

Environmental Engineering

第 14 卷 第 5 期 2020 年 5 月 Vol. 14, No.5 May 2020

http://www.cjee.ac.cn

E-mail: cjee@rcees.ac.cn

(010) 62941074

文章栏目: 水污染防治

DOI 10.12030/j.cjee.201907015

中图分类号 X703

文献标识码

姜黎安, 隋倩雯, 陈彦霖, 等. 低氨氮废水亚硝化的快速启动[J]. 环境工程学报, 2020, 14(5): 1252-1258 JIANG Li'an, SUI Qianwen, CHEN Yanlin, et al. Rapid start-up of nitritation process treating low-ammonia wastewater[J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1252-1258.

低氨氮废水亚硝化的快速启动

姜黎安1,2, 隋倩雯1,*, 陈彦霖1,3, 岳文慧1,3, 狄斐1,2, 陈梅雪1

- 1. 中国科学院生态环境研究中心, 水污染控制实验室, 北京 100085
- 2. 中国矿业大学化学与环境工程学院, 北京 100083
- 3. 中国科学院大学, 北京 100049

第一作者: 姜黎安(1994—), 女,硕士研究生。研究方向:污水生物处理。E-mail: jianglian0214@163.com *通信作者: 隋倩雯(1986—), 女, 博士, 助理研究员。研究方向: 污水生物处理。E-mail: qwsui@rcees.ac.cn

摘 要 以低氨氮废水为研究对象,研究了亚硝化反应的快速启动,通过对比实验考察了羟胺(NH2OH)和肼 (N,H₄) 投加对氨氧化与亚硝酸盐氧化反应的影响。结果表明、NH,OH 的投加更有利低氨氮废水亚硝化反应的实 现;在此基础上,通过序批式运行模式,在每周期开始时投加NH,OH(2 mg·L⁻¹),研究了低氨氮废水亚硝化反应 的快速启动;通过9d的驯化,亚硝酸盐积累率可达到100%,AOB与NOB丰度比升高至25,有利于亚硝化启 动的实现。研究结果可为低氨氮废水亚硝化反应快速启动提供技术支持。

关键词 亚硝化反应; 低氨氮废水; 快速启动; 微生物群落结构; 氨氧化细菌; 亚硝酸盐氧化细菌

亚硝化反应是短程脱氮、自养型脱氮的重要氮转化过程之一。自养型脱氮工艺较传统工艺具 有显著优势,可节约曝气能耗 25% 和碳源消耗 100%[1-2]。近年来,以厌氧氨氧化工艺为核心的自养 型脱氮工艺在低氨氮废水处理方面得到初步研究。实现稳定的亚硝化反应是限制自养型脱氮工艺 在低氨氮废水处理中应用的重要因素之一。亚硝化反应首先将氨氮通过氨氧化细菌 (ammonia oxidizing bacteria, AOB) 在好氧条件氧化为亚硝酸盐氮,为实现亚硝酸盐累积,需要抑制亚硝酸盐 氧化细菌 (nitrite oxidizing bacteria, NOB),将亚硝酸盐氮进一步氧化为硝酸盐氮。

在低氨氮废水处理方面,尤其城镇生活污水,较难实现亚硝酸盐积累。这是由于较低的氨氮 浓度难以形成游离氨或者游离亚硝酸盐等 NOB 抑制因子,并且在 DO 较低的条件下, NOB 的抑制 效果不稳定,同时也抑制了 AOB 的反应速率^[3]。WANG 等^[4]的研究表明, DO 为 0.5 mg·L⁻¹ 并控制 SRT 为 8 d 时,可促进亚硝酸盐累积。JARDIN 等 的研究表明,采用间歇曝气调控,有利于亚硝 化反应,这是由于 AOB 在缺氧-好氧交替环境可快速恢复活性,而 NOB 活性恢复较慢。

羟胺 (NH,OH) 和肼 (N,H4) 分别为氨氧化反应与厌氧氨氧化反应的中间产物 [6]。投加 NH,OH 和 N,H₄有利于 NOB 的抑制和亚硝酸盐的累积[7-8],但由于其影响效果不一,缺乏 NH,OH 和 N,H₄ 促进 亚硝化的对比研究,且影响机制尚不清晰。因此,本研究首先开展了NH2OH和N2H4对硝化反应

收稿日期: 2019-07-03; 录用日期: 2019-09-15

基金项目: 国家水体污染控制与治理科技重大专项(2017ZX07102003); 国家自然科学基金资助项目(21607167); 国家重点研发计 划课题 (2016YFD0501405); 江西省科技计划项目 (20151BBG70006)

影响的平行实验,对比分析了 NH₂OH 和 N₂H₄ 对氨氧化与亚硝酸盐氧化反应的影响;在此基础上,选择处理效果较好的 NH₂OH 开展污泥驯化实验,明确了低氨氮废水亚硝化的快速启动方法及其潜在微生物学机制,为低氨氮废水亚硝化的快速启动提供参考。

1 材料与方法

1.1 实验装置

1) NH₂OH、N₂H₄ 对比实验。为考察 NH₂OH、N₂H₄ 对亚硝化的影响,分别采用 3 个处理,包括空白对照 (CK)、NH₂OH 和 N₂H₄,开展平行实验。采用有效容积为 1.5 L 的烧杯,通过加热板控制温度 30 ℃。采用空气压缩机、气体流量计和曝气头分别对 3 个处理组进行曝气并气体流量控制。为促进亚硝酸盐积累,控制 DO 在 0.5~1.0 mg·L⁻¹。CK 组、NH₂OH 组和 N₂H₄ 组污泥浓度分别为 0.92、1.02 和 0.96 g·L⁻¹。NH₂OH 以 NH₂OH·HCl 的形式投加,N₂H₄ 以 N₂H₄·H₂SO₄ 的形式投加。考虑到 2 种物质在水溶液中易氧化的特性,实验开始时,直接称取 19.86 mg NH₂OH·HCl 和 18.57 mg N₂H₄·H₂SO₄,分别溶于少量去离子水后,再进行投加。控制体系内部 NH₂OH 和 N₂H₄ 的初始浓度为 2 mg·L⁻¹。

2) 亚硝化快速启动实验。通过对比实验,考案 NH,OH 的投加对促进亚硝化反应的影响效果。本阶段采用序批式运行方式,每周期开始时投加 NH,OH。圆柱形反应器有效容积为 25 L,顶部安装搅拌器,底部配置微孔曝气盘,采用空气压缩机、气体流量计控制曝气量。污泥驯化的单个周期为 5 h,包括进水 5 min、曝气 4 h,沉淀 50 min、排水 5 min,每个周期交换体积为 15 L,即交换比为 60%。实验过程中 NH₂OH 以 NH₂OH·HCl 的形式投加,称量 NH₂OH·HCl 的质量为 248.3 mg,溶于少量去离子水后再进行投加,NH₂OH 初始浓度为 2 mg·L⁻¹,每周期投加 1 次 NH₂OH。

1.2 实验废水与接种污泥

进水均采用模拟废水,NH₄-N 采用 (NH₄)₂SO₄配置,矿物元素 (7.2 mg·L⁻¹ KH₂PO₄、0.03 mg·L⁻¹ CaCl₂、0.07 mg·L⁻¹ MgSO₄·7H₂O)、微量元素的投加参照已有研究^[9] 的投加量。批次实验与亚硝化启动阶段接种污泥采用北京某城市污水处理厂 CASS 段活性污泥,由于进水水质差异尤其有机物浓度对菌群结构产生较大影响,在开展亚硝化驯化实验前,以低氨氮模拟废水,在连续流反应器中维持 DO 在 $1.0\sim1.2$ mg·L⁻¹ 条件运行 43 d,该过程发生全程硝化反应。在此基础上,开展 NH₂OH 驯化实验,进而用于揭示 NH₂OH 投加对亚硝化反应的促进及对菌群结构的影响。

1.3 DNA 提取

在NH₂OH 投加促进亚硝化快速启动实验前,与驯化第9天各取污泥混合液 5 mL,在 10 000 r·min⁻¹ 离心 10 min,弃上清液,使用试剂盒 Fast DNA Spin Kit for Soil(MP, Biomedicals, USA) 提取 DNA。

1.4 高通量测序与 OUT 分类

采用 Illumina Miseq 平台 (Illumina, USA) 测序分析,测序数据经优化后,样品经均一化后均含有 32 107 条序列。有效序列采用 Ribosomal Database Project (RDP) 进行物种分类。

1.5 水质测定方法与数据分析方法

采用纳氏试剂比色法测定NH₄-N;采用 N-(1-萘基)-乙二胺光度法测定NO₂-N;采用紫外分光光度法测定NO₂-N;采用重量法测定 SS 和 VSS;采用 WTW 型便携式 pH 测定仪测定 pH 和 ORP。

通过 OriginPro 9.0(OriginLab, USA) 完成制图,采用 OriginPro 9.0(OriginLab, USA) 对 Monod 方程进行曲线拟合。

亚硝酸盐氮积累率 (nitrate accumulation rate, NAR) 按式 (1) 计算。

$$\eta = \frac{C(NO_2^--N_{eff})}{C(NO_2^--N_{eff}) + C(NO_3^--N_{eff})}$$
(1)

式中: η 为亚硝酸盐积累率; $C(NO_2^-N_{eff})$ 和 $C(NO_3^-N_{eff})$ 分别为出水亚硝酸盐氮和硝酸盐氮浓度, $mg\cdot L^{-1}$ 。

氨氮与亚氮氧化反应采用 Monod 方程,根据式 (2) 进行最大比反应速率 (V_m) 与底物半饱和常数 K_s 模拟。

$$V = \frac{V_{\rm m} \cdot S}{K_{\rm s} + S} \tag{2}$$

式中:V为单位污泥质量浓度的反应速率, $kg\cdot(kg\cdot d)^{-1}$;S为氨氮或亚氮底物浓度, $mg\cdot L^{-1}$; V_m 为单位污泥质量浓度的最大反应速率, $kg\cdot(kg\cdot d)^{-1}$; K_s 为底物半饱和常数, $mg\cdot L^{-1}$ 。

2 结果与讨论

2.1 NH,OH、N,H4 投加对亚硝化影响的对比

氨氮和亚氮的氧化过程如图 1 所示。随着反应的进行,2 组实验的氨氮浓度逐渐下降,硝酸盐浓度逐渐上升。实验结束时,3 组NO $_3$ -N 的生成量基本相同,但相比于空白对照组,NH $_2$ OH 组和 N $_2$ H $_4$ 的NH $_4$ -N 剩余量都在 5 mg·L $^{-1}$ 以下,接近 1 mg·L $^{-1}$;而空白对照组的NH $_4$ -N 剩余量>5 mg·L $^{-1}$,这说明投加 NH $_2$ OH 和 N $_2$ H $_4$ 有利于氨氧化反应。从NO $_2$ -N 积累量来看,在实验进行到 150 min 时,NH $_2$ OH 组和 N $_2$ H $_4$ 组的NO $_2$ -N 浓度逐步提升,此时 NAR 分别达到 25.67% 和 22.19%,而对照组的

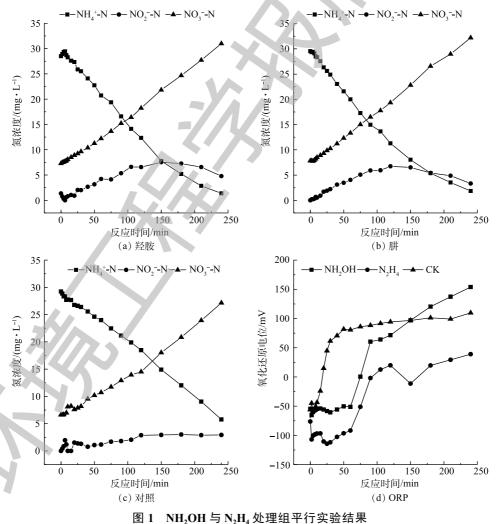


图1 11112011 月112114 发星近十月大短周水

Fig. 1 Parallel experimental results of NH₂OH and N₂H₄ dosing

 NO_2^-N 浓度维持在较低水平,这表明 NH_2OH 和 N_2H_4 的投加抑制 NOB 且促进 NO_2^-N 的积累。在 150 min 后, NH_2OH 组与 N_2H_4 组的 NO_2^-N 开始下降,这可能是由于 NH_2OH 和 N_2H_4 的降解所致,使 NOB 的活性逐步恢复。在 150 min 时, NH_2OH 组的 NAR 略高于 N_2H_4 组。

对实验过程中 ORP 进行了实时监测,结果如图 1(d) 所示。实验初期,CK 组、NH₂OH 组、N₂H₄ 组的 Eh 分别为-56.1、-54.6、-76.3 mV,随着氨氮的逐步氧化,在第 60 分钟,CK 组的 Eh 上 升至 80.5 mV,而 NH₂OH 组和 N₂H₄ 组的 Eh 分别为-51.2 mV 和-91.8 mV,直至实验结束后,3 组实验的 Eh 分别为 109.6、153.9、39 mV。这是因为 NH₂OH 与 N₂H₄ 都是强还原剂、尽管在好氧条件仍能保持较低 Eh 水平,并维持约 60 min。MA 等 $^{[10]}$ 指出 NOB 从还原条件转变为氧化条件的适应期更长。 $30\sim90$ min 的还原条件有利于抑制 NOB 的代谢 $^{[11]}$ 。NH₂OH 组 Eh 在 60 min 后逐步升高,这可能由于 NH₂OH 是氨氧化过程中间产物,AOB 将 NH₂OH 氧化为亚硝酸盐氮,因此,NH₂OH 的降解可能快于 N₂H₄ 的降解。

根据莫诺方程对反应动力学进行模拟,结果如图 2 所示。NH₂OH、N₂H₄ 与 CK 组最大氨氧化速率分别为 0.32、0.42 和 0.20 kg·(kg·d)⁻¹。在氨氮浓度低于 20 mg L⁻¹ 时,NH₂OH 组氨氧化速率高于 N₂H₄ 组,这主要由于 NH₂OH 组氨氮半饱和常数较低 (NH₂OH 与 N₂H₄ 分别为 10.40 mg·L⁻¹ 和 19.64 mg·L⁻¹)。 NH₂OH、N₂H₄ 与 CK 组亚硝酸盐氮最大氧化速率分别为 0.14、0.16 和 0.22 kg·(kg·d)⁻¹,NH₂OH 组亚硝酸盐氮氧化速率低于 N₂H₄ 组。因此,在处理低氨氮废水方面,NH₂OH 投加比 N₂H₄ 更有利于亚硝酸盐积累,故在后续驯化实验中采用 NH₂OH 投加考察了其对亚硝化的影响及菌群分布、关键功能细菌的响应。

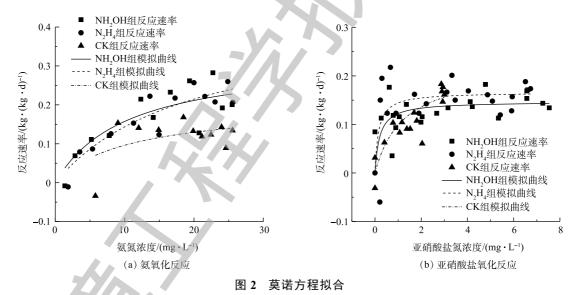


Fig. 2 Simulation with Monod equations

2.2 亚硝化快速启动

采用序批式运行方式考察 NH_2OH 投加对污泥驯化促进亚硝化的快速启动。实验过程中,每周期初期投加 NH_2OH ,使体系内浓度为 2 mg·L^{-1} 。尽管有研究采用较高浓度 NH_2OH ($5\sim10 \text{ mg·L}^{-1}$) 促进亚硝酸盐累积 [12],但由于高浓度 NH_2OH 易引起污泥絮体破碎 [13],本研究采用较低剂量 (2 mg·L^{-1}) 考察了 NH_2OH 对亚硝化的驯化效果。

进、出水氮浓度与 NAR 结果如图 3 所示。投加 NH₂OH后,NO₂-N 表现出快速积累。初次投加 NH₂OH,经 5 h 反应,出水 NO₂-N 浓度为 20.5 mg·L⁻¹,NAR 为 37.8%。说明投加 NH₂OH 之后,NOB 的活性被迅速抑制。随着驯化周期的增加,出水 NO₂-N 浓度迅速升高,NO₃-N 浓度明显下

降,NAR迅速增加,氨氧化反应未受明显影响。在第7个周期末,亚硝酸盐积累率达到90%以 上。在第27个周期,出水NO3-N浓度几乎为0,亚硝酸盐积累率达到100%。这表明NH,OH的投加 对 NOB 活性的抑制获得较好效果,证明了投加 NH,OH 快速启动亚硝化的可行性。经过 28 个周期 驯化后,进水NH;-N几乎全部转化成NO5-N,亚硝酸盐积累率从37.8%上升至100%,亚硝化快速 启动完成。经过低浓度 NH₂OH(2 mg·L⁻¹) 驯化后的污泥可以有效抑制 NOB 活性,降低NO,-N 向NO,-N 的氧化速率。这可能是因为 NH₂OH 抑制亚硝酸盐氧化还原酶的合成,从而抑制了 NOB 的生长[14]。

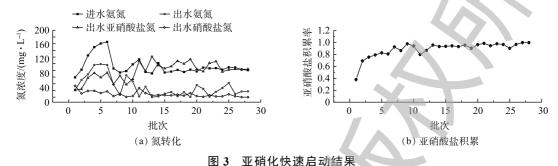


Fig. 3 Rapid start-up of nitritation process

2.3 NH₂OH 投加对微生物群落结构的影响

经过 NH₂OH 投加处理后,微生物群落 alpha多样性指数的变化如表 1 所示。通过 9 d 的驯化处 理后,菌群多样性表现出升高趋势。NH,OH 处理前后污泥混合液微生物群落结构变化如图 4 所示。门水平结构变化结果表明,变形菌门 (Proteobacteria)、Ignavibacteriae 的丰度明显降 低,而拟杆菌门(Bacteroidetes)和绿弯菌门 (Chloroflexi) 的丰度有所升高。关键菌属的丰度的 变化如图 4(b) 所示, Denitratisoma、Terrimonas、

alpha 多样性指数与氮氧化功能细菌丰度 Table 1 Indexes of alpha diversity and abundances of nitrogen oxidizing bacteria

样品	alpha多样性指数				功能细菌丰度/%	
	覆盖率/%			ACE	AOB	NOB
驯化前	99.4	4.36	0.036 69		0.265	0.206
驯化后	99.3	4.55	0.026 02		4.451	0.178

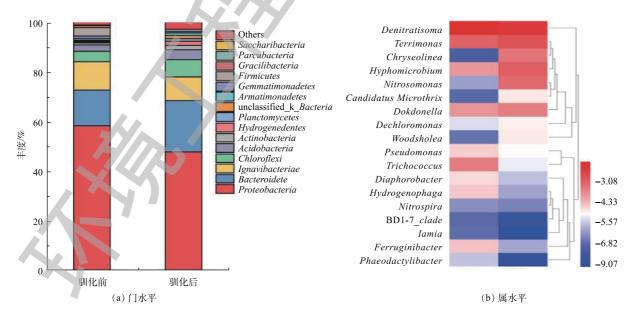


图 4 NH,OH 驯化前后菌群结构变化

Fig. 4 Changes of microbial communities before and after NH₂OH acclimatization

Hyphomicrobium、Nitrosomonas、Candidatus Microthrix、Dokdonella、Dechloromonas 和 Woodshloea 丰度在 NH₂OH 驯化后得到升高,而 Pseudomnas、Trichococcus、Diaphorobacteria、Hydrogenophaga、Nitrospira 和 Ferruginibacter等的丰度明显降低。Denitratisoma、Hyphomicrobium、Dechloromonas 和 Pseudomnas 是活性污泥系统中重要的反硝化细菌^[15]。

为说明 NH₂OH 对氨氧化与亚硝酸氧化关键功能微生物的影响,分析高通量测序结果发现,Nitrosomonas 是主要 AOB,Nitropira 是主要 NOB,而已有研究中关注较多的 NOB 菌属 Nitropira 未检出。由于在较低 DO 条件运行,NOB 主要以 Nitropira 形式存在。JUBANY等¹⁶⁰ 指出,Nitropira 对 DO 具有较强亲和性,在较低 DO 条件下发生亚硝酸盐氧化反应。NH₂OH 驯化前,AOB 与 NOB 丰度丰度相似(表 1),分别为 0.265% 和 0.206%;经过 9 d 的羟胺驯化,AOB 丰度有大幅提高、NOB 丰度稍有降低,分别为 4.451% 和 0.178%。AOB/NOB 丰度比为 25。AOB 与 NOB 丰度的差异有利于实现亚硝酸盐累积。由于 NH₂OH 是氨氧化反应的中间产物,其被 AOB 利用促进 AOB 细菌的增殖,此外,由于 NH₂OH 对 NOB 活性的抑制作用,进而对 NOB 丰度产生一定的削减。

3 结论

- 1) 通过 NH_2OH 、 N_2H_4 组与空白对照组实验对比发现, NH_2OH 与 N_2H_4 单次投加均可实现亚硝酸盐累积。 NH_2OH 与 N_2H_4 投加可维持较低 Eh 环境 (-50~-100 mV) 约 60 min,这有利于 NOB 抑制。在低氨氮浓度 (<20 mg· L^{-1})条件下, NH_2OH 投加可获得较大的氨氧化速率和较小的亚硝酸盐氧化速率。因此,在污泥驯化实验中,采用 NH_2OH 投加考察对亚硝化反应的快速启动效果。
- 2) 采用 NH₂OH 投加 (2 mg·L⁻¹) 研究亚硝化的快速启动, 经过 9 d 的驯化, 实现亚硝酸盐积累率 100%, 微生物群落多样性略有增加, AOB 大幅增加且 NOB 丰度稍有降低, AOB/NOB 丰度比为 25, 可实现亚硝化的快速启动。

参考文献

- [1] ZHANG T, BO W, LI X, et al. Achieving partial nitrification in a continuous post-denitrification reactor treating low C/N sewage[J]. Chemical Engineering Journal, 2017, 335: 330-337.
- [2] YANG Y, ZHANG L, CHENG J, et al. Microbial community evolution in partial nitritation/anammox process: From sidestream to mainstream[J]. Bioresource Technology, 2018, 251: 327-337.
- [3] WANG Y, WANG Y, WEI Y, et al. In-situ restoring nitrogen removal for the combined partial nitritation-anammox process deteriorated by nitrate build-up[J]. Biochemical Engineering Journal, 2015, 98: 127-136.
- [4] WANG H, XU G, QIU Z, et al. NOB suppression in pilot-scale mainstream nitritation-denitritation system coupled with MBR for municipal wastewater treatment[J]. Chemosphere, 2019, 216: 633-639.
- [5] JARDIN N, HENNERKES J. Full-scale experience with the deammonification process to treat high strength sludge water: A case study[J]. Water Science and Technology, 2012, 65: 447-455.
- [6] QIAN W, PENG Y, LI X, et al. The inhibitory effects of free ammonia on ammonia oxidizing bacteria and nitrite oxidizing bacteria under anaerobic condition[J]. Bioresource Technology, 2017, 243: 1247-1250.
- [7] XU G, XU X, YANG F, et al. Partial nitrification adjusted by hydroxylamine in aerobic granules under high DO and ambient temperature and subsequent Anammox for low C/N wastewater treatment[J]. Chemical Engineering Journal, 2012, 213: 338-345.
- [8] ZEKKER I, KROON K, RIKMANN E, et al. Accelerating effect of hydroxylamine and hydrazine on nitrogen removal rate in

- moving bed biofilm reactor[J]. Biodegradation, 2012, 23: 739-749.
- [9] HAO X, MCM V L. Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process[J]. Biotechnology & Bioengineering, 2010, 77(3): 266-277.
- [10] MA B, WANG S, CAO S, et al. Biological nitrogen removal from sewage via anammox: Recent advances[J]. Bioresource Technology, 2016, 200: 981-990.
- [11] GILBERT E M, AGRAWAL S, BRUNNER F, et al. Response of different *Nitrospira* species to anoxic periods depends on operational DO[J]. Environmental Science & Technology, 2014, 48: 2934-2941.
- [12] SATOSHI O, MAMORU O, YOSHITAKA T, et al. Development of long-term stable partial nitrification and subsequent anammox process[J]. Bioresource Technology, 2011, 102(13): 6801-6807.
- [13] HARPER W F, TERADA A, POLY F, et al. The effect of hydroxylamine on the activity and aggregate structure of autotrophic nitrifying bioreactor cultures[J]. Biotechnology and Bioengineering, 2009, 102: 714-724.
- [14] XU G J, XU X C, YANG F L, et al. Partial nitrification adjusted by hydroxylamine in aerobic granules under high DO and ambient temperature and subsequent Anammox for low C/N wastewater treatment[J]. Chemical Engineering Journal, 2012, 213(12): 338-345.
- [15] LIU W, YANG D, CHEN W, et al. High-throughput sequencing-based microbial characterization of size fractionated biomass in an anoxic anammox reactor for low-strength wastewater at low temperatures[J]. Bioresource Technology, 2017, 231: 45-52.
- [16] JUBANY I, LAFUENTE J, BAEZA J A, et al. Total and stable washout of nitrite oxidizing bacteria from a nitrifying continuous activated sludge system using automatic control based on oxygen uptake rate measurements[J]. Water Research, 2009, 43: 2761-2772.

(本文编辑: 曲娜, 郑晓梅, 张利田)

Rapid start-up of nitritation process treating low-ammonia wastewater

JIANG Li'an^{1,2}, SUI Qianwen^{1,*}, CHEN Yanlin^{1,3}, YUE Wenhui^{1,3}, DI Fei^{1,2}, CHEN Meixue¹, WEI Yuansong^{1,3}

- 1. Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- 2. School of Chemical & Environmental Engineering, China University of Mining & Technology, Beijing 100083, China
- 3. University of Chinese Academy of Sciences, Beijing 100049, China
- *Corresponding author, E-mail: qwsui@rcees.ac.cn

Abstract In this study, the rapid start-up of nitritation process was studied for low-ammonia wastewater treatment. The comparative experiments were conducted to study the effect of hydroxylamine (NH₂OH) and hydrazine (N₂H₄) addition on the processes of ammonia oxidation and nitrite oxidation. NH₂OH addition showed better performances on the nitritation of low-ammonia wastewater. On this basis, 2 mg·L⁻¹ NH₂OH dosing in the sequencing batch tests was adopted for the rapid start-up of nitritation process treating low-ammonia wastewater. After 9 days treatment, nitrite accumulation rate reached 100% and the abundance ratio of AOB/NOB increased to 25, which promoted nitritation process start-up. This study provides techniques for rapid startup of nitritation process treating low-ammonia wastewater.

Keywords nitritation; low-ammonia wastewater; rapid start-up; microbial community structure; ammonia oxidizing bacteria; nitrite oxidizing bacteria