

第 17卷 第 1期 2023年 1月 Vol. 17, No.1 Jan. 2023

me (010) 62941074

文章栏目:环境监测技术

DOI 10.12030/j.cjee.202208161 中图分类号 X834 文献标识码 A

李香香, 崔长征, 王雄, 等. 用固相萃取-高效液相色谱-三重四极杆串联质谱法测定海洋沉积物中 13 种氟喹诺酮类抗生素[J]. 环境工程学 报, 2023, 17(1): 316-324. [LI Xiangxiang, CUI Changzheng, WANG Xiong, et al. Determination of 13 fluoroquinolones antibiotics in marine sediments using LC-MS/MS coupled with solid phase extraction[J]. Chinese Journal of Environmental Engineering, 2023, 17(1): 316-324.]

用固相萃取-高效液相色谱-三重四极杆串联质谱 法测定海洋沉积物中 13 种氟喹诺酮类抗生素

李香香¹, 崔长征¹, 王雄², 丁紫荣^{2,∞}, 闫雅楠², 金梦², 许文杰² 1. 华东理工大学资源与环境工程学院, 上海 200237; 2. 生态环境部华南环境科学研究所, 广州 510000

摘 要 为进一步探索海洋沉积物中氟喹诺酮类抗生素的污染情况,基于固相萃取-高效液相色谱-三重四极杆 串联质谱 (SPE-LC-MS/MS) 技术,建立了海洋沉积物中 13 种 FQs 的测定方法;采用高效液相色谱-三重四极杆串 联质谱多反应监测离子模式 (MRM) 对 FQs 进行分离检测。结果表明:在优化实验条件下,13 种 FQs 的质量浓 度为 0.50~100 μg·L⁻¹,目标化合物峰面积与内标物质峰面积之比与质量浓度的线性关系良好 (*R*²>0.99),方法检出 限为 0.003~0.03 μg·kg⁻¹;在加标量为 1 μg·kg⁻¹和 10 μg·kg⁻¹时,空白加标的平均回收率为 73.5%~124.6% 和 67.5%~118.5%,相对标准偏差 (RSD) 为 1.0%~9.7%(*n*=7);以海洋沉积物为基质,13 种目标物的加标回收率为 67.7%~142.4%,RSD 小于 10.2%(*n*=6);使用该方法对广州某湾区海洋沉积物中 13 种 FQs 的残留量进行了实地检 测,培氟沙星质量分数最高,为1.6 μg·kg⁻¹,氧氟沙星、环丙沙星和恩诺沙星质量分数次之,为0.7 μg·kg⁻¹。该 方法实现了对海洋沉积物中 13 种 FQs 的同时检测,具有快速、准确等优点,适用于海洋沉积物中 13 种 FQs 的 测定。本研究成果可为海洋生态环境保护提供数据基础及技术支撑。

关键词 固相萃取-高效液相色谱-三重四极杆串联质谱;海洋沉积物;氟喹诺酮类抗生素;方法优化

氟喹诺酮类抗生素 (fluoroquinolones, FQs) 是目前使用量较大的一类合成抗菌药,基本结构为 4-氟喹诺酮酸^[1]。FQs 具有抗菌谱广、杀菌能力强、口服效果吸收率好、与其他抗菌药无交叉耐药 性等特点,已成为治疗细菌性疾病最常用药物之一^[2-3]。目前,我国每年生产的喹诺酮类抗生素约 为 3.57×10⁴ t,是应用最广泛的抗生素之一,尤其在畜牧养殖和水产养殖行业的应用更为广泛^[4-8]。 近年来,随着 FQs 生产量和使用量的不断增加,环境中检出 FQs 的报道越来越多。胶州湾海洋沉 积物中检测出 8 种 FQs 残留,质量分数为 0.478~47.545 ng·g^{-1[9]};白洋淀沉积物中检出 6 种 FQs 残 留,质量分数为 nd~52.90 ng·g^{-1[10]};闽江河口区域沉积物中检出 6 种 FQs 残留,质量分数为 0.03~15.60 ng·g^{-1[11]}。FQs 已逐渐成为海洋沉积物中重要的污染物之一^[7]。海洋沉积物中残留的 FQs 通过迁移转化进入到生态系统中,对生态环境及人体健康构成严重威胁^[12-13]。因此,FQs 在环 境中的残留及潜在风险受到国内外专家学者的广泛关注^[14-15]。

随着海水养殖技术的日益进步及海水养殖产品需求的不断上涨,我国海水养殖产业得到了迅猛发展。2020年我国海水养殖面积为1.99×10⁶ hm²,海水养殖产品年产量达2.14×10⁷ t,稳居世界第

收稿日期: 2022-08-31; 录用日期: 2022-11-15

基金项目:国家重点研发计划 (2018YFC1801602);中央级公益性科研院所基本科研业务专项 (PM-zx703-202011-318);中央级公益 性科研院所基本科研业务专项 (ZHT-ZX-2022-0065)

第一作者: 李香香 (1997—), 女,硕士,2742698264@qq.com; ⊠通信作者:丁紫荣 (1987—),男,硕士,工程师, 505917972@qq.com

一^[16]。随着海产品年产量的不断增加,FQs的投放量不断增加,仅有 20%~30%的FQs 被利用或吸收,其余均以原形或代谢物的形式排入海洋环境中,通过吸附、沉降作用汇集于底部沉积物^[15],造成海洋 FQs 污染^[17-19]。目前,已有很多学者对环境中 FQs 开展了研究。这些研究主要集中在水环境^[20-28]、饲料^[29-30]、食品^[31-32]、水产品^[33-34]等领域,而对海洋沉积物中 FQs 及相关化合物的研究较少,很难满足监测监管的需求。

本研究针对海水养殖沉积物中可能存在的13种 FQs,基于 SPE-LC-MS/MS 技术,建立了一种 快速、准确的测定方法,实现了海洋沉积物中13种 FQs的同时检测;并对广州某湾区海洋沉积物 进行实地检测,以期揭示该地区海水养殖业 FQs污染的分布规律,为维护海水安全提供基础数 据,为渔用 FQs的监管提供参考。

1 实验部分

第1期

1.1 试剂与材料

标准贮备液包括氟罗沙星 (fleroxacin, FLE)、氧氟沙星 (ofloxacin, OFL)、培氟沙星 (pefloxacin, PEF)、依诺沙星 (enoxacin, ENO)、诺氟沙星 (norfloxacin, NOR)、环丙沙星 (ciprofloxacin, CIP)、恩 诺沙星 (enrofloxacin, ENR)、达氟沙星 (danofloxacin, DAN)、马波沙星 (marbofloxacin, MAR)、二氟 沙星 (difloxacin, DIF)、沙拉沙星 (sarafloxacin, SAR)、氟甲喹 (flumequine, FLU)和那氟沙星 (nadifloxacin, NAD)13 种 FQs 目标物。1 种替代物 (诺氟沙星-d5) 及 3 种进样内标 (恩诺沙星-d5、环 丙沙星-d8 和¹³C₃-氟甲喹) 均购自天津阿尔塔公司,溶剂为甲醇,质量浓度均为 100 mg·L⁻¹,在-20 ℃ 下避光保存。使用 5% 甲酸-0.05 mmol·L⁻¹ 甲酸铵和甲醇混合溶液 (体积比为 1:1)稀释成不同浓度的 标准工作液。

溶剂耗材包括甲酸 (中国北京,迪马科技有限公司)、甲醇 (中国上海,霍尼韦尔贸易有限公司)、乙腈 (中国上海,霍尼韦尔贸易有限公司)、盐酸 (中国衡阳,凯信化工试剂有限公司)、Oasis HLB 固相萃取柱 (6 mL, 200 mg,美国,Water 公司)、C₁₈液相色谱柱 (4.6 mm×100 mm,粒径 2.7 μm,中国广州,太伟科技有限公司)、柠檬酸 (中国天津,科密欧化学试剂有限公司)、磷酸氢二钠 (中国 广州,远达新材料有限公司)、乙二胺四乙酸二钠 (中国天津,科密欧化学试剂有限公司)、甲酸铵 (中国上海,泰坦科技股份有限公司)、0.45 μm 的玻璃纤维膜、注射器及 0.22 μm 聚醚砜滤膜 (中国 广州,国凌仪器有限公司)。

1.2 仪器与设备

仪器及设备包括纯水仪(上海,默克)、恒温振荡仪(上海,江星)、离心机(上海,默克)、 Fotector plus(PFCs)高通量全自动固相萃取仪(中国, 睿科)、MGS-2200氮吹浓缩仪(日本, EYELA公司)、高效液相色谱-三重四极杆串联质谱联用仪(美国,Water公司)、SCQ-1000C超声波 清洗仪(上海,声彦)。

1.3 样品预处理

以前期研究为基础^[10],对沉积物中13种FQs检测方法进行优化,建立一种快速准确检测FQs的方法。

称取 1.0 g 经冷冻干燥 (冷冻干燥后沉积物的含水率一般为 1% 以下,对后续提取效率影响甚 微,故可忽略不计)研磨过筛后的样品,置于 50 mL 离心管中,加入 50 ng 替代物混标 (诺氟沙星-d5), 避光静置老化 12 h 后,加入 10 mL 的乙腈和柠檬酸缓冲溶液混合溶液 (体积比为 1:1)。在25 ℃ 恒温 条件下,以 200 r·min⁻¹的速度振荡 10 min,取出离心管,放入低速离心机中,以 2 500 r·min⁻¹ 的速度离心 5 min,取上清液,重复萃取 1次,合并上清液。然后用超纯水将上清液稀释至 500 mL。稀释液经活化后的 HLB 固相萃取柱,富集净化。HLB 柱依次用 6 mL 甲醇、6 mL 水及 6 mL 盐酸水溶液 (pH=2) 淋洗活化,样品富集完成后,用 10 mL 0.1% 甲酸甲醇,以 1 mL·min⁻¹ 的速度洗 脱小柱,将洗脱液收集于试管中。洗脱液经浓缩装置浓缩至尽干,加入 20 ng进样内标(恩诺沙星-d5、环丙沙星-d8 和¹³C₃-氟甲喹),最后用 0.5%甲酸-5 mmol·L⁻¹甲酸铵水溶液和甲醇混合溶液(体积 比为 1:1)定容至 1.0 mL,涡旋混匀,过 0.22 μm 聚醚砜滤膜,待测。

1.4 仪器分析条件

1) 色谱条件。色谱柱使用 CORTECS® C₁₈柱 (4.6 mm×100 mm, 粒径 2.7 μm, 美国, Waters 公司), 流动相为 0.5% 甲酸-5 mmol·L⁻¹ 甲酸铵水溶液 (A 相) 和甲醇 (B 相), 流速为 0.5 mL·min⁻¹, 柱温 为 40 ℃, 进样体积为 1 μL。梯度洗脱程序为: 0~1 min 为 20%B 相; 1~11 min 为 20%~40%B 相; 11~14 min 为 40%~95% B 相; 14~17 min 为 95%B 相; 17.0~17.1 min 为 95%~20% B 相。每个梯度完成 后平衡 2.9 min。

2) 质谱条件。离子源为电喷雾电离源;离子源电压为5500V;气帘气压力为0.18 MPa;雾化 气压力为0.45 MPa;辅助气压力为0.45 MPa;去溶剂温度为550℃;检测方式为正离子模式下多反 应离子扫描模式。

2 结果与讨论

2.1 前处理条件选择和优化

1)提取液的选择。提取液可以通过影响目标物/基质的离子化或质子化程度,从而影响回收效果。为研究不同提取液对 FQs 的回收效果,本研究对比了乙腈、甲醇-柠檬酸缓冲液混合溶液、乙腈-柠檬酸缓冲液混合溶液 3 种提取液对质量分数为 50 μg·kg⁻¹添加样品的提取效果。如图 1 所示,当提取液为乙腈时,只检出了氟甲喹和那氟沙星,且回收率仅为 20.2%~36.9%;当提取液为甲醇-柠檬酸缓冲溶液混合溶液时,也仅检测出氟甲喹和那氟沙星,但其回收率有明显提升,为 56.5%~62.6%;而当提取液为乙腈-柠檬酸缓冲液混合溶液时,检出了 13 种 FQs,回收率为 57.3%~126.3%。这可能是因为:乙腈的极性弱于甲醇,组织穿透力强于甲醇,能更有效沉淀大分子,释放更多结合态的 FQs^[35];加入的 EDTA- Mcllvaine 缓冲液能有效减少抗生素与金属离子的螯合,使测定结果更为稳定^[36]。因此,本研究最终选择乙腈-柠檬酸缓冲液作为提取液。

2) 提取液比例的优化。不同比例的乙腈和柠檬酸缓冲液的极性和 pH 值有所不同,对回收效果 的影响也不相同。为了研究不同比例的乙腈-柠檬酸缓冲液混合液对 FQs 的回收效果,本研究对比 了乙腈-柠檬酸缓冲液混合溶液 (体积比为 9:1)、柠檬酸缓冲液和乙腈混合溶液 (体积比为 1:1) 对质 量分数为 50 μg·kg⁻¹添加样品的提取效果。如图 2 所示,当乙腈-柠檬酸缓冲液混合溶液体积比为

9:1时,除二氟沙星外,12种 FQs的回收率为19.9%~137.3%,相对标准偏差为2.7%~16.2%。二氟 沙星的回收率偏高原因可能是:乙腈含量过高,振荡时提取液与沉积物不能完全混合,出现分 层;此外乙腈含量高时,提取的有机杂质会更多,干扰分析结果,影响回收效果;当柠檬酸缓冲 液和乙腈混合溶液体积比为1:1时,13种 FQs的回收率为66.0%~126%,相对标准偏差为0.3%~ 8.8%,基本满足检测分析要求。因此,本研究最终选择体积为1:1的乙腈和柠檬酸缓冲液混合溶液 作为提取液进行萃取。

3) 萃取方式的选择。为考察不同萃取方式对 FQs 的回收效果,本研究将直接进行恒温振荡提 取与先进行恒温振荡再进行超声提取 2 种方式进行对比,质量分数为 50 μg·kg⁻¹添加样品的提取效 果如图 3 所示。可以看出,当采取恒温振荡萃取时,13 种 FQs 的回收率为 70.7%~132.5%,相对标 准偏差为 0.9%~7.7%;当先进行恒温振荡再进行超声时,13 种 FQs 的回收率为 65.5%~138.4%,相 对标准偏差为 0.05%~11.0%。综上可知,恒温振荡和恒温振荡加超声萃取 2 种萃取方式对 FQs 的萃 取效果相当,且基本满足检测分析要求。考虑到前处理时间和仪器成本,本研究最终选择采用恒 温振荡的方式对样品进行提取。

4) 恒温振荡时间的选择。一般来说,恒温振荡时间越长,提取液与样品混合越充分,回收率 越高。为研究恒温振荡时间对 FQs 的回收效果的影响,本研究对比了恒温振荡时间 10、20、 30 min 对质量分数为 50 μg·kg⁻¹添加样品的提取效果。如图 4 所示,当恒温振荡 10 min 时,13 种 FQs 的回收率为 74.4%~136.1%,相对标准偏差为 2.1%~32.1%;当恒温振荡 20 min 时,13 种 FQs 的 回收率为 65.7%~143.4%,相对标准偏差为 0.1%~6.8%;当恒温振荡 30 min 时,13 种 FQs 的回收率 为 62.9%~134.4%,相对标准偏差为 0.9%~12.7%。综上可知。不同恒温振荡时间对 13 种 FQs 回收率 的影响不大。当振荡时间为 20 min 时,相对标准偏差显著低于 10 min 和 30 min 时的相对标准偏 差,因此,本研究最终选择恒温振荡时间为 20 min。

recovery rate of target substances

5) 恒温振荡温度的选择。为考察不同恒温振荡温度对 FQs 的回收效果,本研究对比了恒温温度 15、25、35 ℃ 对质量分数为 50 μg·kg⁻¹ 添加样品的提取效果。如图 5 所示,当恒温振荡温度为 15 ℃ 时,13 种 FQs 的回收率为 72.0%~144.5%,相对标准偏差为 0.3%~20.4%;当恒温振荡温度为 25 ℃ 时,13 种 FQs 的回收率为 67.5%~137.1%,相对标准偏差为 0.4%~6.6%;当恒温振荡温度为 35 ℃ 时,13 种 FQs 的回收率为 70.6%~149.4%,相对标准偏差为 0.9%~5.7%。结果表明,当恒温振荡温

度为 25 ℃时, FQs 的回收效果最佳,因此, 本研究最终选择恒温振荡温度为 25 ℃。

固相萃取的其他条件(如固相萃取柱、上 样流速、洗脱溶液等)可参考丁紫荣等^[37]建立 的养殖废水中17种氟喹诺酮类抗生素的检测 方法。

2.2 仪器条件的选择和优化

1) 色谱条件的选择和优化。FQs 多为两性物质,具有一定的水溶性。已有研究^[38-39]表明,C₁₈ 柱适于 FQs 残留的分析,因此,本研究对比了 Kinetex-C₁₈®(100 mm×3.0 mm×2.6 μm)(A 柱)、XTEERRA-C₁₈® MSC₁₈(100 mm×2.1 mm×3.5 μm)(B 柱)和CORTECS®C18(100 mm×4.6 mm×2.7 μm)(C 柱)3 种不同粒径的 C₁₈ 柱的分离效

果。结果表明, CORTECS® C₁₈ 对 13 种 FQs 的分离效果、峰形和响应强度显著好于其他两款柱 子, 故选 CORTECS® C₁₈ 作为分离色谱柱。考虑到 FQs 性质非常相似,出峰时间相对较为紧密, 故选用洗脱效果较弱的甲醇,对其分离效果会更好,在流动相中加入适当的有机酸或缓冲盐,不 仅可提高目标物的离子化效率,也可提高分析方法的灵敏度。因此,实验还对比了 0.5% 甲酸-5 mmol·L⁻¹ 甲酸铵和甲醇作为流动相时的分离效果,发现峰型、灵敏度、信号强度均较为理想。因 此,本研究最终选择 0.5% 甲酸-5 mmol·L⁻¹ 甲酸铵和甲醇作为流动相。

2)离子源参数的选择和优化。气流量是色谱条件优化的一个重要参数,一般来说,气流量越大,耗气量越大,离子化越充分;而气流量过大,许多目标物被吹走,进入四极杆有效离子数越少,造成回收率偏低。为筛选出最佳的气流量,本研究比较了不同气流量的影响效果。结果表明,采用不同气流量时,13种 FQs的峰形、灵敏度、信号强度均满足检测要求,考虑到用气成本,因此,本研究最终选择采用 600 mL·min⁻¹气流量进行样品检测。

3) 质谱条件的选择和优化。配制质量浓度为 1.0 mg·L⁻¹ 的 FQs、内标化合物和替代物的混合标 准溶液,在正离子模式下,用直接注射进样方式扫描并优化母离子/子离子特征离子对,并优化其 相应的锥孔电压、碰撞电压等其他参数,利用获取的全部特征离子及离子间的丰度比进行定性分 析,以丰度最高的特征离子响应与浓度的关系进行定量分析,质谱优化参数结果如表 1 所示。

2.3 方法的检出限和精密度

1)方法的检出限和定量关系。将 13 种 FQs 的 200 μg·L⁻¹标准溶液按梯度稀释,梯度质量浓度 分别为 0.5、1、2、5、10、20、50、100 μg·L⁻¹。用已优化好的色谱条件和质谱条件进行测定,内 标法定量。以 13 种 FQs 的质量浓度为横坐标,定量离子的峰面积为纵坐标,绘制标准曲线。结果 表明,13 种 FQs 在 0.5~200 μg·L⁻¹内线性关系良好, *R*²>0.99。根据环境监测分析方法中的标准制修 订技术导则,对检出限为 3~5 倍质量浓度的样品进行 7 次平行测定,计算测定结果的标准偏差 (SD)。方法检出限 (LOD) 为 3.143 倍的 SD,定量限 (LOQ) 为 4 倍的 LOD。根据计算结果,LOD 为 0.003~0.03 μg·kg⁻¹, LOQ 为 0.012~0.12 μg·kg⁻¹。

2)方法的精密度。用石英砂进行空白基质加标回收实验,加标质量分数分别设置为1μg·kg⁻¹ 和10μg·kg⁻¹,每个质量分数水平做7个重复样品,同时设置7个空白样品。按第1.3节中的步骤 对样品进行处理,以考察方法的总体回收率、重现性是否达到检测分析要求。如表2所示,当添 加量为1μg·kg⁻¹时,13种 FQs的平均回收率为73.5%~124.6%,RSD为1.5%~9.7%;当添加量为

表1 目标化合物、替代物及内标物的多离子反应监测条件

Table 1 Multiple ion reaction monitoring conditions for target compound,

surrogate and internal standar	d
--------------------------------	---

	质荷比(m/z)				母离子碰撞	定量(定性)		
化合物	母离子	定量离子	定性离子	锥孔电压/V	电压/V	离子碰撞电 压/V	定量内标	
氟甲喹	262.1	202	244.1	56	27	45	¹³ C ₃ -氟甲喹	
诺氟沙星	320.2	276.2	233.1	101	25	35	环丙沙星d8	
依诺沙星	321.1	303.1	232.1	61	29	49	环丙沙星d8	
环丙沙星	332.1	314.1	288.1	81	29	27	环丙沙星d8	
培氟沙星	334.2	316	290.1	76	29	27	环丙沙星d8	
达氟沙星	358.2	340.2	82.1	76	33	73	恩诺沙星-d5	
恩诺沙星	360.2	316.1	245.1	76	27	37	恩诺沙星-d5	
那氟沙星	361.2	343.2	283.1	85	35	50	¹³ C ₃ -氟甲喹	
氧氟沙星	362.2	318.2	261.1	76	27	39	恩诺沙星-d5	
马波沙星	363.1	72.1	320.1	80	46	23	环丙沙星d8	
氟罗沙星	370.1	326.1	269.1	76	27	37	恩诺沙星-d5	
沙拉沙星	386.1	342.1	299.1	106	27	39	恩诺沙星-d5	
二氟沙星	400.2	356.2	299.1	81	29	39	恩诺沙星-d5	
诺氟沙星-d5	325.2	281.2	238.1	86	25	35	环丙沙星d8	
恩诺沙星-d5	365.2	321.2	347.2	81	29	31	_	
环丙沙星-d8	340.2	322.1	296.1	91	31	27	_	
¹³ C3-氟甲喹	265.1	247.1	205.1	46	25	45	—	

表 2 13 种 FQs 化合物的石英砂加标回收率 (n=7) 及相对标准偏差

化合物	添加FQs质量分数/ (µg·kg ⁻¹)	平均 回收率/%	RSD/%	化合物	添加FQs质量分数/ (µg·kg ⁻¹)	平均 回收率/%	RSD/%
氟罗沙星	1.0	80.9	4.5	达氟沙星	1.0	91.3	6.3
氟罗沙星	10	84.9	1.6	达氟沙星	10	88.3	1.5
氧氟沙星	1.0	90.7	2.3	马波沙星	1.0	94.4	2.4
氧氟沙星	10	92.8	2.1	马波沙星	10	91.1	1.8
培氟沙星	1.0	88.6	2.5	二氟沙星	1.0	91.2	8.5
培氟沙星	10	79.3	1.0	二氟沙星	10	86.6	3.1
依诺沙星	1.0	73.5	8.6	沙拉沙星	1.0	85.3	5.9
依诺沙星	10	67.5	1.3	沙拉沙星	10	86.6	2.0
诺氟沙星	1.0	88.9	3.7	氟甲喹	1.0	79.6	5.3
诺氟沙星	10	83.4	2.1	氟甲喹	10	86.0	1.3
环丙沙星	1.0	88.7	6.2	那氟沙星	1.0	88.2	9.7
环丙沙星	10	87.07	4.5	那氟沙星	10	96.7	3.5
恩诺沙星	1.0	85.0	3.5				
恩诺沙星	10	89.4	3.0				

 Table 2
 Recovery rate (n=7) and RSD of 13 fluoroquinolones antibiotics in quartzite

10 μg·kg⁻¹时,平均回收率为67.5%~118.5%, RSD为1.0%~4.5%。此外,本研究还以广州某 湾区沉积物为基质,设置了7个基质加标实 验,加标质量分数为1.0 μg·kg⁻¹和50 μg·kg⁻¹。 如表3所示,背景样品除氧氟沙星和诺氟沙星 2种目标物检出质量浓度较高外,其他目标物 的检出质量浓度均较低,影响较小。加标样品 13种 FQs的平均回收率分别为64.4%~142.8% 和67.7%~140.2%,RSD分别为2.2%~17.9% 和 1.4%~5.1%。

2.4 实际样品的测定

为检验本研究建立的检测分析方法,按照 《近岸海域环境监测技术规范 第四部分 近岸 海域沉积物监测》(HJ 442.3-2020)^[40],采集广 州近岸海域某湾区沉积物样品,按照建立的分 析方法对 15 个采样点样品中的 FQs 的残留进 行分析。测定结果表明,共检测到 6 种 FQs, 其中氧氟沙星检出质量分数为 0.7 μg·kg⁻¹,培 氟沙星检出质量分数为 1.6 μg·kg⁻¹,诺氟沙星 检出质量分数为 0.6 μg·kg⁻¹,环丙沙星检出质 量分数为 0.7 μg·kg⁻¹,恩诺沙星检出质量分数 为 0.6 μg·kg⁻¹,达氟沙星检出质量分数为 0.6

3 结论

1)本研究建立了一种快速、准确测定海洋 沉积物中13种FQs的固相萃取-高效液相色谱-三重四极杆串联质谱分析方法,实验结果表明 13种FQs的线性关系良好,且拟合度均大于 0.9999。

2)固相萃取-高效液相色谱-三重四极杆串 联质谱分析方法样品前处理步骤简单,选择性 好,方法的准确度和精密度均可满足海洋沉积 物中13种FOs残留分析和风险评估的需求。

表 3	13 种 FQs 化合物的沉积物加标回收率 (n = 6) 及相
	对标准偏差

Table 3 Recovery rate(n = 6) and RSD of 13 fluoroquinolones antibiotics in deposit sediment

化合物	背景样品残留 质量分数/(ug·kg ⁻¹)	添加质量分数/ (ug·kg ⁻¹)	平均回收 率/%	RSD/
	0.19	1.0	142.4	20
(1) おおうしました。 (1) おおうしました。 (1) おおうしました。 (2) おおうしました。 (3) おおうしました。 (3) おおうしました。 (4) おおうしましん。 (4) おおうしましん。 (0.19	50	142.4	2.9
気甸沙足	20.22	1.0	140.2	2.0
気気が足	20.23	50	139.0	2.9
本気が足	0.25	1.0	70.7	0.2
1年前の1月1日に 1月1日に 1	0.25	50	116.0	9.2
坊 港沙月	0.25	50	116.9	2.8
依诺 沙旦	0	1.0	90.0	10.2
牧佑沙 星	0	50	67.7	4.3
佑剰沙星	11.50	1.0	101.3	7.5
诺氟沙星	11.50	50	91.6	4.1
环丙沙星	3.45	1.0	97.0	7.9
环丙沙星	3.45	50	97.7	4.0
恩诺沙星	3.01	1.0	97.2	5.0
恩诺沙星	3.01	50	95.8	1.8
达氟沙星	0.17	1.0	99.7	5.3
达氟沙星	0.17	50	94.6	5.1
马波沙星	0.07	1.0	84.8	8.2
马波沙星	0.07	50	107.4	4.4
二氟沙星	0	1.0	126.7	2.2
二氟沙星	0	50	136.1	1.5
沙拉沙星	0	1.0	139.7	2.8
沙拉沙星	0	50	114.2	3.3
氟甲喹	0.19	1.0	97.8	3.3
氟甲喹	0.19	50	100.8	1.4
那氟沙星	0.11	1.0	104.0	7.4
那氟沙星	0.11	50	88.8	2.3

3) 在采集的广东某海湾海洋沉积物样品中,检测出 6 种不同含量的 FQs,其中培氟沙星检出质量分数最高,为1.6 μg·kg⁻¹,氧氟沙星、环丙沙星和恩诺沙星质量分数次之,为0.7 μg·kg⁻¹。

参考文献

- LESHER G Y, FROELICH E J, GRUETT M D, et al. 1,8-naphthyridine derivatives. A new class of Chemotherapeapeutic agents[J]. Medicinal Chemistry, 1962, 91(91): 1063-1065.
- [2] VAN DOORSLAER X, DEWULF J, VAN LANGENHOVE H, et al. Fluoroquinolone antibiotics: An emerging class of environment micropollutants[J]. Science of the total environment, 2014, 500-501: 250-269.
- [3] TUFA R A, PINACHO D G, PASCUAL N, et al. Development and validation of an enzyme linked immunosorbent assay for fluoroquinolones in animal feed[J]. Food Control, 2015, 57: 195-201.
- [4] GAO H, ZHANG L X, LU Z H, et al. Complex migration of antibiotic resistance in natural aquatic environments[J]. Environment Pollution, 2018, 232: 1-9.
- [5] AUST M O, GODLINSKI F, TRAVIS G R, et al. Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle[J]. Environmental Pollution, 2008, 156(3): 1243-1251.
- [6] LIU X, STEELE J C, MENG X Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review[J]. Environmental Pollution, 2017, 223: 161-169.
- [7] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49: 6772-6782.
- [8] XU W H, ZHANG G, ZOU S C, et al. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometr[J]. Environmental Pollution, 2007, 145(3): 672-679.
- [9] 刘珂. 胶州湾典型海岸带沉积物中喹诺酮抗生素时空分布特征及风 险评价[D]. 青岛: 青岛大学, 2018.
- [10] 王同飞,张伟军,李立青,等. 白洋淀清淤示范区沉积物中抗生素和多 环芳烃的分布特征与风险评估[J]. 环境科学, 2021, 42(11): 5303-5311.
- [11] 刘四光,张乐蒙,李赫男,等. 闽江河口区沉积物中的抗生素分布特征 及生态风险评价[J]. 应用海洋学学报, 2020, 39(2): 162-171.
- [12] GONZALEZ-PLEITER M, GONZALO S, RODEA-PALOMARES I, et al. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment[J]. Water Research, 2013, 47(6): 2050-2064.
- [13] PADHYE L P, YAO H, KUNG'U F T, et al. Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant[J]. Water Research, 2014, 51: 266-276.
- [14] 张运尚, 杜加茹, 王伟东, 等. 氟喹诺酮类药物残留限量及检测技术研 究进展[J]. 中国畜牧杂志, 2021, 57(4): 39-44.
- [15] 柴丽月,柳海,梁芹芹,等.宁波市水产品中氟喹诺酮类药物残留现状 分析及对策[J].检验检疫刊,2020,30(1):25-27.
- [16] 农业农村部渔业渔政管理局. 2021年全国渔业统计年鉴[M]. 北京: 中 国农业出版社, 2021.
- [17] AXLER R, TIKKANEN C, MCDANOLD M, et al. Water quality issues

as sociated with aquaculture: A case study in mine pit lakes[J]. Water Environment Research, 1996, 68: 995-1011.

- [18] MATSUI Y, OZU T, INOUE T, et al. Occurrence of a veterinary antibiotic in streams in a small catchment area with livestock farms[J]. Desalination, 2008, 226(1/2/3): 215-221.
- [19] CAMPAGNOLOA E R, JOHNSON K R, KARPATIA A, et al. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations[J]. Science of the Total Environment, 2002, 299(1/2/3): 89-95.
- [20] HERRERA-HERRERA A V, HERNNDEZ-BORGES J, BORGES-MIQUEL T M, et al. Dispersive liquid-liquid microextraction combined with ultra-high performance liquid chromatographyfor the simultaneous determination of 25 sulfonamide and quinolone antibiotics in water samples[J]. Pharmaceutical and Biomedical Analysis, 2013, 75: 130-137.
- [21] HERRERA-HERRERA A V, HERN NDEZ-BORGES J, BORGES-MIQUEL T M, et al. Dispersive liquid-liquid microextraction combined with nonaqueous capillary electrophoresis for the determination of fluoroquinolone antibiotics in waters[J]. Electrophoresis, 2010, 31(20): 3457-3465.
- [22] RODRIGUEZ E, NAVARRO-VILLOSLADA F, BENITO-PENA E, et al. Multiresidue determination of ultratrace levels of fluoroquinolone antimicrobials in drinking and aquaculture water samples by automated online molecularly imprinted solid phase extraction and liquid chromatography[J]. Analytical Chemistry, 2011, 83(6): 2046-2055.
- [23] GROS M, RODRGUEZ-MOZAZ, BARCEL D. Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry[J]. Journal of Chromatography A, 2012, 1248: 104-121.
- [24] ZHOU J L, MASKAOUI K, LUFADEJU A. Optimization of antibiotic analysis in water by solid-phase extraction and high performance liquid chromatography-mass spectrometry/mass spectrometry[J]. Analytica Chimica Acta, 2012, 731: 32-39.
- [25] DORIVAL-GARC N, ZAFRA-G MEZ A, CANTARERO S, et al. Simultaneous determination of 13 quinolone antibiotic derivatives in wastewater samples using solid-phase extraction and ultra performance liquid chromatography-tandem mass spectrometry[J]. Microchemical Journal, 2013, 106: 323-333.
- [26] PRIETO A, SCHRADER S, BAUERC, et al. Synthesis of a molecularly imprinted polymer and its application for microextraction by packed sorbent for the determination of fluoroquinolone related compounds in water[J]. Analytica Chimica Acta, 2011, 685(2): 146-152.
- [27] HUANG X J, QIU N N, YUAN D X, et al. Preparation of a mixed stir bar for sorptive extraction based on monolithic material for the extraction of quinolones from wastewater[J]. Journal of Chromatography A, 2010, 1217(16): 2667-2673.
- [28] RUSU A, HANCU G, V LGYI G, et al. Separation and determination of quinolone antibacterials by capillary electrophoresis[J]. Journal of Chromatographic Science, 2014, 52(8): 919-925.

- [29] 郝燕娟, 李汉敏, 叶卓霖, 等. 饲料中喹诺酮酸酯药物的测定液相色 谱-串联质谱法[J]. 广东饲料, 2018, 27(11): 41-45.
- [30] 周鑫, 张建雄, 李继丰, 等. 超高效液相色谱串联质谱法测定饲料中 7种氟喹诺酮类药物[J]. 养殖与饲料, 2018(1): 4-6.
- [31] 李妍, 闫蕊, 王孝研, 等. 动物源性食品中氟喹诺酮类抗生素残留检测 方法的研究进展[J]. 食品安全质量检测学报, 2019, 10(10): 2918-2928.
- [32] 张宏博, 王洋, 王燕, 等. 肉制品中喹诺酮残留检测[J]. 食品安全导刊, 2018(31): 54-59.
- [33] 魏丹, 国明, 张菊. 加速溶剂萃取-磁固相萃取-高效液相色谱-串联质 谱法测定水产品中10种氟喹诺酮类药物残留[J]. 色谱, 2020, 38(12): 1413-1422.
- [34] 钱卓真,朱世超,魏博娟,等.高效液相色谱-串联质谱法测定水产品 中19种喹诺酮类药物残留量[J].中国渔业质量与标准,2012(3):68-76.
- [35] 李娟,肖国生,陈一资,等.可食用动物组织中喹诺酮类药物的多残留
- (责任编辑:郑晓梅,曲娜)

分析: 前处理方法[J]. 卫生研究, 2007, 36(5): 646-651.

- [36] 乔庆东,吴云钊,庄景新,等.固相萃取-高效液相色谱-串联质谱法测 定畜禽肉中3种抗生素残留量[J].中国卫生检验杂志,2022,32(5): 536-539.
- [37] 丁紫荣,黎玉清,王雄,等.固相萃取-液相色谱-三重四极杆串联质谱 测定养殖废水中17种氟喹诺酮类抗生素[J].环境工程学报,2022, 16(2):674-683.
- [38] 姜明宏, 王金鹏, 赵阳国. 固相萃取-高效液相色谱-串联质谱法同时测 定海水中12种抗生素[J]. 中国海洋大学学报(自然科学版), 2021, 51(10): 107-114.
- [39] 薛鸣,杨凡绪,金铨,等.固相萃取-超高效液相色谱-串联质谱法测定 水样中17种磺胺类抗生素[J].中国卫生检验杂志,2020,30(13):1537-1541.
- [40] 中华人民共和国生态环境部. 近岸海域环境监测技术规范 第四部分 近岸海域沉积物监测: HJ 442.3-2020[S]. 北京: 中国环境科学出版社, 2020.

Determination of 13 fluoroquinolones antibiotics in marine sediments using LC-MS/MS coupled with solid phase extraction

LI Xiangxiang¹, CUI Changzheng¹, WANG Xiong², DING Zirong^{2,*}, YAN Yanan², JIN Meng², XU Wenjie²

 School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; 2. South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510000, China *Corresponding author, E-mail: 505917972@qq.com

Abstract In order to explore the pollution status of FQs in marine sediments, a method was developed for the determination of 13 target fluoroquinolones antibiotics (FQs) in marine sediments by liquid chromatographytriple quadruple tandem mass spectrometry coupled with solid phase extraction (SPE-LC-MS/MS). All FQs were isolated and quantified by LC-MS/MS under multi-reaction monitoring (MRM) mode. Results showed that under the optimal conditions, the mass concentrations of all 13 targets were 0.5~100 μ g·L⁻¹, and a good linear relation occurred between above concentration and the peak area ratio of target compound to internal control standard compound with correlation coefficients higher than 0.99, the detection limit (MDL) of this method was 0.003~0.03 µg·kg⁻¹. The average recovery rates of blank spiking were in the ranges of 73.5%~124.6% and 67.5%~118.5% with the relative standard deviations (RSDs) from 1.0% to 9.7% (n=7) with two spiked levels of 1.0 and 10 $\mu g k g^{-1}$. The average recoveries of 13 FQs with spiking in the marine sediments in the Pearl River estuary samples were $67.7\% \sim 142.4\%$ with RSDs < 10.2% (n=6). This method was used to detect 13 kinds of FQs residues in marine sediment of a bay area in Guangzhou, pefloxacin showed the highest mass fraction of 1.6 $\mu g \cdot k g^{-1}$, ofloxacin, ciprofloxacin and enrofloxacin were following with the mass fraction of 0.7 $\mu g \cdot k g^{-1}$. The method could rapidly and accurately detect 13 kinds of FQs in marine sediments at the same time, and was suitable for the determination of 13 FQs in marine sediments. The research results can provide data basis and technical support for marine ecological environment protection.

Keywords solid phase extraction-high performance liquid chromatography-triple quadrupole tandem mass spectrometry(SPE-LC-MS/MS); marine sediment; fluoroquinolone antibiotics; method optimization