

第 15卷 第 8期 2021 年 8月 Vol. 15, No.8 Aug. 2021

(www) http://www.cjee.ac.cn

Environmental Engineering

E-mail: cjee@rcees.ac.cn

(010) 62941074

🧱 文章栏目:水污染防治

DOI 10.12030/j.cjee.202103134

中图分类号 X703.1 文献标识码

杨婷婷, 陈星, 陈长斌, 等. CeO₂/g-C₃N₄ 光催化-芬顿高效降解盐酸强力霉素[J]. 环境工程学报, 2021, 15(8): 2576-2587. YANG Tingting, CHEN Xing, CHEN Changbin, et al. Efficient degradation of doxycycline hydrochloride by CeO₂/g-C₃N₄ through photocatalysis-Fenton[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2576-2587.

CeO₂/g-C₃N₄ 光催化-芬顿高效降解盐酸强力霉素

杨婷婷1,陈星1,2,陈长斌3,汪三六3,崔康平1,*

1. 合肥工业大学资源与环境工程学院,合肥 230009
 2. 合肥工业大学工业与装备技术研究院,合肥 230009
 3. 安庆市曙光化工股份有限公司,安庆 246005

第一作者:杨婷婷(1995—),女,硕士研究生。研究方向:水污染控制技术。E-mail: 2510894266@qq.com *通信作者:崔康平(1969—),男,博士,教授。研究方向:工业废水近零排放与资源化利用。E-mail: cuikangping@hfut.edu.cn

摘 要 通过水热法成功制备了 CeO₂/g-C₃N₄可见光诱导的复合光催化剂,并研究了其对盐酸强力霉素 (DC)的 去除性能,分别考察了铈掺杂量、pH、H₂O₂浓度、催化剂投加量和污染物浓度对 DC 降解效果的影响。结果表 明:最佳反应条件为 pH=2.0、H₂O₂=5 mmol·L⁻¹、催化剂投加量为 0.5 g·L⁻¹,此时 5%CeO₂/g-C₃N₄ 可有效去除 10 mg·L⁻¹的 DC,去除率可达到 99.1%。通过 SEM、TEM、XRD、FTIR、XPS 等对 CeO₂/g-C₃N₄ 催化剂的结构进 行了一系列表征。在可见光和H₂O₂ 同时存在的条件下进行降解实验,CeO₂/g-C₃N₄ 的光催化活性比纯 g-C₃N₄ 的 光催化活性有明显提高,其中 5%CeO₂/g-C₃N₄ 显示出最优的催化活性,反应速率是 g-C₃N₄ 的 2.6 倍,比单独的光 催化体系和非均相芬顿体系的去除率提高了 61% 和 72%,说明光催化技术和非均相芬顿技术之间存在协同效 应。基于瞬态光电流响应、电子顺磁共振和自由基淬灭实验结果,推测出 CeO₂/g-C₃N₄降解 DC 可能的反应机理 为光催化促进了类芬顿反应中 Ce⁴⁺和 Ce³⁺的循环,也提高了光生电子-空穴分离效率。 关键词 CeO₂/g-C₄N₄;盐酸强力霉素;可见光;光芬顿;抗生素废水

盐酸强力霉素 (DC) 是一种半合成的四环素类抗生素。大量的四环素直接排泄到环境中,对生态系统和人类健康具有潜在风险。目前,已在水生环境中被普遍检测出此类抗生素^[1]。由于其复杂的结构,DC不能通过常规的生物处理工艺被有效地去除。因此,通常采用许多物理和化学处理方法予以去除,例如吸附^[2]、基于臭氧的高级氧化过程^[3]、光催化^[4]等。光催化方法由于其低成本,高效率和环境友好性等特点被广泛应用于处理印染废水^[5]、抗生素废水^[6]等。类石墨氮化碳 (g-C₃N₄)因其合适的带隙,无毒,稳定性好而被认为是潜在的去除有机污染物的可见光光催化剂。但该催化剂存在对可见光的响应效率较低,光生电子和空穴的重组率较高等缺陷^[7]。因此,需要寻找有效的方法去改善g-C₃N₄的光催化性能。其中,构建基于g-C₃N₄的异质结复合材料是最有效的方法之一,这可以有效地促进光诱导电荷的分离并加速光催化反应进程^[8]。宋思扬等^[9]通过化学浴沉淀法制备了 Co 掺杂的 FeOOH 与石墨相氮化碳复合材料 (Co-FeOOH/g-C₃N₄),以罗丹明 B(RhB) 为目标污染物,在最佳反应条件下,Co-FeOOH、g-C₃N₄和 Co-FeOOH/g-C₃N₄对 RhB 的去除率分别为

收稿日期: 2021-03-18; 录用日期: 2021-06-03

基金项目: 国家重点研发计划项目 (2019YFC0408500); 安徽省科技重大专项项目 (201903a07020009)

23.7%、59.6%和91.5%。CeO₂作为一种活性稀土金属氧化物,由于具有Ce⁴⁺和Ce³⁺的化合价变化而引起了广泛关注。Ce⁴⁺和Ce³⁺的氧化还原循环将改善光生电子和空穴对的界面电荷转移和分离速率^[10]。据报道,CeO₂的CB和VB分别为-0.39 eV和2.50 eV,而g-C₃N₄的CB和VB分别为-1.13 eV和1.57 eV^[11],因此,CeO₂和g-C₃N₄因具有良好匹配的能带结构而可以形成高效的异质结构。HUMAYUN等^[12]制备了g-C₃N₄/CeO₂,在可见光下考察了其对2,4-二氯苯酚(2,4-DCP)的降解效果,发现羟基自由基('OH)是降解2,4-DCP的主要活性物质。此外,基于密度泛函方法的理论算术,铈具有像Pt一样的能全,而g-C₃N₄负载的铈可以产生更多的活性位点^[13]。目前的研究中,CeO₂/g-C₃N₄仅作为光催化剂降解污染物^[14-16],但由于CeO₂可以与H₂O₂产生类芬顿反应^[17],因此,构建新型CeO₂/g-C₃N₄非均相光芬顿体系,有望进一步提高对污染物的降解效率。

基于上述原因,本研究通过水热法制备了 CeO₂/g-C₃N₄,并在可见光下采用光催化-芬顿法降解 盐酸强力霉素 (DC)。使用扫描电子显微镜 (SEM)、透射电子显微镜 (TEM)、X 射线粉末衍射 (XRD)、X 射线光电子能谱 (XPS)、电阻抗能谱 (EIS)、电子自旋共振 (ESR) 和漫反射光谱 (UV-Vis) 等手段对合成的 CeO₂/g-C₃N₄进行了表征;分别考察了初始 pH、H₂O₂浓度、不同的铈掺杂量、催化剂用量和 DC 浓度对 DC 降解的影响,优化了反应条件;评价了复合光催化剂的重复使用性和 稳定性;探讨了 CeO₂/g-C₃N₄ 光催化-芬顿体系的降解机理。

1 材料与方法

1.1 实验试剂与仪器

试剂: 六水合硝酸铈、糠醇、异丙醇、对苯醌、乙二胺四乙酸二钠、盐酸(均为分析纯,国药 集团化学试剂有限公司); 30% 双氧水(优级纯,国药集团);尿素(分析纯,上海麦克林生化科技有 限公司); 5,5-二甲基-1-吡咯啉-N-氧化物(DMPO,98%,上海九鼎生物科技有限公司);盐酸强力霉 素(纯度96%,上海阿拉丁生化科技有限公司);实验用水为超纯水。

仪器: KSL-1100X 控温马弗炉 (合肥科晶材料技术有限公司); XPA 光化学反应仪 (南京胥江机 电厂); UV-2600 紫外-可见分光光度计 (日本岛津公司); Gemini 50 扫描电子显微镜 (德国卡尔蔡司 公司); ESCALAB250Xi 型光电子能谱仪 (美国赛默飞世尔公司); X-Pert PRO MPD 固定靶 X 射线衍 射仪 (荷兰帕纳科公司); JES-FA200 电子顺磁共振波谱仪 (日本捷欧路公司)。

1.2 材料制备

采用水热法^[18]用于制备 CeO₂/g-C₃N₄ 复合催化剂。首先称取 5.0 g 尿素置于坩埚中,以 2.5 ℃·min⁻¹ 的升温速率加热至 550 ℃,煅烧 2 h,待冷却至室温后,将淡黄色固体取出并研磨得到粉末状的 g-C₃N₄;将 0.4 g 的 g-C₃N₄溶于 50 mL 去离子水中,超声波处理 30 min;将一定量的 Ce(NO₃)₃·6H₂O 添加到悬浮液中,搅拌 30 min 后将其转移到高压釜中,并在 160 ℃下加热 10 h,再将其冷却到室 温,并用去离子水反复洗涤几次,最后在 90 ℃下干燥 8 h,得到浅黄色材料。对所制备的催化剂 命名为 X%CeO₂/g-C₃N₄。按照与上述相同的方法,还制备了纯 CeO₂。

1.3 实验方法

在光催化反应仪 (XPA-7) 中进行了 DC 的降解实验。为了使反应溶液温度恒定在 (18±2) ℃,仪器中的光反应装置与冷却装置连接。垂直可见光源是 500 W 氙气灯 (用滤光片过滤了波长小于 420 nm 的紫外线)。首先,使用浓度为 0.5 mol·L⁻¹ 的 NaOH 或 H₂SO₄ 溶液调节 DC 溶液的初始 pH。之后,将称量的 0.025 g CeO₂/g-C₃N₄ 放入到 50 mL DC 溶液中,并在黑暗中搅拌 30 min 达到吸附平衡,转速为 500 r·min⁻¹。最后,加入 5 mmol·L⁻¹ H₂O₂ 并打开灯反应 120 min。在此过程中,每 20 min 取 1 mL 反应悬浮液样品并使用 0.22 μm PES 滤头进行过滤。将反应后的溶液进行离心分离,使用纯水洗涤离心 3 次,进行真空干燥,得到反应后的 CeO₂/g-C₃N₄。并再按照上述步骤反复 4 次,考察其

1.4 分析方法

将获得的样品通过高效液相色谱 (HPLC)测量 DC浓度。测试 DC浓度的最佳流动相是 0.01 mol·L⁻¹ 的乙二酸,甲醇和乙腈的混合溶液 (乙二酸:甲醇:乙腈=65:17:18),检测波长为 357 nm, 柱温为 30 ℃。

2 结果与讨论

2.1 催化剂表征结果

通过粉末 XRD 分析研究了所制备的纳米复合材料中各相的晶体结构。图 1 显示了 X%CeO₂/g-C₃N₄、CeO₂和 g-C₃N₄的 XRD 谱图。由图 1 可以看出, g-C₃N₄的谱图中显示出有 2 个明显的特征衍射峰, 典型的衍射峰位于 13.1°和 27.6°, 可分别归因与 g-C₃N₄(100) 和 (002) 晶面^[19]。纯 CeO₂ 和

X%CeO₂/g-C₃N₄复合材料的 XRD 光谱显示出立 方 CeO₂的典型 XRD 图谱 (JCPDS 78-0694)^[20]。 在 28.8°、33.3°、47.7°、56.58°和 59.34°处 CeO₂ 的特征衍射峰对应 (111)、(200)、(220)、(311) 和(222)平面^[21]。从图 1 中可以看出,在 X%CeO₂/ g-C₃N₄复合材料中,显示了位于 27.6°的特征衍 射峰,这表明存在 g-C₃N₄相。

为了表征 CeO₂/g-C₃N₄的形态和微观结构,进行了 SEM 分析。图 2(a) 和图 2(b) 显示 了 g-C₃N₄和 5%CeO₂/g-C₃N₄的 SEM 图像。所有 的催化剂均含有介孔状结构,在图 2(b)中, CeO₂颗粒均匀分布在 g-C₃N₄的表面,这表明 CeO₂已经成功掺杂到 g-C₃N₄中并且不会改变 其结构。

图 3 显示了 g-C₃N₄、CeO₂和 X%CeO₂/g-C₃N₄的 FTIR 光谱。由图 3 中可以看出,对于 X%CeO₂/ g-C₃N₄复合材料,显示了 g-C₃N₄的典型分子结构,也观察到 g-C₃N₄的所有特征吸收峰,这证实了复合材料中有 g-C₃N₄的骨架。1247~1637 cm⁻¹的强吸收带 (在 1 247 cm⁻¹和 1 637 cm⁻¹处具有特征峰)可以归因于 CN 杂环的典型拉伸振动^[22]。 3 000~3 600 cm⁻¹ 处的峰应该是 NH 的拉伸振动吸收峰^[23]。在含 Ce 催化剂的制备中,CeO₂是通常产生的物质,且在 500~700 cm⁻¹ 处观察到 Ce—O 拉伸振动^[24]。上述表征结果表明,在掺杂 Ce 后,g-C₃N₄的主要结构并未发生明显变化。此外,由于掺杂含量低和峰重叠影响,因此,看不到 Ce 相关基团的振动带^[25]。

图 4(a) 显示了 g-C₃N₄和 CeO₂/g-C₃N₄的所 有元素的全光谱。在 g-C₃N₄的 XPS 光谱中发

	(100)		V (002				g-C	₃ N ₄
			Λ_	i ali terito de la che]	l% Ce	O₂/g−C	3N4
\sim	have a failed		A			3% Ce	O ₂ /g-C	3N4
X,	-	ander in samelike skil	Ann			5% Ce	O ₂ /g-C	₃ N ₄
	Wittensorthanter		Ann	the how would	سالیہ	7% Ce	O ₂ /g-C	₃ N ₄
				(200)			C	
0	10	20	30	40 2θ/(°)	50	60	70	 80

图 1 CeO₂/g-C₃N₄, CeO₂和 g-C₃N₄的 XRD 图 Fig. 1 XRD patterns of CeO₂/g-C₃N₄, CeO₂ and g-C₃N₄

(a) g-C₃N₄的SEM图

(b) CeO2/g-C3N4的SEM图

图 2 $g-C_3N_4$ 和 5%CeO₂/ $g-C_3N_4$ 的 SEM 图 Fig. 2 SEM images of $g-C_3N_4$ and 5%CeO₂/ $g-C_3N_4$

图 3 $CeO_2/g-C_3N_4$, CeO_2 和 $g-C_3N_4$ 的 FTIR 图 Fig. 3 FTIR spectra of CeO_2/g-C_3N_4, CeO_2 and g-C_3N_4

现了 C、N、O 的峰,在 CeO₂/g-C₃N₄的 XPS 光谱中发现了 C、N、O 和 Ce 的峰,这表明 CeO₂已成 功引入 g-C₃N₄。可以看出,C 和 N 是主要元素。图 4(b)显示了 g-C₃N₄和 CeO₂/g-C₃N₄的 Cls 光谱。g-C₃N₄的 Cls 谱可分解为 2 个不同的高斯-洛伦兹峰,中心峰的结合能为 284.88 eV 和 288.21 eV。 284.88 eV(19.82%)处的峰可归因于表面无定形碳的 C—C 配位,288.21 eV(80.18%)处的峰可归因于 C—N 或 C—(N)₃^[26]。CeO₂/g-C₃N₄的 Cls 光谱与 g-C₃N₄的相似,中心峰的结合能为 283.65 eV 和 287.78 eV。 在 g-C₃N₄的 N1s 光谱中(图 4(c)),可以观察到 3 个峰:398.69 eV(76.54%)处的峰可归因于 sp²轨道杂 化的芳族氮(C—N=C);399.93 eV(10.46%)处的峰是由于 sp³轨道杂化 N—(C)₃引起的;401.14 eV 处 的的峰(9.28%)可归因于 C—N—H 组^[27]。在 CeO₂/g-C₃N₄的 N 1s 光谱中,中心峰的结合能为 398.04、399.88 和 401.17 eV。在532.3 eV 处的 O1s 峰与在催化剂表面上的羟基基团或水分子的存在

Fig. 4 XPS spectra of $g-C_3N_4$ and $CeO_2/g-C_3N_4$

有关^[15, 28](图 4(d))。图 4(e)显示了纯 CeO₂和所制备的 CeO₂/g-C₃N₄的 Ce3d 光谱,在纯 CeO₂的 Ce3d 光谱观察到 6个峰,分别位于 882.3、888.9、898.3、900.8、907.3 和 916.7 eV,而在 CeO₂/g-C₃N₄的 Ce3d 光谱也观察到相对应的 6个峰。在 CeO₂/g-C₃N₄的 Ce3d 光谱中(图 4(f)),结合能峰位于 883.6 eV 和 889.5 eV,说明存在 Ce³⁺3d_{5/2},结合能峰位于 899.4 eV,则说明存在 Ce⁴⁺3d_{5/2},而结合能 峰位于 903.1 eV 和 909.2 eV 则说明 Ce³⁺3d_{3/2}的存在,结合能峰位于 917.3 eV 则是由于 Ce⁴⁺3d_{3/2}的存在,证明 Ce 以 Ce(III)和 Ce(IV)态的形式存在^[11, 29]。CeO₂/g-C₃N₄峰的位置相较于纯 CeO₂有所偏移,这可能是由于 g-C₃N₄与 CeO₂ 之间存在相互作用^[15]。

为了研究催化剂的光吸收性能,测量了 g-C₃N₄和不同含量 CeO₂/g-C₃N₄的 UV-Vis 漫反射光 谱。从图 5(a) 中可以看出,随着引入 Ce 掺杂剂,CeO₂/g-C₃N₄的吸收边缘在大约 420~460 nm 处出 现红移。这可能是因为 Ce 和 g-C₃N₄之间的共轭和电荷转移。此外,他们的吸收范围更宽更强,从 而增强了可见光吸收和光催化性能。掺杂 CeO₂ 可以改善催化剂的光吸收性能,不同 CeO₂含量的 催化剂的光吸收性能差别不大,其中 5%CeO₂/g-C₃N₄的光吸收性能略好。此外,基于 UV-vis DRS 数据,通过 Kubelk-Munk 方法(式(1))计算了 CeO₂、g-C₃N₄和 CeO₂/g-C₃N₄的带隙值。

$$\alpha hv = A(hv - E_g)^{n/2} \tag{1}$$

式中: a, hv, E_g和A分别代表吸收系数,光能,光带隙能量和常数。

n取决于半导体中的跃迁特性 (直接跃迁 n = 1; 间接跃迁 n = 4)。对于 g-C₃N₄, $n = 1^{[30]}$ 。根据式 (1) 计算得出, g-C₃N₄和 5%CeO₂/g-C₃N₄的带隙分别为 2.73 eV和 2.59 eV(图 5(b))。带隙变窄有利于 光吸收,这意味着激发电子从价带 (VB) 跃迁至导带 (CB) 所需的能量更少,通过掺杂 Ce 可以增强 光的吸收。由此可见, Ce 掺杂对 g-C₃N₄的作用可以扩展可见光吸收,最终导致光催化活性的提高。

Fig. 5 DRS and band gap spectra of $g-C_3N_4$ and $CeO_2/g-C_3N_4$

为了更好地了解 CeO₂/g-C₃N₄中的光诱导电流分离行为,对其进行了电化学阻抗谱 (EIS)的测量,结果如图 6 所示。EIS 电化学阻抗谱上的电弧反映了电极/电解质界面处电荷转移层的电阻。 较小的电弧半径表示较低的电阻和较高的电荷转移效率^[31]。由图 6(a) 可以看出,CeO₂/g-C₃N₄复合 光催化剂的电弧半径小于 g-C₃N₄,其中 5%CeO₂/g-C₃N₄催化剂的电弧半径最小,这表明,在 5%CeO₂/g-C₃N₄复合光催化剂界面处的电子-空穴对的转换和分离更有效。为了进一步评估不同催化 剂的电荷分离效率,对其进行了瞬态光电流响应的测量。图 6(b) 显示了纯 g-C₃N₄和 CeO₂/g-C₃N₄的 光电流响应。当打开和关闭光源时,CeO₂/g-C₃N₄产生的光电流最高,这表明与纯 g-C₃N₄相比, CeO₂/g-C₃N₄复合光催化剂具有更低的电子-空穴对复合率。

2.2 CeO₂/g-C₃N₄催化降解盐酸强力霉素的性能

1)不同体系下 DC 的降解效果。为了探索 CeO₃/g-C₃N₄的光催化活性,在催化剂投加量为 500 mg·L⁻¹, 初始 H₂O₂浓度为 5 mmol·L⁻¹, 初 始 pH 为 2.0, DC 浓度为 10 mg·L⁻¹ 的条件下进 行实验。图7显示了DC在不同的反应体系中 的降解效果,这些体系分别是非均相芬顿体 系,光催化体系和光催化-芬顿体系。为排除 催化剂的吸附作用对污染物浓度变化的影响, 制备的催化剂在光照实验前均进行了 30 min 避 光搅拌。由图7可见,单独的CeO₂/g-C₂N₄在 黑暗条件下对 DC 的吸附去除率只有 5.1%。在 含有 H₂O₂/Vis 系统中, DC 的去除率为 11.9%, 这表明,在没有催化剂的情况下,H,O,在可见 光下对 DC 的氧化能力有限。在 g-C₃N₄和 CeO₂/ g-C₃N₄的光催化体系中 DC 的去除率在 120 min 内分别为 38.1% 和 46.9%。在单独 CeO2的和 5%CeO₂/g-C₃N₄的非均相芬顿体系中,在120 min 内对 DC 的去除率为 27.3% 和 31.5%。但是, 在 5%CeO₂/g-C₃N₄ 的光芬顿体系中, DC 的去除 率在 120 min 内可达到 99.1%。上述结果表明, 5%CeO₂/g-C₃N₄复合催化剂的去除率高于其他 催化剂。

 2) 初始 pH 对 DC 降解效率的影响。如图 8
 所示,当初始 pH 为 2.0、3.0 和 5.0 时, DC 的 去除率分别为 97.3%、81.8% 和 73.5%。当初始

pH进一步提高至中性条件时,DC降解则受到抑制。在初始 pH为 7.0 时,DC 的去除率降低至 62.2%。该结果可能是由于,在酸性条件下,溶液中存在大量 H⁺离子,促进了 Ce 与 H₂O₂ 发生芬顿 反应产生·OH。另一方面,当溶液 pH 偏高时,H₂O₂ 容易分解为 H₂O 和 O₂^[32]。

3)不同铈掺杂量对 DC 去除率的影响。如 图 9 所示,当使用 CeO₂/g-C₃N₄ 作为催化剂 时,对 DC 的去除率大大增加。随着铈掺杂量 由 1%增加到 5%,DC 去除率由 67%提高至 97%;而当铈掺杂量增加到 7%时,对 DC 的去 除率降低到 58%。有研究表明,g-C₃N₄中金属 离子的存在会引起表面缺陷的形成,一方面, 可以通过增加掺杂金属的量来改善催化反应 性;另一方面,过量的 CeO₂物种可能充当载 流子的复合中心并覆盖表面上的活性位点,从 而降低了光催化效率^[12,33]。本实验研究结果表 明,当铈掺杂量达到 5% 时表现出最佳的降解 效果。

4) CeO₂/g-C₃N₄ 投加量对 DC 去除效果的影 响。图 10显示了在 120 min下,不同质量浓度 催化剂 (0.25、0.5、0.75 和 1.0 g·L⁻¹) 对 DC 的去 除效果。随着催化剂投加量由 0.25 g·L⁻¹ 增加 到 0.5 g·L⁻¹, DC 的去除率在 120 min 内由 70.1% 增加到 99.3%。这是因为,对于一定浓度的 DC 溶液,在一定的催化剂用量范围内,催化剂浓 度的增加可以增加活性位点,从而提高 DC 的 降解效率。但是,当催化剂质量浓度从 0.5 g·L⁻¹ 增加到 1.0 g·L⁻¹时,一方面过量的催化剂会使 不透明性增加,光透过率降低,从而会阻碍光 和活性位点在催化剂表面的渗透,导致 DC 去 除率下降^[34];另一方面,催化剂投加量过大也 有可能导致产生自由基过多,造成自我淬灭^[35]。

5) H₂O₂ 浓度对 DC 去除效果的影响。图 11 显示了加入不同 H₂O₂ 浓度对 CeO₂/g-C₃N₄ 复合 催化剂降解 DC 的影响。当H₂O₂ 浓度由1 mmol·L⁻¹ 增加到 5 mmol·L⁻¹时, DC 去除率在 100 min 内 由 75% 提高到 97.3%。该结果表明,随着 H₂O₂ 浓度的增加, DC 去除率有所增加。但是,当 H₂O₂ 的浓度进一步增加到 7 mmol·L⁻¹时, DC 的去除率会降低至 86%。这是因为当 H₂O₂ 浓 度低于临界值时,催化反应产生的 OH 自由基 的数量随 H₂O₂ 浓度的加大而增加;相反,当 H₂O₂ 浓度高于临界值时,生成的 OH 可能被过 量的 H₂O₂ 捕获而形成活性较低的 HO₂ 自由基^[36]

图 11 H₂O₂ 浓度对 DC 的降解影响

(式(2)~(4))。大量的 OH 被消耗, OH 无法与 DC 有效反应,导致去除率降低和 H₂O₂ 浪费。

杨婷婷等: CeO₂/g-C₃N₄光催化-芬顿高效降解盐酸强力霉素

1.0

$$H_2O_2 + OH \rightarrow HO_2 + H_2O$$
 (2)

$$HO_2 + OH \rightarrow H_2O + O_2$$
 (3)

$$^{\circ}OH + ^{\circ}OH \rightarrow H_2O_2$$
 (4)

6) DC 初始浓度对其去除效果的影响。图 12 反映了 DC 的初始浓度对其降解效率的影 响。可以看出, DC 的去除率与其初始浓度成 反比。当 DC 的初始浓度为 10 mg·L⁻¹时,可以 在 120 min 内完全降解;但是,当 DC 的初始 质量浓度增加到 20 mg·L⁻¹和 30 mg·L⁻¹时,反 应 120 min 后的 DC 去除率为 70.6% 和 56.5%。 这是因为过量的 DC 分子将占据催化剂表面部 位并阻止其与 H₂O₂接触,从而无法生成足够 的羟基自由基来降解 DC^[37]。

2.3 $CeO_2/g-C_3N_4$ 催化剂的重复性与稳定性

催化剂的重复性与稳定性是技术实际应用 中的重要因素。为了评估 CeO₂/g-C₃N₄ 的化学 稳定性和重复使用性,在可见光下对光催化剂 进行了 4 次连续的重复实验。在每个反应之 后,通过静置分离,然后用纯水反复洗涤并真 空干燥,干燥后的样品研磨收集以便用于后续 降解实验。实验结果如图 13 所示。经过 4 次 循环,DC 的去除率从 97.8% 降低到 81.5%,仅 下降 16.3%。TOC 的去除率从 69.2% 降低到 58.5%,仅下降为 10.7%。此外,在循环过程中 光催化剂的量略有减少。上述结果表明,CeO₂/ g-C₃N₄具有较高的重复性和稳定性。

2.4 CeO₂/g-C₃N₄催化H₂O₂降解DC机理

为了确定 CeO₂/g-C₃N₄/H₂O₂体系降解 DC 反应中主要的自由基种类,进行了自由基淬灭 实验。用于实验的淬灭剂为异丙醇(OH)、对 苯醌(O₂)和 EDTA-2Na(h⁺)^[38],其浓度均为 5 mmol·L⁻¹,结果如图 14 所示。在不添加任何 淬灭剂的情况下,DC 的去除率达到了 99.7%。 向反应体系中加入异丙醇后,DC 去除率为 68.7%。 将对苯醌加入反应体系后,DC 去除率为 41.1%。 加入 EDTA-2Na 后,DC 去除率为 11.3%。上述

0.8 – 20 mg • L⁻¹ - 30 mg • L⁻¹ 0.6 C/C 0.4 0.2 0 20 40 60 80 100 120 时间/min 图 12 DC 初始浓度对 DC 的降解影响 Fig. 12 Effects of different DC concentration on DC degradation 1.0 1.0 TOC去除率 **DC**去除率 0.8 0.8 FOC去除率/% 0.6 0.6 DC去除 0.4 0.4 0.2 0.2 0 0 1 2 3 4 循环次数 图 13 DC 和 TOC 的去除率 Fig. 13 Removal rate of DC and TOC

Fig. 14 Effects of different scavengers on DC degradation

结果表明,光生空穴和O₂起主要作用。为了进一步研究光催化-芬顿体系中的活性自由基,以5-二 甲基吡咯啉-N-氧化物 (DMPO)为捕获剂,进行了 ESR 实验。图 15 分别显示 4 个强度为 1:2:2:1 的 OH 自由基的特征峰,以及 O₂自由基的 6 个特征峰。结果表明,在光催化-芬顿体系中产生了 OH 和 O₂。此外,通过反应前后催化剂的 Ce3d 图谱的对比 (图 16)可以看到,反应后 Ce³⁺的分峰面

 $5 \text{ mg} \cdot \text{L}^{-1}$ 10 mg $\cdot \text{L}^{-1}$

图 15 CeO₂/g-C₃N₄体系中通过 DMPO 捕获 OH 和 O₂ 的 ESR 图 Fig. 15 ESR spectra of OH and O₂ captured by DMPO in CeO₂/g-C₃N₄ system

the CeO₂/g-C₃N₄ reaction

积增大,表明在反应过程发生了 Ce4+与 Ce3+的转化[17]。<

综合以上信息可以推测, $CeO_2/g-C_3N_4$ 催化 H_2O_2 降解 DC 的催化机理为:首先, $g-C_3N_4$ 在见光 照下产生光生电子和空穴 h⁺。 $g-C_3N_4$ 和 CeO₂ 的 CB 分别为-1.09 eV 和-0.79 eV, VB 分别为 1.61 eV 和 2.03 eV^[39]。因为 $g-C_3N_4$ 和 CeO₂ 的 CB 比 E_0 (O₂/O₂ = -0.046 eV vs NHE) 更低,故可以产生 O₂自由 基。而 $g-C_3N_4$ (VB, 1.61 eV)上的空穴不能氧化 OH⁻生成 OH(OH⁻/OH = 2.38 eV vs NHE)^[40]。光生电子转移到 CeO₂ 促进了 Ce⁴⁺转化为 Ce³⁺。Ce³⁺与 H_2O_2 发生类芬顿反应产生 OH^[17]。最后,DC 在产生的 h⁺、O₂和 OH 的共同作用下被降解。具体反应见式 (5)~式 (11)。

$$-C_3N_4 + hv \rightarrow g - C_3N_4(h^+ + e^-)$$
(5)

$$+e^{-} \rightarrow O_{2}^{-} \tag{6}$$

$$\mathrm{Ce}^{4+} + \mathrm{e}^{-} \to \mathrm{Ce}^{3+} \tag{7}$$

$$Ce^{3+} + H_2O_2 \rightarrow Ce^{4+} + OH + OH^-$$
(8)

$$Ce^{4+} + H_2O_2 \rightarrow Ce^{3+} + OOH + H^+$$
(9)

$$h^{+} + H_2O_2 \rightarrow O_2^{-} + 2h^{+}$$
 (10)

$$O_2^- + h^+ + OH + DC \rightarrow 小分子/离子$$
 (11)

3 结论

1) 在 pH 为 2.0、 H_2O_2 为 5 mmol·L⁻¹、催化剂投加量为 0.5 g·L⁻¹的最佳条件下, 5%CeO₂/g-C₃N₄可有效去除 10 mg L⁻¹的 DC, DC 去除率可达到 99.1%。

2) 在可见光和H₂O₂ 同时存在下催化降解 DC, CeO₂/g-C₃N₄ 的光催化活性比纯 g-C₃N₄ 的光催化 活性有明显提高,其中 5%CeO₂/g-C₃N₄ 显示最优的催化活性,反应速率是 g-C₃N₄ 的 2.6 倍,分别比 单独的光催化体系和非均相芬顿体系的去除率提高了 61% 和 72%。上述结果说明,光催化技术和 非均相芬顿技术之间存在协同效应。

3) CeO₂/g-C₃N₄降解 DC 可能的反应机理为:光催化促进了类芬顿反应中 Ce⁴⁺和 Ce³⁺的循环,也 提高光生电子-空穴分离效率。循环实验结果表明,CeO₂/g-C₃N₄具有很好的重复利用性。

参考文献

[1] 俞幼萍,高品,刘保江,等.新型光-类芬顿催化剂纳米FeVO4的制备及其对盐酸四环素的降解性能[J].环境工程学报,

2017, 11(1): 401-407.

- [2] HASAN Z, JEON J, JHUNG S H. Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks[J]. Journal of Hazardous Materials, 2012, 209-210: 151-157.
- [3] YAO W, UR REHMAN S W, WANG H, et al. Pilot-scale evaluation of micropollutant abatements by conventional ozonation, UV/O₃, and an electro-peroxone process[J]. Water Research, 2018, 138: 106-117.
- [4] DOLL T E, FRIMMEL F H. Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO₂ materials: Determination of intermediates and reaction pathways[J]. Water Research, 2004, 38(4): 955-964.
- [5] WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80.
- [6] HU J, ZHANG P, AN W, et al. In-situ Fe-doped g-C₃N₄ heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater[J]. Applied Catalysis B: Environmental, 2019, 245: 130-142.
- [7] LI Y, JIN R, XING Y, et al. Macroscopic foam-like holey ultrathin g-C₃N₄ nanosheets for drastic improvement of visible-light photocatalytic activity[J]. Advanced Energy Materials, 2016, 6(24): 1601273.
- [8] YE R, FANG H, ZHENG Y Z, et al. Fabrication of CoTiO₃/g-C₃N₄ hybrid photocatalysts with enhanced H₂ evolution: Z-scheme photocatalytic mechanism insight[J]. ACS Applied Materials and Interfaces, 2016, 8(22): 13879-13889.
- [9] 宋思扬, 吴丹, 赵焕新, 等. Co-FeOOH/g-C₃N₄的制备及其在非均相光芬顿反应中的催化性能[J]. 环境工程学报, 2020, 14(12): 3262-3269.
- [10] WU K, CHEN D, LU S, et al. Supramolecular self-assembly synthesis of noble-metal-free (C, Ce) co-doped g-C₃N₄ with porous structure for highly efficient photocatalytic degradation of organic pollutants[J]. Journal of Hazardous Materials, 2020, 382: 121027.
- [11] JOURSHABANI M, SHARIATINIA Z, BADIEI A. Facile one-pot synthesis of cerium oxide/sulfur-doped graphitic carbon nitride (g-C₃N₄) as efficient nanophotocatalysts under visible light irradiation[J]. Journal of Colloid and Interface Science, 2017, 507: 59-73.
- [12] HUMAYUN M, HU Z, KHAN A, et al. Highly efficient degradation of 2, 4-dichlorophenol over CeO₂/g-C₃N₄ composites under visible-light irradiation: Detailed reaction pathway and mechanism[J]. Journal of Hazardous Materials, 2019, 364: 635-644.
- [13] HE F, LI H, DING Y, et al. The oxygen reduction reaction on graphitic carbon nitride supported single Ce atom and Ce_xPt_{6-x} cluster catalysts from first-principles[J]. Carbon, 2018, 130: 636-644.
- [14] 张聪, 米屹东, 马东, 等. CeO₂/g-C₃N₄光催化剂的制备及性能[J]. 环境化学, 2017, 36(1): 147-152.
- [15] HUANG L, LI Y, XU H, et al. Synthesis and characterization of CeO₂/g-C₃N₄ composites with enhanced visible-light photocatatalytic activity[J]. RSC Advances, 2013, 3(44): 22269.
- [16] 孙少峰, 涂琴, 张丽. CeO,/g-C,N,复合光催化剂的制备及其性能研究[J]. 水处理技术, 2021, 47(4): 52-55.
- [17] XU L, WANG J. Magnetic nanoscaled Fe₃O₄/CeO₂ composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol[J]. Environmental Science & Technology, 2012, 46(18): 10145-10153.
- [18] YANG H, XU B, YUAN S, et al. Synthesis of Y-doped CeO₂/PCN nanocomposited photocatalyst with promoted photoredox performance[J]. Applied Catalysis B: Environmental, 2019, 243: 513-521.
- [19] CAO S, LOW J, YU J, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials, 2015, 27(13):

2150-2176.

- [20] ZANG C, ZHANG X, HU S, et al. The role of exposed facets in the Fenton-like reactivity of CeO₂ nanocrystal to the orange II[J]. Applied Catalysis B: Environmental, 2017, 216: 106-113.
- [21] CAI W, CHEN F, SHEN X, et al. Enhanced catalytic degradation of AO7 in the CeO₂-H₂O₂ system with Fe³⁺ doping[J]. Applied Catalysis B: Environmental, 2010, 101(1/2): 160-168.
- [22] LIU L, QI Y, LU J, et al. A stable Ag₃PO₄ @g-C₃N₄ hybrid core@shell composite with enhanced visible light photocatalytic degradation[J]. Applied Catalysis B: Environmental, 2016, 183: 133-141.
- [23] YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C₃N₄ fabricated by directly heating melamine[J]. Langmuir, 2009, 25(17): 10397-10401.
- [24] LI X, ZHU W, LU X, et al. Integrated nanostructures of CeO₂/attapulgite/g-C₃N₄ as efficient catalyst for photocatalytic desulfurization: Mechanism, kinetics and influencing factors[J]. Chemical Engineering Journal, 2017, 326: 87-98.
- [25] YANG M, HUANG Q, JIN X. ZnGaNO solid solution-C₃N₄ composite for improved visible light photocatalytic performance[J]. Materials Science and Engineering: B, 2012, 177(8): 600-605.
- [26] SONG X, HU Y, ZHENG M, et al. Solvent-free in situ synthesis of g-C₃N₄ /{0 0 1}TiO₂ composite with enhanced UV- and visible-light photocatalytic activity for NO oxidation[J]. Applied Catalysis B. Environmental, 2016, 182: 587-597.
- [27] TAN Y, SHU Z, ZHOU J, et al. One-step synthesis of nanostructured g-C₃N₄/TiO₂ composite for highly enhanced visible-light photocatalytic H₂ evolution[J]. Applied Catalysis B: Environmental, 2018, 230: 260-268.
- [28] KATSUMATA H, SAKAI T, SUZUKI T, et al. Highly efficient photocatalytic activity of g-C₃N₄/Ag₃PO₄ hybrid photocatalysts through Z-scheme photocatalytic mechanism under visible light[J]. Industrial & Engineering Chemistry Research, 2014, 53(19): 8018-8025.
- [29] HUANG H, DAI Q, WANG X. Morphology effect of Ru/CeO₂ catalysts for the catalytic combustion of chlorobenzene[J]. Applied Catalysis B: Environmental, 2014, 158-159: 96-105.
- [30] 张健伟, 苑鹏, 王建桥, 等. Ce掺杂的CNTs-TiO2光催化剂制备及其NO氧化性能[J]. 环境工程学报, 2020, 14(7): 1852-1861.
- [31] BU Y, CHEN Z, LI W. Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C₃N₄ heterojunction material[J]. Applied Catalysis B: Environmental, 2014, 144: 622-630.
- [32] WAN Z, WANG J. Degradation of sulfamethazine using Fe₃O₄-Mn₃O₄/reduced graphene oxide hybrid as Fenton-like catalyst[J]. Journal of Hazardous Materials, 2017, 324: 653-664.
- [33] SABLE S S, PANCHANGAM S C, LO S L. Abatement of clofibric acid by Fenton-like process using iron oxide supported sulfonated-ZrO,; Efficient heterogeneous catalysts[J]. Journal of Water Process Engineering, 2018, 26: 92-99.
- [34] BANSAL P, CHAUDHARY G R, MEHTA S K. Comparative study of catalytic activity of ZrO₂ nanoparticles for sonocatalytic and photocatalytic degradation of cationic and anionic dyes[J]. Chemical Engineering Journal, 2015, 280: 475-485.
- [35] WANG J, LIU C, LI J, et al. In-situ incorporation of iron-copper bimetallic particles in electrospun carbon nanofibers as an efficient Fenton catalyst[J]. Applied Catalysis B: Environmental, 2017, 207: 316-325.
- [36] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O⁻), in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886.
- [37] BEL HADJLTAIEF H, DA COSTA P, GALVEZ M E, et al. Influence of operational parameters in the heterogeneous photo-

fenton discoloration of wastewaters in the presence of an iron-pillared clay[J]. Industrial & Engineering Chemistry Research, 2013, 52(47): 16656-16665.

- [38] WEI Z, LIANG F, LIU Y, et al. Photoelectrocatalytic degradation of phenol-containing wastewater by TiO₂/g-C₃N₄ hybrid heterostructure thin film[J]. Applied Catalysis B: Environmental, 2017, 201: 600-606.
- [39] TIAN N, HUANG H, LIU C, et al. In situ co-pyrolysis fabrication of CeO₂/g-C₃N₄ n-n type heterojunction for synchronously promoting photo-induced oxidation and reduction properties[J]. Journal of Materials Chemistry A, 2015, 3(33): 17120-17129.
- [40] AKHUNDI A, HABIBI-YANGJEH A. Graphitic carbon nitride nanosheets decorated with CuCr₂O₄ nanoparticles: Novel photocatalysts with high performances in visible light degradation of water pollutants[J]. Journal of Colloid and Interface Science, 2017, 504: 697-710.

(责任编辑:曲娜)

Efficient degradation of doxycycline hydrochloride by $CeO_2/g-C_3N_4$ through photocatalysis-Fenton

YANG Tingting¹, CHEN Xing^{1,2}, CHEN Changbin³, WANG Sanliu³, CUI Kangping^{1,*}

1. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China

2. Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China

3. Anqing Shuguang Chemical Co. Ltd., Anqing 246005, China

*Corresponding author, E-mail: cuikangping@hfut.edu.cn

Abstract The composite photocatalyst induced by $CeO_2/g-C_3N_4$ visible light was successfully prepared by hydrothermal method, and its removal performance of doxycycline hydrochloride (DC) was studied. The effects of cerium doping amount, pH, H₂O₂ concentration, catalyst dosage and pollutant concentration on DC degradation were investigated. The results show that the optimal reaction conditions were pH 2.0, H₂O₂ dosage of 5 mmol·L⁻¹, and the catalyst dosage of 0.5 g·L⁻¹, and 5%CeO₂/g-C₃N₄ could effectively remove 10 mg·L⁻¹ DC, the removal rate was 99.1%. The structure of CeO₂/g-C₃N₄ catalyst was characterized by SEM, TEM, XRD, FTIR and XPS. Degradation experiments were conducted in the presence of both visible light and H₂O₂. The photocatalytic activity of CeO₂/g-C₃N₄ was significantly higher than that of pure g-C₃N₄, and 5%CeO₂/g-C₃N₄ had the best catalytic activity. The reaction rate of CeO₂/g-C₃N₄ was 2.6 times that of g-C₃N₄, it was 61% or 72% higher than that of the single photocatalytic system and the heterogeneous Fenton system, which indicates that there was a synergistic effect between the photocatalytic technology and the heterogeneous Fenton technology. Based on the results of transient photocurrent response, electron paramagnetic resonance and radical quenching experiments, it is speculated that the possible reaction mechanism of CeO₂/g-C₃N₄ degradation of DC was that the photocatalysis promoted the cycle of Ce⁴⁺ and Ce³⁺ in the Fenton-like reaction, and also improved Photogenerated electron-hole separation efficiency.

Keywords CeO₂/g-C₃N₄; doxycycline hydrochloride (DC); visible light; photo-Fenton; antibiotic wastewater