

Environmental Engineering

第 15卷 第 3期 2021年 3月 Vol. 15, No.3 Mar. 2021

(www) http://www.cjee.ac.cn

E-mail: cjee@rcees.ac.cn

(010) 62941074

9 文章栏目:水污染防治 DOI 10.12030/j.cjee.202007115

中图分类号 X703.1 文献标识码

徐玉叶,李想,董怡然,等. 典型重金属离子对羟基磷酸钙结晶法回收污水中磷的影响[J]. 环境工程学报, 2021, 15(3): 921-928.

XU Yuye, LI Xiang, DONG Yiran, et al. Effect of typical heavy metal ions on phosphorus recovery from wastewater by crystallization of hydroxyapatite[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 921-928.

典型重金属离子对羟基磷酸钙结晶法回收污水中 磷的影响

徐玉叶,李想,董怡然,吕锡武*

东南大学能源与环境学院,南京 210096

第一作者:徐玉叶(1996—),女,硕士研究生。研究方向:水污染控制。E-mail: 925455668@qq.com *通信作者:吕锡武(1954—),男,博士,教授。研究方向:水污染控制。E-mail: xiwulu@seu.edu.cn

摘 要 采用羟基磷酸钙 (HAP) 结晶法回收模拟城镇污水处理厂富磷上清液中的磷,探究了 3 种典型重金属离子 (Cu²⁺、Cd²⁺、Zn²⁺) 对 HAP 结晶体系的单独及联合影响,并结合 Visual MINTEQ (Ver3.2) 模拟软件进行了分析。结果表明,单一投加 Cu²⁺/Cd²⁺/Zn²⁺均会抑制磷的去除,其中 Zn²⁺对磷去除率的抑制最强,符合 Monod 抑制模型方程,抑制常数为 178.0 mg·L⁻¹;HAP 结晶体系可协同去除重金属,去除率排序为 Cu²⁺>Cd²⁺>Zn²⁺;联合投加 Cu²⁺、Cd²⁺、Zn²⁺会增强对磷去除率的抑制作用,削弱单一重金属的去除效果。SEM 结果显示,Cu²⁺、Cd²⁺、Zn²⁺的引入使产物表面变得疏松,但 3 种重金属对产物形貌的影响程度相当。Visual MINTEQ 模拟结果证实Cu²⁺、Cd²⁺、Zn²⁺会争夺 HAP 的构晶离子,从而抑制磷的去除,并形成重金属杂质沉淀,杂质含量排序为Cu²⁺>Cd²⁺>Zn²⁺。以上研究结果可为 HAP 结晶法在城镇污水磷回收中的实际应用提供参考。

关键词 重金属; HAP; 城镇污水; 磷回收; Visual MINTEQ

磷回收是未来城镇污水处理厂提升经济和环境双重效益的重要途径。目前,从污水中进行磷 回收的方法主要有磷酸铵镁结晶法 (MAP)、羟基磷酸钙结晶法 (HAP)、铝盐和铁盐沉淀以及以离子 交换法为代表的新方法^[1]。其中,HAP结晶法具有易分离、生成物溶度积小、对进水氮磷比要求 低等优点,因而对城镇污水的磷回收有更强的适用性,尤其适用于从污泥浓缩池上清液 (磷酸盐浓 度 12.98~160 mg·L⁻¹)、强化生物除磷系统的厌氧上清液 (磷酸盐浓度 17.5~28.2 mg·L⁻¹)等富磷溶液中 回收磷^[2-3]。以往研究大量集中在 HAP 结晶过程中操作参数的影响,例如结晶体系的 pH、钙磷摩 尔比 (*n*(Ca)/*n*(P))、晶种投加量、曝气强度等^[4-6],而对城镇污水中不容忽视的重金属离子的影响则 鲜有探讨。

城镇污水中的重金属杂质广泛来源于地表径流、工业废水和生活污水,包括Zn、Al、Cd、 Cr、Cu、Fe、Mn、Ni、Pb等,其浓度在几微克每升到几千微克每升的范围内波动^[7]。Cu、Cd、Zn 是污水中常见的生态风险较大的重金属。杨妍妍等^[8]研究发现,北京的8家污水厂在2011—

收稿日期: 2020-07-18; 录用日期: 2020-11-27

基金项目: 国家水体污染控制与治理科技重大专项(2017ZX07202004-002)

2017年的 Cu、Cd、Zn含量均值(每千克脱水污泥)分别高达 115、1.21 和 677 mg,属于重污染级 别。这些重金属离子易被活性污泥富集,又会于厌氧释磷过程中再次被释放,难以避免地随富磷 上清液进入结晶工艺^[9]。众所周知,重金属对生物体具有持久危害性、毒性与累积放大性、即使是 微量的重金属进入结晶产品也可能对环境造成二次污染。因此,重金属对 HAP 结晶过程和产品的 影响是关乎生产效益与产品安全的现实问题。

根据现有研究结果^[10-11],在磷酸铵镁和透钙磷石结晶体系中,重金属离子不能稳定存在于液 相,极有可能参与晶核形成,进而会影响产品的纯度。但在 HAP 结晶体系中,围绕重金属展开的 研究仍然较少。因此,本研究着重研究了在适宜的操作参数下,单独和联合投加 Cu²⁺、Cd²⁺、 Zn²⁺对 HAP 结晶法回收磷的影响特征,同时考察了重金属离子自身的浓度变化情况,并结合 Visual MINTEQ 模型验证相关规律。

1 材料及方法

1.1 实验仪器及药品

实验仪器:紫外分光光度计(UV 9100 B)、pH测定仪(YSI pH 100,美国)、等离子体发射光谱仪(Optima 8000,美国)、场发射扫描电子显微镜(Quanta 2000 FEI,美国)等。

实验试剂: KH₂PO₄、CaCl₂、Cd(NO₃)₂·4H₂O、Cu(NO₃)₂·3H₂O、ZnCl₂、NaOH 均为分析纯,所有 溶液均使用去离子水配制。

1.2 实验方法

采用批量实验研究 3 种重金属离子在单独投加和联合投加 2 种形式下对磷去除效果的影响, 重金属离子投加量分 6 个梯度 (0、5、10、15、20、25 mg·L⁻¹)。所有反应于 500 mL 锥形瓶中进行, 设定初始 pH=9.0、TP=20 mg·L⁻¹、*n*(Ca)/*n*(P)=2.0、水温 20 ℃、反应时间 10 min,以恒温磁力搅拌器 维持结晶体系内部流态化。分别在反应前和反应 10 min 时利用 0.22 μm 的针孔过滤器取 10 mL 溶液 检测剩余磷浓度和重金属含量。结晶沉淀经抽滤、烘干处理后进行电镜扫描。

1.3 抑制模型

采用抑制模型[12](式(1))分析重金属离子在单独投加时对结晶体系磷去除率的影响。

$$Y = \frac{E_0 - E}{E_0} \times 100\%$$
 (1)

式中: *Y*为重金属离子对除磷的抑制率; *E*₀为空白组的磷去除率; *E*为投加重金属离子时的磷去除率。重金属离子初始浓度与磷去除率的关系采用修正的 Monod 方程 (式 (2)) 进行拟合。

$$\frac{1}{E} = \frac{1}{E_0} + \frac{C_i}{K_i E_0}$$
(2)

式中: C_i 为重金属离子的初始浓度, mg·L⁻¹; K_i 对应重金属离子的抑制常数, mg·L⁻¹。

1.4 Visual MINTEQ 模型的建立

利用 Visual MINTEQ 模型进行结晶体系的化学平衡计算,以验证和解释重金属对 HAP 结晶的 影响。构建模型所需的反应条件和物料浓度与批量实验保持一致;所有未设定输入数据均采用缺 省值;同时考虑"允许"和"不允许"过饱和物质析出的情形,以关注饱和指数 (*I*_s)和析出产物的变 化。*I*_s用来描述 HAP 反应体系的饱和状态^[13],可根据式 (3) 进行计算。

$$I_{\rm s} = \lg K_{\rm iap} - \lg K_{\rm sp} \tag{3}$$

式中: I_s 为某化合物的饱和指数; K_{iap} 、 K_{sp} 分别指某化合物离子活度积和溶度积常数。 $I_s>0$ 时,溶液过饱和; $I_s=0$ 时,沉淀溶解平衡; $I_s<0$ 时,溶液不饱和。

2 结果与讨论

2.1 重金属离子对磷去除率的影响

1) 单一重金属离子的影响。由图 1 可知,向 HAP 结晶体系单独投加 Cu²⁺/Cd²⁺/Zn²⁺时,随着重 金属投加量的增加,3 组反应的磷去除率均发生显著改变。为了进一步分析该影响的特征,利用 式 (2) 计算每种重金属对除磷的抑制率,结果如图 1 所示。由图 1 可知,随着重金属浓度的增加, Cu²⁺和 Cd²⁺对除磷的抑制率呈现波动变化,而 Zn²⁺对除磷的抑制率稳步上升。这说明 Zn²⁺对 HAP 结

晶法除磷的抑制作用比 Cu²⁺和 Cd²⁺的抑制作用 更稳定,这一结果与 MURYANTO 等^[14] 在研 究 Zn²⁺、Cu²⁺对磷酸铵镁结晶生长的影响时得 出的结论相似。此外,Cu²⁺和 Cd²⁺对除磷的影 响以抑制作用为主,仅当 Cu²⁺和 Cd²⁺的浓度分 别为 15 mg·L⁻¹ 和 10 mg·L⁻¹ 时,抑制率为负值, 呈现反向促进作用。导致这种现象的主要原因 是:当 Cu²⁺和 Cd²⁺的浓度分别达到 15 mg·L⁻¹ 和 10 mg·L⁻¹ 附近时,Cu²⁺、Cd²⁺开始与PO₄³⁻结 合生成沉淀,反而促进了液相中磷的去除;而 随着 Cu²⁺和 Cd²⁺的浓度进一步加大,Cu²⁺、Cd²⁺ 共沉淀消耗大量 OH⁻,导致 HAP 结晶量大大下 降,随之而来的除磷量的下降无法由铜或镉的 磷酸盐沉淀完全弥补。DAI 等^[15]在研究 Fe³⁺、 Cu²⁺对 HAP 结晶的影响时也发现有类似的现象。

3种重金属离子的抑制模型拟合结果如图

2(a)~图 2(c) 所示, Zn²⁺的投加浓度与磷去除率的倒数 (E⁻¹) 存在显著的线性关系 (R²=0.995 5), 符合 修正的 Monod 方程。根据式 (3) 求得 Zn²⁺的抑制常数为 178.0 mg·L⁻¹, 即 Zn²⁺对磷去除率的半最大抑 制浓度。Cu²⁺和 Cd²⁺的抑制模型拟合效果不佳 (R² 远远小于 0.9)。此外, 图 2(a)~图 2(c) 也表明 3 种 重金属离子的浓度在反应过程中会不断削减,削减量随初始浓度的增加而增加。其中, 仅 Zn²⁺的 削减浓度与 E⁻¹存在较显著的正相关关系, R² 为 0.996 5(P<0.05), Cu²⁺和 Cd²⁺不存在类似规律。

2) 重金属离子的联合影响。由图 3 可见,联合投加 Cu²⁺、Cd²⁺、Zn²⁺时,随着重金属浓度的增加,结晶体系中磷的去除率呈现不同程度的下降。当 3 种重金属的浓度均达到 20 mg·L⁻¹ 时,他们 对磷去除率的联合抑制率达到最大,为 22.19%,远远超过 Cu²⁺、Cd²⁺、Zn²⁺各自在单独投加时的最 大抑制率 12.57%、9.49% 和 12.20%,同时也超 过单独投加 Cu²⁺、Cd²⁺、Zn²⁺各 20 mg·L⁻¹时的 抑制率总和 (15.51%)。由此可见,相比于单独 投加,联合投加 Cu²⁺、Cd²⁺、Zn²⁺对结晶体系 磷去除率的抑制作用更强。

2.2 重金属离子的浓度削减规律

本研究结果表明,HAP结晶体系可以协同 去除磷和重金属。如图 4(a)所示,在单独投加 重金属离子的形式下,随着重金属初始浓度的 增加,Cu²⁺、Cd²⁺、Zn²⁺的去除率均呈上升趋 势,Cu²⁺的去除率最大,Zn²⁺次之,Cd²⁺最小。 对比图 4(a)和图 4(b)可以发现,3种重金属在 联合投加时的去除率均比单独投加时对应的去 除率要低。这说明当Cu²⁺、Cd²⁺、Zn²⁺共存于

结晶体系时,单个重金属的去除会受到另两者的拮抗。产生以上现象的主要原因是: Cu²⁺、Cd²⁺、 Zn²⁺会在碱性条件下竞争 OH⁻,发生如式 (4)~式 (6) 所示的化学反应。

$$\operatorname{Cu}^{2+} + 2\operatorname{OH}^{-} \leftrightarrow \operatorname{Cu}(\operatorname{OH})_2 \downarrow \quad K_{\operatorname{sp}} = 5.0 \times 10^{-20}$$
(4)

$$Cd^{2+} + 2OH^{-} \leftrightarrow Cd(OH)_2 \downarrow \quad K_{sp} = 2.2 \times 10^{-14}$$
(5)

$$Zn^{2+} + 2OH^{-} \leftrightarrow Zn(OH)_{2} \downarrow K_{sp} = 3.1 \times 10^{-17}$$
(6)

由于 K_{sp}[Cu(OH)₂]<K_{sp}[Zn(OH)₂]<K_{sp}[Cd(OH)₂], 故 Cu²⁺比 Zn²⁺、Cd²⁺更易形成共沉淀,使得液相 中 Cu²⁺的去除率最高,Cd²⁺的去除率最低。此外,重金属离子会取代部分 Ca^{2+[16]},或与 HAP 的表面 基团络合,从而发生单分子层化学吸附^[17],因此,3种重金属离子也可能竞争结晶体系中 HAP 前 驱物表面的可吸附点位,从而强化相互拮抗作用。

2.3 重金属对结晶产物表面形貌的影响

图 5 为 Cu-HAP、Cd-HAP、Zn-HAP和纯 HAP 晶体的 SEM 图像。Cu-HAP、Cd-HAP、Zn-HAP 分别表示 Cu²⁺、Cd²⁺、Zn²⁺的初始浓度为 25 mg·L⁻¹时的 HAP 结晶体系产物。由图 5 可知, Cu-HAP、Cd-HAP、Zn-HAP 和纯 HAP 晶体均具有疏松多孔的表面特征,但 Cu-HAP、Cd-HAP、Zn-

HAP的晶体表面比纯 HAP 晶体更为松散,这 一改变可能是金属离子进入晶格和/或这些离 子吸附在晶体表面所引起的应力造成的。同 时,Cu-HAP、Cd-HAP和 Zn-HAP 三者的表面 形貌无显著差异,这说明3种重金属对晶体表 面形貌的影响程度相当。

2.4 Visual MINTEQ 模拟分析

1) 模拟单一投加 Cu²⁺/Cd²⁺/Zn²⁺。结晶体系 中主要的过饱和物质及其 I_s 值如表 1、表 2、 表 3 所示。可以看出,3 种重金属在 HAP 结晶 体系中均可能与 OH⁻和PO₄³⁻生成多种过饱和物 质。随着重金属初始浓度的增加,HAP 的 I_s 值 减小,结晶速率降低,表明 HAP 的 K_{iap} 值下 降,构成化合物的离子有效浓度降低;而含 铜/镉/锌化合物的 I_s 值增大,结晶动力增强, 说明含铜/镉/锌化合物的 K_{iap} 值上升,构成化 合物的离子有效浓度升高。这证实了 3 种重金

Fig. 5 SEM images of Cu-HAP, Cd-HAP, Zn-HAP, and pure HAP crystals

Table 1	Major supersaturated	substances and t	heir satu	ration indexe	s in the crysta	l system co	ntaining Cu	1 ²⁴
	wajor supersaturated	substances and t	men satu	nation muckes	s in the erysta	i system et	manning Ct	r

过物和物质	不同Cu ²⁺ 初始浓度下的I。值							
过吧和初庚 -	0	$5 \text{ mg} \cdot \text{L}^{-1}$	$10 \text{ mg} \cdot \text{L}^{-1}$	$15 \text{ mg} \cdot \text{L}^{-1}$	$20~mg\!\cdot\!L^{-1}$	$25 \text{ mg} \cdot \text{L}^{-1}$		
НАР	16.874	16.868	16.859	16.849	16.839	16.829		
Ca ₃ (PO ₄) ₂ (beta)*	5.769	5.764	5.758	5.752	5.746	5.739		
$Ca_4H(PO_4)_3 \cdot 3H_2O$	5.158	5.149	5.141	5.132	5.123	5.114		
Cu(OH) ₂	<u> </u>	2.025	2.141	2.205	2.250	2.284		
Cu ₂ (OH) ₃ NO ₃	/ -	0.562	1.093	1.397	1.611	1.775		
$Cu_3(PO_4)_2$		2.889	3.230	3.421	3.552	3.653		
Cu ₂ (OH) ₃ Cl		3.575	3.805	3.934	4.022	4.090		
CuO (c)*	_	3.640	3.756	3.820	3.865	3.899		

注:*表示该物质为同质多晶体,括号内的内容代表同质多晶体的晶型;—表示该物质处于不饱和状态。

表 2 结晶体系含 Cd²⁺时主要的过饱和物质及相应的 I_s值

TE 11 TO	34 1 1 1	1 1 / 1	.1	· · · /1	. 1 .	··· · · · · · · · · · · · · · · · · ·
Table 7	Mainr supersaturated	a substances and	their saturation	indexes in the	e crystal system	containing (d ⁻
1 4010 2	major supersaturated	a substances and	unon saturation	mucres m un	c ci ystai system	
	3 1				2 2	0

过物和物质			不同Cd ²⁺ 初始	浓度下的I。值		
过地和初质 —	0	$5 \text{ mg} \cdot \text{L}^{-1}$	$10 \text{ mg} \cdot \text{L}^{-1}$	$15 \text{ mg} \cdot \text{L}^{-1}$	$20 \text{ mg} \cdot \text{L}^{-1}$	$25 \text{ mg} \cdot \text{L}^{-1}$
НАР	16.874	16.844	16.814	16.784	16.511	16.726
Ca ₃ (PO ₄) ₂ (beta)*	5.769	5.748	5.728	5.707	5.573	5.667
Ca ₄ H(PO ₄) ₃ ·3H ₂ O	5.158	5.126	5.094	5.063	4.934	5.000
$Cd_3(PO_4)_2$	—	4.294	5.184	5.699	6.208	6.339
Cd(OH) ₂	—	—	—	—	—	0.153

注:*表示该物质为同质多晶体,括号内的内容代表同质多晶体的晶型;—表示该物质处于不饱和状态。

Table 5 Major supersaturated substances and their saturation indexes in the crystal system containing 21							
过始和物质			不同Zn ²⁺ 初始	浓度下的I。值			
过饱和初质 —	0	$5 \text{ mg} \cdot \text{L}^{-1}$	$10 \text{ mg} \cdot \text{L}^{-1}$	$15 \text{ mg} \cdot \text{L}^{-1}$	$20 \text{ mg} \cdot \text{L}^{-1}$	$25 \text{ mg} \cdot \text{L}^{-1}$	
НАР	16.874	16.814	16.771	16.722	16.703	16.676	
$Ca_3(PO_4)_2$ (beta) *	5.769	5.741	5.720	5.697	5.686	5.672	
$Ca_4H(PO_4)_3\cdot 3H_2O$	5.158	5.134	5.114	5.093	5.080	5.064	
ZnO	—	1.215	1.513	1.685	1.809	1.905	
$Zn(OH)_2$ (epsilon) *	_	0.943	1.242	1.414	1.538	1.634	
$Zn_3(PO_4)_2 \cdot 4H_2O$	—	5.267	6.211	6.785	7.166	7.473	
Zn ₅ (OH) ₈ Cl ₂	_	1.749	3.309	4.243	4.910	5.438	

表 3 结晶体系含 Zn²⁺时主要的过饱和物质及相应的 I_s 值

Table 3 Major supersaturated substances and their saturation indexes in the crystal system containing Zn^{2+}

注:*表示该物质为同质多晶体,括号内的内容代表同质多晶体的晶型;—表示该物质处于不饱和状态。

属离子进入结晶体系后会通过争夺 HAP 的构 晶离子(OH⁻和PO₄⁻)的方式来抑制 HAP 结晶。

2) 模 拟 联 合 投 加 Cu²⁺、Cd²⁺、Zn²⁺各 25 mg·L⁻¹。由表4可知,可能形成的沉淀种类复 杂:除HAP、Ca₃(PO₄)₂、CaHPO₄外,Cu²⁺主要 形成 Cu(OH), 及相关的盐、Cu₃(PO₄), 和 CuO, 其中的 CuO 极易由亚稳态的 Cu(OH), 脱水转化 而来^[18]; Cd²⁺主要形成 Cd₃(PO₄)₇; Zn²⁺主要形 成Zn(OH),及相关的盐、Zn₃(PO₄),·4H,O和ZnO, 其中的 ZnO 在碱性环境下可由 Zn(OH),转化而 来^[19]。比较不同化合物的 I。值可以看出, 与 OH-结合的重金属化合物中, Cu(OH),的 I,值 最大, $Zn(OH)_2$ 的 I_s 值次之, $Cd(OH)_2$ 的 I_s 值接 近于0,说明OH⁻更易与Cu²⁺结合,其次是Zn²⁺, 与 Cd²⁺几乎不会结合产生沉淀; 与PO₄-结合的 重金属化合物中, Zn₃(PO₄), 4H₂O的 I₅值最 大, Cd₃(PO₄)₂次之, Cu₃(PO₄)₂最小, 说明PO₄³⁻ 更易与 Zn²⁺结合, 其次是 Cd²⁺和 Cu²⁺。因此, Cd²⁺主要通过结合PO₄³⁻来抑制 HAP 的结晶,而 Cu²⁺和 Zn²⁺通过与PO₄³⁻或 OH⁻结合来抑制 HAP 的结晶。

由表 5 可知,模拟联合投加时, PO₄³⁻-P的 去除率高达 89.361%,而固相中的 n(Ca)/n(P)为 1.08,低于纯 HAP的 n(Ca)/n(P)(1.67)。这说明 PO₄³⁻-P并未完全以 HAP的形式进入固相,重金 属的引入降低了结晶体系的产物纯度。模拟反 应体系中 Cu²⁺、Cd²⁺、Zn²⁺的沉淀率分别为 93.300%、0 和 79.123%,这表明液相中重金属

表 4 联合投加 Cu²⁺、Cd²⁺、Zn²⁺各 25 mg·L⁻¹ 时所有的 过饱和物质及相应的 *I*、值

Table 4	All supe	rsaturate	d substa	ances	and th	eir sa	aturat	ion
indexes w	ith joint a	ddition o	of 25 m	$g \cdot L^{-1}$	Cu ²⁺ ,	Cd^{2+}	and Z	Zn ²⁺

过饱和物质	I _s 值	过饱和物质	I _s 值
Cu ₂ (OH) ₃ Cl	4.168	НАР	16.478
$Ca_{3}(PO_{4})_{2}(am1) *$	1.678	CuO(am) *	3.007
Ca ₃ (PO ₄) ₂ (am2) *	4.449	CuO(c) *	3.857
$Ca_3(PO_4)_2$ (beta) *	5.540	ZnO	1.905
$Ca_4H(PO_4)_3$ ·3H ₂ O	4.868	$Zn(OH)_2 (am) *$	0.673
CaHPO ₄	0.140	$Zn(OH)_2$ (beta) *	1.400
$Cd_3(PO_4)_2$	6.177	$Zn(OH)_2$ (delta) *	1.559
Cd(OH) ₂	0.026	Zn(OH) ₂ (epsilon) *	1.634
Cu(OH) ₂	2.242	Zn(OH) ₂ (gamma) *	1.424
Cu ₂ (OH) ₃ NO ₃	1.939	Zn ₂ (OH) ₃ Cl	0.071
$Cu_3(PO_4)_2$	3.640	$Zn_3(PO_4)_2$ ·4H ₂ O	7.346
$Cu_3(PO_4)_2$ ·3H ₂ O	1.910	Zn ₅ (OH) ₈ Cl ₂	5.427

注:*表示该物质为同质多晶体,括号内的内容代表 同质多晶体的晶型;—表示该物质处于不饱和状态。

表 5 联合投加 Cu²⁺、Cd²⁺、Zn²⁺各 25 mg·L⁻¹ 时主要元 素在液相和固相中的分布

Table 5 Distribution of main elements in liquid and solid phases with joint addition of 25 mg \cdot L⁻¹ Cu²⁺, Cd²⁺ and Zn²⁺

组分	液相浓度/(mol·L ⁻¹)	溶解态/%	固相浓度/(mol·L ⁻¹)	沉淀/%
Ca ²⁺	6.659×10 ⁻⁴	51.560	6.256×10 ⁻⁴	48.440
PO_4^{3-}	6.869×10 ⁻⁵	10.639	5.770×10^{-4}	89.361
Cu^{2^+}	2.636×10 ⁻⁵	6.700	3.670×10^{-4}	93.300
Cd^{2^+}	2.224×10 ⁻⁴	100.000	0	0.000
Zn^{2^+}	7.979×10^{-4}	20.877	3.024×10^{-4}	79.123

去除率的排序为 Cu²⁺>Zn²⁺>Cd²⁺, 这与 3.3 节的实验结果是一致的。在本研究中, Visual MINTEQ 模 拟计算仅考虑化学反应,关于重金属与 HAP 前驱物的吸附特性有待进一步研究。

3 结论

1) 3 种重金属 (Cu²⁺、Cd²⁺、Zn²⁺) 对 HAP 结晶法除磷均会产生抑制,其中 Zn²⁺的抑制作用最稳 定且符合抑制模型,抑制常数为 178.0 mg·L⁻¹,Zn²⁺的削减浓度与 E^{-1} 正相关。联合投加 3 种重金属 会增强对磷去除率的抑制。

2) HAP 结晶法可协同去除重金属,去除率的顺序为 Cu²⁺>Zn²⁺>Cd²⁺。重金属的初始浓度越大, 去除率越大。联合投加时, Cu²⁺、Cd²⁺、Zn²⁺三者相互拮抗,去除率均有所降低,降幅排序为 Cd²⁺>Zn²⁺>Cu²⁺。

3) Cu²⁺、Cd²⁺、Zn²⁺的引入使得结晶产物变得更为松散,但3种重金属对晶体表面形貌的影响 程度相当。

4) Visual MINTEQ 的模拟计算结果证实, Cu^{2+} 、 Cd^{2+} 、 Zn^{2+} 主要通过争夺 HAP 的构晶离子来抑制磷去除率,并通过共沉淀降低产物纯度。HAP 的构晶离子中, OH⁻易与 Cu^{2+} 结合, PO_4^{3-} 易与 Zn^{2+} 结合。3 种重金属进入结晶产物的含量大小为 $Cu^{2+}>Zn^{2+}>Cd^{2+}$ 。

参考文献

- [1] 赵玉鑫,杨静,张军军,等. 污水中磷回收方法研究进展[J]. 吉林农业大学学报, 2015, 37(6): 638-642.
- [2] 李吉玉, 刘安平, 毛先勇, 等. 污泥浓缩池中磷的释放及其强化去除措施[J]. 中国给水排水, 2019, 35(13): 1-5.
- [3] 代洪亮, 吕锡武, 高琪娜. 基于诱导HAP结晶的强化生物除磷工艺厌氧上清液中磷的回收[J]. 东南大学学报 (自然科学版), 2016, 46(5): 1020-1026.
- [4] 王琳杰, 余辉. HAP结晶法回收生活污水中磷的主要影响因素分析[J]. 环境工程, 2015, 33(12): 5-9.
- [5] 谷彩霞, 张超杰, 李咏梅, 等. 牛骨粉为晶种的磷酸钙结晶法回收污泥发酵液中磷[J]. 环境工程学报, 2015, 9(7): 3127-3133.
- [6] PENG L H, LU X W, DAI H L, et al. A comprehensive review of phosphorus recovery from wastewater by crystallization processes[J]. Chemosphere, 2018, 197: 768-781.
- [7] USTUM G E. Occurrence and removal of metals in urban wastewater treatment plants[J]. Journal of Hazardous Materials, 2009, 172(2/3): 833-838.
- [8] 杨妍妍,李金香,刘亚平,等.北京城市污水处理厂污泥中重金属污染状况及潜在生态风险分析[J].环境污染与防治, 2019,41(9):1098-1102.
- [9] 陶飞飞,田晴,李方,等.共存杂质对磷酸铵镁结晶法回收磷的影响研究[J].环境工程学报, 2011, 5(11): 2437-2441.
- [10] 唐平. 重金属在废水MAP磷回收过程中的迁移行为研究进展[J]. 安徽农业科学, 2017, 45(7): 50-52.
- [11] MADSEN H E L. Influence of foreign metal ions on crystal growth and morphology of brushite (CaHPO₄, 2H₂O) and its transformation to octacalcium phosphate and apatite[J]. Journal of Crystal Growth, 2008, 310(10): 2602-2612.
- [12] ZHOU Z, HU D L, REN W C, et al. Effect of humic substances on phosphorus removal by struvite precipitation[J]. Chemosphere, 2015, 141: 94-99.
- [13] WANG J, SONG Y, YUAN P, et al. Modeling the crystallization of magnesium ammonium phosphate for phosphorus recovery[J]. Chemosphere, 2006, 65(7): 1182-1187.
- [14] MURYANTO S, BAYUSENO A P. Influence of Cu²⁺ and Zn²⁺ as additives on crystallization kinetics and morphology of

- [15] DAI H L, TAN X W, ZHU H, et al. Effects of commonly occurring metal ions on hydroxyapatite crystallization for phosphorus recovery from wastewater[J]. Water, 2008, 10(11): 1619-1630.
- [16] MATSUNAGA K, MURATA H, MIZOGUCHI T, et al. Mechanism of incorporation of zinc into hydroxyapatite[J], Acta Biomaterialia, 2010, 6(6): 2289-2293.
- [17] 李超, 朱宗强, 曹爽, 等. 桉树遗态结构HAP/C复合材料对水中Cu(Ⅱ)的吸附特征[J]. 环境科学, 2017, 38(3): 1074-1083.
- [18] CUDENNEC Y, LECERF A. The transformation of Cu(OH)₂ into CuO, revisited[J]. Solid State Sciences, 2003, 5(11/12): 1471-1474.
- [19] ROSADO-MENDOZA M, OLIVA A I, et al. Preferential regions of growth of chemical bath deposited ZnO and Zn(OH)₂ thin films at room conditions[J]. Thin Solid Films, 2018, 645: 231-240.

(责任编辑:曲娜)

Effect of typical heavy metal ions on phosphorus recovery from wastewater by crystallization of hydroxyapatite

XU Yuye, LI Xiang, DONG Yiran, LYU Xiwu*

School of Energy and Environment, Southeast University, Nanjing 210096, China *Corresponding author, E-mail: xiwulu@seu.edu.cn

Abstract The single and combined effects of three heavy metal ions (Cu^{2+} , Cd^{2+} , Zn^{2+}) on phosphorus recovery from the simulated phosphorus-rich supernatant in municipal wastewater plant by crystallization of hydroxyapatite (HAP) were investigated. And Visual MINTEQ (Ver3.2) was applied for auxiliary analysis. The results indicated that Cu^{2+} , Cd^{2+} or Zn^{2+} could inhibit HAP crystallization for phosphorus removal, and Zn^{2+} showed the strongest inhibition effect which fitted Monod inhibition model equation with the inhibition constant of 178.0 mg·L⁻¹. The HAP crystallization system could synergistical remove heavy metals, and the order of the removal rate was $Cu^{2+}>Cd^{2+}>Zn^{2+}$. Joint addition of Cu^{2+} , Cd^{2+} and Zn^{2+} could strengthen the inhibition of phosphorus removal and weaken the removal effect of single heavy metal ion. SEM observation showed that the dosing of Cu^{2+} , Cd^{2+} and Zn^{2+} led to the loose surface of the products, while they had similar impacts on the morphology of the products. The simulation results of Visual MINTEQ confirmed that Cu^{2+} , Cd^{2+} and Zn^{2+} inhibited phosphorus removal by grabbing crystal ions of HAP and formed precipitate with heavy metal impurity, and the order of the impurity content was $Cu^{2+}>Cd^{2+}>Zn^{2+}$. These results can provide reference for the practical application of HAP crystallization method in phosphorus recovery in urban sewage. **Keywords** heavy metal; HAP; urban sewage; phosphorus recovery; Visual MINTEQ