VFAs 合成 CH₄, VFAs 含量开始下降, pH 值升高, 这与 YANG et al^[17]的研究结果相似。通过对比发现高温组在 整个实验过程中的 pH 均高于中温组, 且 VFAs 也 率先达到峰值, 原因是底物中含有较多粗蛋白, 蛋 白质在高温条件下的转化速率更快, 从而提高了系 统内的总碱度, 对 VFAs 起到了一定的中和作用^[8,18]。 ALMEIDA et al^[19]发现高温厌氧消化在不需要人为 干预的情况下能够使 pH 稳定在 7.0 左右, 而中温 厌氧消化则需要加碱来维持反应系统 pH 的稳定。

质水解呈现出先上升后下降的变化趋势,且高温组 在第 16 d率先达到峰值(25 170 mg/L),中温组在 28 d达到峰值(24 470 mg/L),在序批式实验中底物 浓度保持不变, SCOD浓度会随着产甲烷菌对有机 质的利用而逐渐降低,产甲烷古菌 OTU 数目明显 上升。在反应结束时,中高温 SCOD 去除率分别达 到 66%和 63%, SCOD 含量的变化能够从侧面反映 出系统中的有机物得到有效降解^[20]。DUAN et al^[21] 研究发现 TAN 浓度会对厌氧消化系统产生不同的 抑制效果,当 TAN 浓度在 0~3 000 mg/L 时不会对 系统产生抑制现象,高温产甲烷菌对氨氮的耐受性 阈值为 8 000 mg/L,中温产甲烷菌为 16 000 mg/L, 所以温度的升高会增加氨氮抑制的风险^[22-23]。本研究中高温厌氧消化实验氨氮浓度变化如图 2(e) 所示,由于底物浓度较低,氨氮浓度均在 3 000 mg/L 以下,不会产生明显的氨抑制现象。由于高温厌氧 消化比中温厌氧消化更易受到氨氮抑制,所以在实际工程中尤其在高温厌氧消化工艺中,应避免氨氮 浓度过高,使厌氧微生物处于可承受范围之内,保 障系统稳定运行。

2.2 中高温厌氧消化细菌菌群丰度变化

本研究基于 16S rRNA 测序所得的有效数据进行 OTUs 物种聚类分析,分别得到 1717 和 1941 个 细菌的 OTU,中高温细菌样本群落变化,见图 3。

中温厌氧消化在门水平上优势菌种主要为 *Firmicutes*、*Spirochaetes*、*Bacteroidetes* 和*Proteobac*teria,相对丰度最高分别为 69.11%、45.83%、36.30%、 17.84%。这4种细菌门下的大部分微生物均可对 有机质进行降解并转化为丙酮酸进而产生 VFAs 和乙醇等代谢产物^[24]。Firmicutes 中含有众多功能 性微生物,在实验前期对大部分有机物(蛋白质、纤 维素类、碳水化合物等)进行降解[25],随着有机质不 断被消耗,菌群相对丰度逐渐降低。Bacteroidetes 和 Proteobacteria 作为肠道菌群的优势菌种,主要 作用于蛋白质,将其水解为氨基酸,并为自身及其 他微生物提供维生素、乳酸和短链脂肪酸等营养物 质[20,26]。高温厌氧消化在门水平上的优势菌种主要 为 Firmicutes、Thermotogae、Bacteroidetes 和 Proteobacteria,相对丰度最高分别可以达到 72.61%、 33.39%、35.15%、39.95%。其中 Thermotogae 是一 类嗜热或超嗜热菌群,如热袍菌等细胞内具有错配 修复机制(MMR),在受到热损伤后会使 DNA 片段

发生碱基对错位配对,导致遗传信息发生改变, MMR 会切除错误的碱基对,然后通过 DNA 聚合酶 和连接酶的作用,合成配对正确的双链 DNA 分 子。因此嗜热菌在 DNA 重组反应中发挥介导作 用,细胞内部含有识别损伤、启动修复的重组介导 功能的蛋白以提高细菌的耐热性。中温(左)和 高温(右)温厌氧消化细菌菌群相对丰度柱形,见 图 4。

图 4(左)可知,中温厌氧消化过程中属水平上 优势菌属主要有 unidentified_Spirochaetaceae、 Lactobacillus、Megasphaera和 unidentified_Lentimicrobiaceae,其中 unidentified_Spirochaetaceae和 Lactobacillus 相对丰度最高可达 43.08%和 20.19%, unidentified_Spirochaetaceae属于螺旋体科(Spirochaetaceae),是一种常见的人畜共患病的病原体, 大多存在于被污染的水体及其他环境中,可利用糖 类、氨基酸及长链脂肪酸等以维持自身能量需求^[27]。 Lactobacillus 隶属于乳杆菌科,可产生乳酸及多种 脂肪酶,可将有机质主要转化为丁酸等脂肪酸类物 质,通过 PENG et al^[28]研究发现其在酸性环境中仍 然具有较高活性,能够为其他细菌提供可利用的有 机硒等微量元素,这些微量元素在一定程度上可减 缓细胞凋亡,但 *Lactobacillus* 与其他细菌的互营共 生关系还有待进一步研究^[29]。*Lactobacillus* 随着反 应进行丰度逐渐下降,这与底物浓度及反应系统内 的 pH 变化有关。*Megasphaera* 属于实验前期优势 菌种,主要利用 Lactobacillus 产生的乳酸及果糖^[30], 其丰度会随着 Lactobacillus 变化而变化。unidentified_ Lentimicrobiaceae 是一种严格厌氧、短棒状革兰氏 阴性细菌,最适 pH 为 7.0 左右,由于实验后期 pH 升高致使其丰度主要体现在中温厌氧消化后期; SUN et al^[31] 指出 Lentimicrobiaceae 主要作用于碳 水化合物,发酵终产物是乙酸盐、苹果酸盐、丙酸 盐、甲酸盐和氢离子。

高温厌氧消化属水平优势菌种主要为 Defluviitoga, Proteiniphilum, Herbinix, Caproiciproducens 等,相对丰度最高分别可达22.14%、16.68%、15.39%、 15.34%。图 4(右)可知,值得注意的是高温厌氧消 化中发现的菌群对温度耐受性较高。Defluviitoga 作为高温厌氧消化优势菌种,属于 Thermotogae 门,是一种嗜热微嗜盐厌氧的化学有机营养型细 菌, 最适温度为 55 ℃, 最适 pH 为 6.5~7.9, 具有发 酵广谱碳水化合物和酵母提取物的能力,可将大部 分的多糖类物质(如葡萄糖、果糖、半乳糖、蔗糖 等)用作电子供体,降解并转化为醋酸盐、H2和 CO₂,还可将硫代硫酸盐和元素硫还原为 H₂S^[32-33]。 Proteiniphilum 是一种嗜蛋白质嗜纤维素的功能性 细菌,最终产物为乙酸,其在高温厌氧消化反应前 中期丰度较高,并随着反应进行丰度逐渐下降,这 与系统内底物浓度变化有关。WU et al^[34]检索并筛 选了该属四个基因组是否存在碳水化合物活性酶, 结果表明所有分析的基因组都包含多种参与逐步 水解的酶,包括糖苷水解酶(GH)、碳水化合物酯酶 (CE),并验证了其功能性。Herbinix 和 Caproicipro*ducens* 的最适温度范围为 40~65 ℃, 为高温厌氧 消化过程中的次优势菌种,其中 Herbinix 主要作用 于纤维素,将纤维二糖降解为乙酸、乙醇、丁酸和

氢气等产物^[35]。*Caproiciproducens* 可将果糖作为 底物,转化为乳酸、乙酸、正丁酸、正己酸、H₂和CO₂, ESQUIVEL-ELIZONDO et al^[36]将其全基因组和反 向 β 氧化基因与其他细菌进行了比较,同样验证了 这一观点。

通过对中高温 16S rRNA 测序结果细菌群落基 因功能预测,分析中高温细菌群落在基因功能上的 差异,见图 5。

细菌结构域中注释的序列主要分为 6 个功能 组:细胞过程、环境信息处理、遗传信息处理、人类 疾病、新陈代谢和有机系统,其中细胞之间的膜运 输、遗传信息的复制与修复、碳水化合物和氨基酸 的代谢所占基因数量最高,可作为细菌基因的主要 功能表达。通过对比中高温细菌群落功能预测可 以看出,高温厌氧消化细菌基因表达在 6 个功能组 中均高于中温组。造成这种现象的原因是高温会 促进细胞的新陈代谢,提高细胞与环境之间的物质 交换效率,促进细胞内遗传信息的表达。TIAN et al^[37] 也指出随着温度的升高,水解酸化细菌代谢明显增 多,且涉及水解、产酸阶段的细菌多样性明显增加, 细菌在高温环境的刺激下,通过提高新陈代谢,促 进肽链中二硫键的形成,增加双链 DNA 分子的空 间位阻,来保证其在高温下的活性。

2.3 中高温厌氧消化古菌菌群丰度变化

中高温厌氧消化古菌门水平优势菌种主要为 Euryarchaeota, Euryarchaeota 在 16S rRNA 物种进 化树上属于一个单系群,包含了古菌中大部分群 落,产甲烷阶段的产甲烷菌以及嗜热、嗜盐的厌氧 菌等均来自 Euryarchaeota 门。中高温厌氧消化古 菌菌群相对丰度,见图 6。

图 6(a) 可知, 中温厌氧消化属水平优势菌种主要为: Methanosarcina、Methanosaeta、Methanosphaera、Methanospirillum、Methanoregula, 相对丰度最高分别可达到 45.38%、24.73%、29.68%、21.50%和 18.24%, 其中 Methanosaeta 属于食乙酸产甲烷 古菌, 主要将乙酸和 H₂转化为 CH₄, 在厌氧消化过程中, 也可在一定程度上利用其他类型底物, 例如将甲基胺或甲醇歧化为 CH₄和 CO₂^[38]。在中温厌氧消化实验中由于底物逐渐被降解, 其丰度随着反 应进行逐渐降低,符合微生物生态学变化规律。 Methanosarcina 是已知的唯一一种可利用所有甲烷 代谢途径的菌群,最适 pH为 6.5~8,由于受 pH影 响,主要作为在实验后期优势菌种,Methanosarcina 的第一种代谢途径为利用乙酸,并转化为 H₂和 CO₂,然后将 H₂和 CO₂作为原料合成 CH₄;第二种 代谢途径是在甲基转移酶的作用下将甲醇、甲胺等 化合物转化成甲烷^[39]。值得注意的是,Methanosarcina 是厌氧消化过程中最重要的产甲烷菌群,还可 根据环境温度划分为嗜温甲烷八叠球菌和嗜热甲 烷八叠球菌^[39]。

高温厌氧消化产甲烷古菌属水平优势菌种相 对丰度如图 6(b),可以看出其在属水平上的优势菌 种主要为 Methanosarcina、Methanothermobacter、 Methanospirillum、Methanosaeta 和 Methanoregula, 由于高温厌氧消化 pH 一直处于 6.5 以上,所以 Methanosarcina 在实验前期即表现出较大的优势, 并且丰度随着有机底物消耗而逐渐下降。Methanothermobacter 是一种热自养氢营养型甲烷嗜热杆 菌,最适生长温度为 65~70 ℃,为实验前期优势菌 种,可以将 H₂、甲醇等物质转化为 CH₄和 CO₂,以 提供自身细胞生理活动需求^[40],麻婷婷等^[41]同样发 现 Methanothermobacter 是高温条件下石油烃降解 产甲烷的优势古菌之一。在实验后期优势菌种主 要为 Methanospirillum 和 Methanosaeta, 通过对比 可以看出中温厌氧消化大部分产甲烷优势菌种同 样出现在高温厌氧消化过程中,造成这种现象的原 因是这些产甲烷菌对高温具有较好的耐受性,细胞中的 DNA 在高温条件下触发损伤诱导反应(DDR),激活修复蛋白,修复 DNA 损伤,维护细菌基因组的稳定性^[42]。SUTER^[43] 指出 DDR 是多层次、多水平调控,与损伤信号转导和 DNA 修复有关的基因多达 500 多个;当 DNA 受到外界环境胁迫造成损伤时 MRN (X)、ATRIP、Rad17 等损伤识别蛋白会通过 ATM、ATR 等蛋白酶将信号传递给效应蛋白,进而影响 DNA 合成、细胞周期、细胞凋亡、衰老以及 DNA 修复等细胞进程^[44]。中高温古菌群落功能预测,见图 7。

Fig.6(b)Column chart of relative abundance of methanogenic archaea by high temperature anaerobic digestion

通过利用 16S rRNA 基因测序数据与代谢功能 已知的微生物基因组数据库进行对比,实现了中高 温产甲烷古菌基因的功能预测,见图 7,古菌结构域 中注释的序列同样分为六个功能组:细胞过程、环 境信息处理、遗传信息处理、人类疾病、新陈代谢 和有机系统,其代谢通路主要为能量代谢、碳水化 合物代谢、氨基酸代谢、膜运输、遗传信息翻译与 表达,KUNDU et al^[45]在中高温连续式厌氧消化实 验中发现,与在 55 ℃下运行的反应器相比,37 ℃ 下的反应器能够承受更高的有机负荷且微生物群 落更加多样化,这与本实验研究一致。中温厌氧消 化过程中基因的代谢通路均高于高温厌氧消化,造 成这种现象的原因是高温阻断了部分乙酸营养型 产甲烷菌的代谢通路,主要以氢营养型产甲烷代谢 通路为主,并得到了其他属明确定义的共生产氢细 菌的支持,这与 GAO et al^[46]研究结果一致。

Fig. 7 Prediction of archaea community function at medium and high temperatures

2.4 中高温厌氧消化 α 多样性变化

为了进一步探究微生物群落结构,基于 16S rRNA 数据集对中高温厌氧消化α多样性指数进行 评估^[47],细菌和古菌的α多样性见表2与表3,本研 究每组样品生物覆盖率均在0.99以上,可以认为测 序深度已基本覆盖样品中的所有物种。

表 2 可知,高温厌氧消化过程中样品 observed species 指数较高,所含物种较为丰富,且其自身丰 富度变化与厌氧消化系统内的底物浓度呈正相关 变化,与 WITTEBOLLE 的研究结果一致^{48]}。Shannon 和 Simpson 能够评估物种的均匀度,值越大表示各 物种分配越均匀^[49-50],可用来评估优势菌群在反应 系统中的地位和作用,可以看出中高温各组样品均 匀度指数相差不大,物种分配较为均匀。Chao1和 ACE的作用与物种数指数类似,数值越大表示表示 物种丰富度和多样性越高^[51],通过对比中高温多样 性指数发现,在细菌域中高温厌氧消化的 Chao1 和 ACE 指数整体高于中温厌氧消化,而在古菌域中高 温厌氧消化的 Chao1 和 ACE 指数整体较低,造成 这种现象的原因是水解酸化细菌所覆盖的菌群数 量远比产甲烷古菌多,样本中的 OUT 数目即可验 证这一观点,温度的变化使水解酸化阶段衍生出更 多细菌,产甲烷古菌在受到温度的影响后,在底物 充足的情况下,尚且可以通过调节自身代谢来适应 表 2 中高温厌氧消化水解酸化细菌 α 多样性变化

环境胁迫,但随着底物浓度不断被消耗,没有足够 能量来维持自身生理活动,多样性指数开始下降, 这与前文的研究可以形成呼应。

Table	2 Changes in th	Changes in the α diversity of acidified bacteria during mid-high temperature anaerobic digestion								
细粉	物种粉/个	均匀度指数		多样性指数						
-11.84	10/11/38/	Shannon	Simpson	Chao1	ACE	工的夜皿干				
M1	1 593	6.432	0.934	1816.911	1 898.458	0.993				
M2	1 742	7.819	0.987	1946.074	2056.014	0.993				
M3	1 293	7.341	0.984	1460.754	1 564.026	0.994				
M4	1848	7.876	0.983	2075.346	2171.558	0.992				
M5	1758	7.461	0.970	2013.739	2124.699	0.992				
M6	1857	7.474	0.968	2108.730	2193.657	0.992				
M7	1756	6.936	0.962	2059.034	2163.817	0.991				
M8	1869	7.331	0.973	2125.733	2238.300	0.992				
H1	2245	8.053	0.979	2538.160	2607.659	0.991				
H2	2056	7.666	0.980	2365.965	2487.267	0.990				
Н3	1921	7.275	0.976	2232.204	02382.96	0.990				
H4	2391	8.597	0.991	2650.590	2772.402	0.990				
Н5	1897	6.837	0.961	2194.613	2335.348	0.990				
H6	1615	7.161	0.978	1880.154	2005.092	0.992				
H7	1 769	6.784	0.898	1964.061	2037.415	0.992				
H8	1634	6.802	0.968	1905.350	2043.547	0.991				

表 3 中高温厌氧消化产甲烷古菌 α 多样性变化

Table 3	3 Variation of alpha diversity of methanogenic archaea during mid-high temperature anaerobic digestion							
组数	Hon Fate Xkr / A	均匀图	度指数	多样性	中柳莲美卖			
	初州级/1	Shannon	Simpson	Chao1	ACE	生初復童平		
M1	533	4.109	0.822	602.843	620.164	0.998		
M2	584	5.413	0.946	631.616	644.214	0.999		
M3	544	5.315	0.947	602.235	611.049	0.999		
M4	514	5.456	0.951	569.836	573.337	0.999		
M5	624	5.742	0.962	669.764	685.770	0.999		
M6	316	4.421	0.854	341.161	339.959	0.999		
M7	191	3.617	0.812	217.400	218.061	1.000		
M8	189	3.780	0.847	204.750	209.107	1.000		
H1	446	5.027	0.932	497.679	528.585	0.999		
H2	553	5.184	0.939	613.061	633.953	0.998		
Н3	483	5.244	0.946	516.514	527.499	0.999		
H4	664	5.414	0.943	758.897	757.104	0.998		
H5	530	5.322	0.941	587.554	588.961	0.999		
H6	276	2.899	0.681	298.000	308.641	0.999		
H7	162	2.984	0.786	193.231	183.107	1.000		
H8	191	3.153	0.805	204.034	211.344	1.000		

3 结论

(1)高温厌氧消化比中温厌氧消化提前 6 d 达 到产甲烷峰值,由于底物浓度相同,中高温累计产 甲烷量相差不大,高温组 pH 始终高于中温组,能够 在更短时间达到相对稳定的 pH,系统不易产生酸 化现象,且 VFAs 与 SCOD 的变化与甲烷产量变化 相似,说明高温条件更有利于有机物的水解酸化和 甲烷的生成。

(2)中温厌氧消化水解酸化阶段优势菌种为 unidentified_Spirochaetaceae、Lactobacillus和Megasphaera,对酸性环境具有较好的抗逆性,产物为乙 酸和丁酸等脂肪酸类物质;高温水解阶段的优势菌 种主要为 Defluviitoga、Proteiniphilum、Herbinix 和 Caproiciproducens等,其对高温环境具有较好的抗 逆性,其中 Defluviitoga 可将大部分多糖类物质当 做电子受体,并降解为醋酸盐、H₂和 CO₂,提高了 水解酸化效率,使厌氧消化反应周期缩短 12%,同 时高温环境减少了病原体的产生。中高温厌氧消 化产甲烷优势菌群也存在较大差异,且分别属于不 同的功能性产甲烷菌。

参考文献

- [1] 袁惊柱, 朱彤. 生物质能利用技术与政策研究综述[J]. 中国能 源, 2018, 40(6): 16-20.
- [2] ZHANG LB, YANG T. The Evaluation and Selection of Renewable Energy Technologies in China[J]. Energy Proceedia, 2014, 61: 2554 – 2557.
- [3] YAO Y, HUANG G, AN C, et al. Anaerobic digestion of livestock manure in cold regions: Technological advancements and global impacts[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109494.
- [4] LIU WR, ZENG D, SHE L, et al. Comparisons of pollution characteristics, emission situations, and mass loads for heavy metals in the manures of different livestock and poultry in China[J]. Science of The Total Environment, 2020, 734: 139023.
- [5] 唐涛涛, 李江, 杨爱江, 等. 秸秆类型及配比变化对污泥厌氧消 化中微生物群落的影响[J]. 化工进展, 2020, 39(2): 667-678.
- [6] 李霞. 当前我国畜牧养殖对生态环境的影响[J]. 农业与技术, 2016, 36(14): 239.
- [7] PONSA S, FERRER I, VAZQUEZ F, et al. Optimization of the hydrolytic-acidogenic anaerobic digestion stage (55°C) of sewage sludge: Influence of pH and solid content[J]. Water Research, 2008, 42(14): 3972 – 3980.
- [8] 张文哲,陈静,刘玉,等.中温和高温厌氧消化的比较[J]. 化工进 展, 2018, 37(12): 4853-4861.
- [9] 曲艺源,张景新,何义亮.铁电极辅助餐厨垃圾高温厌氧消化及 微生物的耐盐机理[J].化工进展,2022,41(4):8.

- [10] MICOLUCCI F, GOTTARDO M, PAVAN P, et al. Pilot scale comparison of single and double-stage thermophilic anaerobic digestion of food waste[J]. Journal of Cleaner Production, 2017: 1376 – 1385.
- [11] KJERSTADIUS. H, JANSEN JL, DE V, et al. Hygienization of sludge through anaerobic digestion at 35, 55 and 60 degrees C[J]. Water Science and Technology, 2013, 68(10): 2234 – 2239.
- [12] FERNANDEZRODRIGUEZ J, PEREZ M, ROMERO LI, et al. Comparison of mesophilic and thermophilic dry anaerobic digestion of OFMSW: Kinetic analysis[J]. Chemical Engineering Journal, 2013(232): 59 – 64.
- [13] WANG Z, MA T, XING L. Process performance and microbial interaction in two-stage continuously stirred tank reactors for sludge anaerobic digestion operated at different temperatures[J]. Biochemical Engineering Journal, 2020, 161: 107682.
- [14] 李金璐, 王硕, 于婧, 等. 2013. 一种改良的植物 DNA 提取方法[J]. 植物学报, 2013, 48(1): 72 - 78.
- [15] KIM M S, KIM D H, YUN Y M. Effect of operation temperature on anaerobic digestion of food waste: performance and microbial analysis[J]. Fuel, 2017, 209: 598 – 605.
- [16] NGES I A, JING L. Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions[J]. Renewable Energy, 2010, 35(10): 2200 – 2206.
- [17] YANG Z Y, WANG W, ZHANG SY, et al. Comparison of the methane production potential and biodegradability of kitchen waste from different sources under mesophilic and thermophilic conditions[J]. Water Science And Technology. 2017, 75(7), 1607 – 1616.
- [18] FOUNTOULAKIS M S, DRAKOPOULOU S, TERZAKIS S, et al. Potential for methane production from typical Mediterranean agro-industrial by-products[J]. Biomass & Bioenergy, 2008, 32(2): 155 – 161.
- [19] ALMEIDA S D. Comparison of the anaerobic digestion at the mesophilic and thermophilic temperature regime of organic wastes from the agribusiness[J]. Bioresource Technology, 2017, 241: 985.
- [20] ZHAO Y, SUN F, YU J, et al. Co-digestion of oat straw and cow manure during anaerobic digestion: Stimulative and inhibitory effects on fermentation[J]. Bioresource Technology, 2018, 269: 143 – 152.
- [21] DUAN N, ZHANG D J, LIN C, et al. Effect of organic loading rate on anaerobic digestion of pig manure: Methane production, mass flow, reactor scale and heating scenarios[J]. Journal of Environmental Management, 2019, 231: 646 – 652.
- [22] HIDAKA T, WANG F, TOGARI T, et al. Comparative performance of mesophilic and thermophilic anaerobic digestion for high-solid sewage sludge[J]. Bioresource Technology, 2013, 149(12): 177 – 183.
- [23] GARCIA M L, ANGENENT L T. Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment[J]. Water Research, 2009, 43(9): 2373 – 2382.
- [24] 郭香麟, 左剑恶, 史绪川, 等. 餐厨垃圾与秸秆混合中温和高温

厌氧消化对比[J].环境科学, 2017, 38(7): 3070-3077.

- [25] 宋壮壮, 吕爽, 刘哲, 等. 厌氧氨氧化耦合反硝化工艺的启动及 微生物群落变化特征[J]. 环境科学, 2019, 40(11): 5057 -5065.
- [26] BAKER A B, TAWABINI B, NAZAL M, et al. Efficiency of Thermophilic Bacteria in Wastewater Treatment[J]. Arabian Journal for Science and Engineering, 2021, 46(1): 123 – 128.
- [27] HE C., ZHANG BG, YAN WY, et al. Enhanced Microbial Chromate Reduction Using Hydrogen and Methane as Joint Electron Donors[J]. Journal of Hazardous Materials, 2020(395): 122648.
- [28] PENG X, ZHANG S, LI L, et al. Long-term high-solids anaerobic digestion of food waste: Effects of ammonia on process performance and microbial community[J]. Bioresource Technology, 2018, 262: 148 – 158.
- [29] 李旭, 冯磊, 甄箫斐, 等. 基于 CSTR 反应器鸡粪秸秆共消化产 甲烷特性及菌群变化研究[J]. 环境科学学报, 2021, 41(08): 3312-3323.
- [30] LIN L, YU Z, LI Y. Sequential batch thermophilic solid-state anaerobic digestion of lignocellulosic biomass via recirculating digestate as inoculum – Part II: Microbial diversity and succession[J]. Bioresource Technology, 2017, 241: 1027 – 1035.
- [31] SUN LW, TOYONAGA M, OHASHI A, et al. Lentimicrobium saccharophilum gen. nov., sp nov., a strictly anaerobic bacterium representing a new family in the phylum Bacteroidetes, and proposal of Lentimicrobiaceae fam. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(7): 2635 – 2642.
- [32] HANIA W B, GODBANE R, POSTEC A, et al. Defluviitoga tunisiensis gen. nov. sp. nov. a thermophilic bacterium isolated from a mesothermic and anaerobic whey digester[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62: 1377 – 1382.
- [33] MAUS I., KOECK D. E., CIBIS K. G., et al. Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates[J]. Biotechnology for Biofuels, 2016, 9: 171.
- [34] WU ZY., NGUYEN D., LAM TY., et al. Synergistic association between cytochrome bd-enSCODed Proteiniphilum and reactive oxygen species (ROS)-scavenging methanogens in microaerobicanaerobic digestion of lignocellulosic biomass[J]. Water Research, 2021, 190: 116721.
- [35] KOECK D E., HAHNKE S., ZVERLOV VV. Herbinix luporum sp nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(10) : 4132-4137.
- [36] ESQUIVEL-ELIZONDO S., BAGIC C., TEMOVSKA M., et al. The Isolate Caproiciproducens sp. 7D4C2 Produces n-Caproate at Mildly Acidic Conditions From Hexoses: Genome and rBOX

Comparison With Related Strains and Chain-Elongating Bacteria[J]. Frontiers in Microbiology, 2021, 11: 594524.

- [37] TIAN GL, YANG B, DONG MH, et al. The effect of temperature on the microbial communities of peak biogas production in batch biogas reactors[J]. Renewable Energy, 2018, 123: 15 – 25.
- [38] KRAUSE L., DIAZ N N, EDWARDS R A, et al. Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor[J]. Journal and Biotechnology, 2008, 136(1-2): 91 – 101.
- [39] 杨冰, 卢向阳, 田云. 甲烷八叠球菌研究进展[J]. 化学与生物工程, 2012, 29(12): 7-11.
- [40] MBADINGA SM., LI KP., ZHOU L. Analysis of alkanedependent methanogenic community derived from production water of a high-temperature petroleum reservoir[J]. Applied Microbiology and Biotechnology, 2012, 96(2): 531 – 542.
- [41] 麻婷婷, 承磊, 刘来雁, 等. 不同抑制剂对乙酸降解产甲烷及产 甲烷菌群结构的影响[J]. 微生物学报, 2015, 55(5): 587-597.
- [42] 盛多红. 超嗜热古菌基因组的热稳定性[J]. 生命科学, 2014, 26(1): 64-71.
- [43] SUTER B, GRAHAM C, STAGLJAR I. Exploring protein phosphorylation in response to DNA damage using differentially tagged yeast arrays[J]. Biotechniques, 2008, 45(5): 581 – 584.
- [44] DAI Y, GRANT S. New insights into checkpoint kinase 1 (Chk1) in the DNA damage response (DDR) signaling network: Rationale for employing Chk1 inhibitors in cancer therapeutics[J]. Clin Cancer Res, 2010, 16(2): 376 – 383.
- [45] KUNDU K, SHARMA S, SREEKRISHNAN T R. Changes in microbial communities in a hybrid anaerobic reactor with organic loading rate and temperature [J]. Bioresource Technology, 2013, 129(2): 538 – 547.
- [46] GAO W J, LEUNG K T, QIN W S, et al. Effects of temperature and temperature shock on the performance and microbial community structure of a submerged anaerobic membrane bioreactor[J]. Bioresource Technology, 2011, 102(19): 8733 – 8740.
- [47] LIN Q, HE GH, RUI JP., et al. Microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion[J]. Microbal Cell Factories, 2016, 15: 96.
- [48] WITTEBOLLE L, MARZORA TI M, CLEMENT L, et al. Initial community evenness favours functionality under selective stress[J]. Nature, 2009, 458(7238): 623.
- [49] 潘婧冉, 高苏, 赵国柱, 等. 餐厨垃圾厌氧消化处理主要过程的 微生物群落结构分析[J]. 微生物学通报, 2019, 46(11): 2886-2899.
- [50] ROS M., OLIVEIRA JD., MURCIA MDP, et al. Mesophilic anaerobic digestion of pig slurry and fruit and vegetable waste: Dissection of the microbial community structure[J]. Journal of Cleaner Production, 2017, 156: 757 – 765.
- [51] GUO X, CHENG W, SUN F, et al. A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings[J]. Bioresource Technology, 2014, 152: 420.