

口库 mental Web	<mark>环境工程学报</mark> ^{Chinese Journal of Environmental Engineering}	第 17卷 第 6期 2023年 6月 Vol. 17, No.6 Jun. 2023
http://www.cjee.ac.cn	E-mail: cjee@rcees.ac.cn	(010) 62941074
文章栏目:大气污染防	访治	./*
DOI 10.12030/j.cjee.202	2212016 中图分类号 X511	文献标识码 A

李宏玉, 蔡云凯, 祝能, 等. DBD 结构对船用 LNG 发动机尾气 CH₄ 氧化脱除的影响[J]. 环境工程学报, 2023, 17(6): 1886-1896. [LI Hongyu, CAI Yunkai, ZHU Neng, et al. Effect of DBD structure on oxidative removal of CH₄ from marine LNG engine exhaust[J]. Chinese Journal of Environmental Engineering, 2023, 17(6): 1886-1896.]

DBD 结构对船用 LNG 发动机尾气 CH₄ 氧化脱除 的影响

李宏玉1,蔡云凯1,应,祝能2,相闯1,蒋顺豪3,吕林

1. 武汉理工大学船海与能源动力工程学院,武汉 430063; 2. 武汉科技大学汽车与交通工程学院,武汉 430081; 3. 潍柴动力股份有限公司,潍坊 261061

摘 要 为提高等离子体氧化 CH₄ 的脱除效率,同时避免放电过程中副产物 NO_x 的生成,在模拟天然气 (LNG) 发动机排气中,研究了介质阻挡放电 (DBD) 反应器电极结构参数对 CH₄ 脱除效率、CO₂ 选择性及 NO_x 生成的影响及其机理。结果表明:增大电极直径使得气隙中折合场强 E/N 提高,增加了·O和·OH自由基的生成,促进了 CH₄ 的氧化,提高了 CO₂ 选择性;内电极直径的增大使 E/N 在气隙中分布更加集中,抑制了 N₂(X, v) 和 N 自由基的生成,减少了副反应的发生。与圆杆电极相比,螺纹电极的螺牙顶部附近具有过高的电场强度,从而促进 N 自由基的生成并抑制·O 自由基的产生,故圆杆电极比螺纹电极具有更高的 CH₄ 脱除效率及更低的 NO_x 生成。电极长度过长降低了折合场强以及电子平均能量,不利于氧化性活性粒子生成,导致 CH₄ 脱除效率和 CO₂ 选择 性降低,同时增加了 N₂(X, v),也使得 NO_x增加。本研究可为提高低温等离子体协同催化剂促进甲烷还原 NO_x系统的脱除效率,降低 DBD 反应器能耗提高能源利用率提供参考。 关键词 等离子体;DBD;结构参数;CH₄氧化脱除;NO_x生成

大键问 寺离于体; DBD; 结构参数; CH_4 氧化脱际; NO_x 生成

液化天然气 (liquefied natural gas, LNG) 作为船用发动机替代燃料。LNG 替代常规燃料,可使 得 PM 和 SO_x 的排放显著降低^[1-2]。同时,LNG 的碳氢比 (C/H) 低,相比柴油可减少约 30% 的 CO₂ 排放^[3],其推广使用对于我国实现双碳目标、改善能源结构具有重要意义。然而,由于 LNG 发动机甲烷逃逸问题,其排放物中存在 CH₄。采用低压喷射的 LNG 发动机,CH₄ 排放量一般 为 3.0~5.0 g·kWh^{-1[4]}。CH₄ 是全球第二大温室气体,其全球增温潜势 (global warming potential,GWP) 是二氧化碳的 21 倍^[5]。为控制 LNG 发动机 CH₄ 排放,2016 年 8 月发布的《船舶发动机排气污染物 排放限值及测量方法 (中国第一、二阶段)》规定,根据不同机型及单缸排量,LNG 发动机的 CH₄ 排放量不应超过 1.0~2.0 g·kWh^{-1[6]}。

船用 LNG 发动机通常采取缸内稀薄燃烧,导致发动机排气温度较低 (250~400 ℃),同时排气 为富氧状态,限制了三元催化的使用。目前,尾气中 CH₄ 的脱除主要依靠贵金属催化剂,但贵金 属催化剂的成本高且低温活性 (<500 ℃)和抗水性较差^[7]。引入低温等离子体 (non-thermal plasma, NTP) 技术可提高催化剂低温活性和抗水性,同时 NTP 结合催化剂作用系统被证明可有效促进

收稿日期: 2022-12-03; 录用日期: 2023-03-11

基金项目: 国家重点研发计划项目 (2019YFE0104600)

第一作者: 李宏玉 (1997—), 女,硕士研究生, Lihongyu@whut.edu.cn; ⊠通信作者: 蔡云凯 (1993—),男,博士, caiyunkai@whut.edu.cn

CH₄催化还原 NO_x^[8-15]。但由于 NTP 的加入、排气中 N₂和 O₂ 的存在,会导致额外 NO_x 的生成,从 而降低了系统中 NO_x 的脱除效率,且其生成量随着放电功率的升高而显著增大^[11]。NO_x 长期吸入 会对人体内脏的功能造成严重伤害,甚至威胁生命安全^[16-17]。此外,NO_x 也是造成光化学烟雾、雾 霾和酸雨等有害天气的重要因素之一^[18-19],故降低系统中 NO_x 的生成是必要的。优化等离子体反应 器结构参数可有效抑制 NO_x 的生成^[20-25]。赵如金等^[21] 用催化剂结合等离子体处理汽油机尾气发 现,当放电间隙为 2.5~3.5 mm 时,3种污染物的去除率变化均小于 3%,但放电间隙增大到 4 mm 时,脱除效率下降明显 (约 10%)。研究者在富氧条件下研究 NTP 反应器结构参数对 NO 氧化脱除 的影响^[23-24],以 860×10⁻⁶ NO_x (92% NO+8% NO₂) / 15% O₂ / N₂模拟柴油机尾气,发现增大电极直径 使·O 自由基生成效率增加,减少 N₂(X, v) 和 N 生成,从而抑制了副反应的生成,提高了 NO_x氧化 效率;而螺纹形电极表面电场强度远高于圆柱形电极,有利于 N 自由基生成,使得在富氧条件 下,更易发生副反应生成 NO_x。

针对低温等离子体脱除 CH₄的研究仍较少,为明确 NTP 结构参数对 CH₄ 脱除效率及 NO_x 生成 的影响,考虑实际 LNG 发动机尾气,本课题组在 625×10⁻⁶ NO/1820×10⁻⁶ CH₄/10% H₂O/6% O₂/N₂ (余) 气体组分下,针对单独低温等离子体脱除 CH₄、降低 NO_x (NO、NO₂) 生成系统研究等离子体反应器 电极结构参数对系统 CH₄ 脱除效率及 NO_x 生成的影响及其机制,以期为提高 NTP 结合催化剂一体 化处理 CH₄ 和 NO_x 系统脱除效率提供参考。

1 实验部分

实验装置示意图如图 1 所示。模拟尾气的流量和各气体组分体积分数由质量流量控制器 (mass flow controller, MFC)调节,水蒸气由水泵控制其体积分数调节和通入,所有气体组分通过混合器内充分混合后进入汽化器,完成模拟尾气的配制。随后反应气体进入配气气路或反应气路。反应气路装有预热炉和反应器,反应器包含加热炉与等离子体发生器。汽化器后的管路均缠有加热带维持气体温度。反应器前后均放置有温、压传感器,以测量反应前后气体的温度和压力。

如图 2 所示,实验所用等离子体发生器 为圆柱型介质阻挡放电器 (dielectric barrier discharge, DBD),由外电极、放电电极 (内电 极)以及绝缘介质组成,外接电源及示波器。 阻挡介质为一个内径 20 mm、外径 24 mm 的 陶瓷管。陶瓷管外壁包裹铁网作为外电极, 管内插入一根不锈钢棒作为放电电极。放电 区间长度为 50 mm。所用等离子体反应器电源

为高压、高频交流电源型号为 CTP2000K,由南京苏曼等离子体有限公司生产;电源频率变化范围 为 5~25 kHz,电源输出电压为 0~25 kV,最大输出功率为 500 W;电源输出电压测量采用型号为 TEK P6015A 的高压探头,最高电压 20 kV,测量衰减倍数为 1 000 倍;所用数字示波器型号为 TEK TBS1052B,采样频率 1 GS/s,带宽 50 MHz;所用气体分析仪型号为 Antaris IGS,由美国 Thermo

Fisher Scientific 公司生产。

实验所用 N_2 、 O_2 气体均为纯气,所用 NO、 CH_4 气体中 N_2 的体积分数分别为 1%、10%。为模 拟实际 LNG 发动机尾气,将气体总流量恒定为 3 300 mL·min⁻¹;气体组分为 10% H₂O/6% O_2 /1 820× 10⁻⁶ CH_4 /625×10⁻⁶ NO/ N_2 (余)。等离子体放电频率固定为 10 kHz。模拟排气温度为 400 %。放电电极 直径分别为 14、16、18 mm;电极形状为圆杆/螺纹;通过改变外电极长度来改变电极长度,电极 长度分别为 50、75、100 mm。

DBD 反应器放电功率由放电电压 (即电源 输出电压) 调整,通常利用李萨如图形法测量 计算放电功率 (图 3)。图形围成的面积代表一 个循环放电的放电能量,放电功率的计算公 式见式 (1)。

$$P = fC_{\rm m}K_{\rm x}K_{\rm y}KA \tag{1}$$

式中: f为放电频率; C_m 为与 DBD 反应器串 联的电容, 0.47 μ F; K_x 为示波器 X 轴灵敏度, V/格; K_y 为示波器 Y 轴灵敏度, V/格; K为高 压探头衰减倍数, 1000:1; A为示波器中李萨 如图形围成的面积。

图 3 实验过程中测量的李萨如图形 Fig. 3 Lissajous figure measured in test

为评价 DBD 反应器能耗,定义放电能量密度^[26] (the specific energy density, SED) 的公式为式 (2)。 CH₄ 的转化效率计算见式 (3)。CO₂ 的选择性计算见式 (4)。

$$SED = \frac{P}{Q} \times 60 \tag{2}$$

$$\eta_{\rm CH_4} = \frac{\phi_{\rm CH_{4im}} - \phi_{\rm CH_{4out}}}{\phi_{\rm CH_{4in}}} \times 100\%$$
(3)

$$\alpha_{\rm CO_2} = \frac{(\phi_{\rm CH_{4in}} - \phi_{\rm CH_{4out}}) - \phi_{\rm CO_{out}}}{\phi_{\rm CH_{4in}} - \phi_{\rm CH_{4out}}} \times 100\%$$
(4)

式中:SED为放电能量密度,J-L⁻¹; *P*为 DBD 放电功率,W;*Q*为模拟尾气总流量,L·min⁻¹。 η_{CH_4} 为 CH₄ 脱除效率: $\phi_{CH_{4m}}$ 为反应器入口 CH₄体积分数; $\phi_{CH_{4out}}$ 为反应器出口 CH₄体积分数。 α_{CO_2} 为 CO₂选择性; ϕ_{CO_2} 为反应器出口 CO 体积分数。

2 结果与讨论

2.1 DBD 反应器内电极直径的影响

2.1.1 DBD反应器内电极直径对脱除效率的影响

图 4 为 NTP 作用下内电极直径对系统 CH₄ 脱除效率、NO_x 生成的影响。随着能量密度的升高, CH₄ 脱除效率呈线性增大,且内电极直径越大、CH₄ 脱除效率越大。当内电极直径为 16 或 18 mm时,在能量密度升高过程中,NO_x体积分数先降低后升高;同时,增大内电极直径可减少副反应的发生,降低 NO_x生成。

增大内电极直径使得 DBD 反应器的气隙减小,从而在相同电源电压下提高了气隙内的折合场 强 E/N (电场强度与气体粒子数密度的比值),同时使 E/N 在放电间隙内分布更均匀^[27]。折合场强对 放电间隙内的碰撞反应及 CH₄氧化和 NO_x 生成具有重要影响, CH₄、O₂和 H₂O 解离生成的 CH₃、 CH₂、·O 和·OH 自由基,是促进 CH₄氧化的重要活性物质^[12];同时,对于副反应,需考虑 N₂(A)、 N₂(X, v) 及 N 自由基等活性物质,被认为是产生 NO 的重要反应物^[28]。

图 4 NTP 作用下内电极直径对系统 CH4 脱除效率、NO, 生成的影响

Fig. 4 Effect of inner electrode diameter on CH₄ removal efficiency and NO_x generation of the system under NTP

为解释上述实验结果,对这些关键的活性物质的生成效率和折合场强 E/N 的关系进行计算。 电子碰撞相关的等离子体化学反应效率计算参考式 (5)^[29]。

$$G-value = 100k/(v_d E/N)$$
(5)

式中: *k* 为电子碰撞反应的速率常数; *v*_d 为电子漂移速率; Gvalue 为每输入 100 eV 能量可发生的相 关电子碰撞反应的次数, 个。

化学反应速率常数 k 表示单位时间单位体积发生的化学反应次数,计算参考式 (6); v_dE/N 表示单位时间单位体积内所消耗的能量。电子漂移速率 v_d 可由 f₀ 计算参考式 (7)^[30];电子平均能量 ε计算公式见式 (8)。

$$k = \sqrt{\frac{2e}{m}} \int_{0}^{\infty} \varepsilon \sigma_{k} f_{0} d\varepsilon$$
(6)

$$v_d = -\frac{E}{3N} \sqrt{\frac{2e}{m}} \int_0^\infty \frac{\varepsilon}{Q} \frac{\partial f_0}{\partial \varepsilon} d\varepsilon$$
(7)

$$\bar{\varepsilon} = \int_{0}^{\infty} \varepsilon^{3/2} f_0 \mathrm{d}\varepsilon \tag{8}$$

式中: σ_k 为电子碰撞反应 k的碰撞截面; e为电子电荷; m为电子质量。电子碰撞截面数据通过 LXCat 获取^[31-33]。Q为有效总动量传递截面。 $\bar{\varepsilon}$ 为电子平均能量; f_0 为电子能量分布的各向同性部分。

理论计算结果如图 5 所示。图 5 (a) 表明,增大放电电压,折合电场强度增大,使得电子平均能量升高,增加了放电间隙内的碰撞反应,促进了部分活性粒子的生成。图 5 (b) 展示了折合场强对各电子碰撞反应能量效率的影响,随着折合场强 E/N (100-250 Td) 的增大,Gvalue 迅速减小,同时 CH₄、H₂O 及 O₂ 的离解反应式 (9~11) 和 (14~15) 的Gvalue 显著提高。N₂ (9.8 eV) 的离解能高于 O₂ (5.1 eV),故在初放电阶段,O自由基比 N自由基更容易形成^[34],O、OH和 O₃ 首先在 DBD 反应器中生成 (式 (11)、(16~18)),促进 CH₄ 的氧化 (式 (19)~(23))^[35]。随着 SED 的增加,E/N 进一步增加 (E/N >250 Td),反应式 (13) 的 Gvalue 迅速增大。在富氧条件下,N自由基生成效率增加,与O、O₂和 O₃ 发生副反应生成 NO (式 (24)~(26))^[36],从而导致 NO_x 的生成。

$$e + CH_4 \rightarrow CH_3 + H + e \tag{9}$$

$$e + CH_4 \rightarrow CH_2 + H_2 + e \tag{10}$$

$$e + H_2 O \to OH + H + e \tag{11}$$

1889

图 5 折合场强对平均电子能量及各电子碰撞反应能量效率的影响

Fig. 5 The effect of reduced electric field intensity on average electron energy and energy efficiency of each electron collision reaction

$$e + N_2 \rightarrow N_2 \left(A^3 \sum_g \right) + e$$
 (12)

$$e + N_2 \rightarrow N + N + e \tag{13}$$

$$e + O_2 \to O + O + e \tag{14}$$

$$e + N_2 \rightarrow N_2(v) + e \tag{15}$$

$$\mathbf{e} + \mathbf{O}_2 \to \mathbf{O} + O\left({}^1D\right) + \mathbf{e} \tag{16}$$

$$\mathbf{O} + \mathbf{O}_2 + \mathbf{N}_2 \to \mathbf{O}_3 + \mathbf{N}_2 \tag{17}$$

$$O + O_2 + O_2 \rightarrow O_3 + O_2 \tag{18}$$

$$O + CH_4 \to CH_3 + OH \tag{19}$$

$$CH_4 + OH \rightarrow CH_3 + H_2O \tag{20}$$

$$O + CH_3 \rightarrow CO + H_2 + H \tag{21}$$

$$CH_2 + O \rightarrow CO + H_2 \tag{22}$$

$$O_2 + CO \rightarrow CO_2 + O \tag{23}$$

$$N + O + N_2 \rightarrow NO + N_2 \tag{24}$$

$$N(^{2}D) + O_{2} \rightarrow NO + O$$
⁽²⁵⁾

$$N + O_3 \rightarrow NO + O_2 \tag{26}$$

因此,内电极直径增大使得折合场强 E/N 增加,平均电子能量增大,增加了放电间隙内的碰撞反应,促进了 CH₄ 的解离及 O、OH 自由基的生成,从而促进 CH₄ 的氧化,增大了 CH₄ 的脱除效率^[25,37-38]。此外,增大内电极直径使得气隙中 E/N 分布更均匀,抑制了 N₂(X, v)、N₂(A) 和 N 自由基的生成,亦减少了副反应 (式 (24)~(29))的发生,使 NO_x 的生成更少。

$$N_2(X,v) + O \rightarrow NO + N \tag{27}$$

$$N + O_2 \rightarrow NO + O \tag{28}$$

$$N_{2}\left(A^{3}\sum_{g}\right) + O \rightarrow NO + N\left(^{2}D\right)$$
⁽²⁹⁾

图 6 表示不同电极直径下 SED 和放电电压之间的关系,说明在相同的 SED 下,放电电压随内电极直径的增大而减小。

图 6 不同电极直径下 SED 和放电电压之间的关系

Fig. 6 Relation between SED and discharge voltage under different electrode diameters

同轴圆柱形 DBD 反应器的击穿电压 (U_b) 可按式 (30)^[39] 计算。

$$U_{\rm b} = \frac{BPd}{\ln\frac{APd}{1+\frac{1}{\gamma}}} \tag{30}$$

式中: U_b 表示击穿电压,V;P表示气压,Pa;d表示电极间的距离,mm; γ 表示二次电子发射效率;A和B表示气体相关性。

式 (30) 表明,增加内电极的直径可减少电极之间的距离 (*d*),从而降低击穿电压 (*U_b*) 使气体 放电更容易。因此,间隙较小的 DBD 反应器具有更好的放电性能,在相同的 SED 下具有更高的 CH₄ 脱除效率。

此外,根据汤森放电理论(式(31)),放电电流随着气隙的增加呈指数增长[4041]。

$$I = I_0 e^{\alpha x} \tag{31}$$

式中:I表示放电电流,A; I_0 为阴极流出的初始电流,A;x为放电间隙,mm; α 为电子碰撞电离系数。

式 (31) 表明, 间隙越大 (x) 系统具有较强的电子雪崩效应和较高的电流增长率。因此, 如图 6 所示, 电极直径较小的 DBD 反应器在 SED 增加期间的放电电压变化较小。这表明电极直径较小的 DBD 反应器需要消耗更多 SED, 以提高放电电压和 E/N。此外, 较强的电子雪崩效应会导致 DBD 反应器的热损失较大, 这也增加了能量消耗。虽然电子雪崩作用会使得内电极直径小的反应 器能耗增加, 但也提高了放电电压和折合场强。然而, 无论如何提高外加电压, 内电极直径为 14 mm 和 16 mm 时的 CH₄ 脱除效率均低于内电极直径为 18 mm 时的 CH₄ 脱除效率,且 NO_x 生成量 也持续高于内电极直径为 18 mm 的反应器。因此, 增大 DBD 反应器内电极直径可降低能量消耗, 提高能量效率。

2.1.2 DBD反应器内电极直径对CO,选择性的影响

图 7 为 NTP 作用下内电极直径对 CO2 选择性的影响。随着能量密度的升高, CO2 选择性呈线

性增大,且内电极直径越大,CO₂选择性越大。等离子体催化反应过程中,很少有碳的还原反应发生,几乎全部的CH₄都被氧化为CO、CO₂^[11]。增大能量密度,会使得反应器放电间隙内的折合场强增大,从而增加间隙内的氧化性活性粒子O(¹D)、OH、HO₂等,使CH₄部分氧化反应产物CO及中间产物CH₂、CH更多地转化为CO₂(式(32)~(39))。同时,增大内电极直径也使得折合场强和平均电子能量出现增大,从而促进CO等粒子的

$$CO + OH \rightarrow CO_2 + H$$
 (32)

$$CO + O + M \rightarrow CO_2 + M \tag{33}$$

$$CO + HO_2 \rightarrow CO_2 + OH$$
 (34)

$$CO + O_3 \rightarrow CO_2 + O_2$$
 (35)

$$\operatorname{CO} + \operatorname{O}({}^{1}\operatorname{D}) \to \operatorname{CO}_{2}$$
 (36)

$$CH_2 + O_2 \rightarrow CO_2 + H_2 \tag{37}$$

$$CH_2 + O_2 \rightarrow CO_2 + 2H \tag{38}$$

$$CH + O_2 \rightarrow CO_2 + H \tag{39}$$

2.2 DBD 反应器内电极形状的影响

2.2.1 DBD反应器内电极形状对脱除效率的影响

图 8 为 NTP 作用下内电极形状对 CH₄ 脱除效率和 NO_x 生成的影响。随着能量密度从 0 升至 500 J·L⁻¹,相比于螺纹电极,使用圆杆电极时系统 CH₄ 的脱除效率更高,NO_x 生成更少。

为分析其机理,采用 COMSOL 模拟了不同内电极形状的 DBD 反应器气隙中电场强度 E 的分

图 8 内电极形状对 CH₄ 脱除效率、NO_x 生成的影响

Fig. 8 Effect of inner electrode shape on CH₄ removal efficiency and NO_x generation

氧化。

布 (内电极直径 18 mm,放电间隙 1 mm)。所施加的电压为 5 kV,刚玉陶瓷相对介电常数为 9.8,气体的相对介电常数为 1。图 9 表明,螺杆顶部附近的几何形状尖锐,容易使电荷堆积,电场强度 (E)远高于杆电极的表面,且 E/N 在放电间隙内分布不均匀,促进了 N 自由基的生成^[42],导致了 NO_x 的生成。此外,过高 E/N 使·O 自由基的生成效率降低,亦降低了 CH₄ 的氧化效率。因此,在 富氧条件下,螺纹内电极 DBD 反应器的 CH₄ 脱除效率更低,发生副反应生成的 NO_x更多。

Fig. 9 Distribution of electric field intensity in air gap of DBD reactor with different inner electrode shapes

2.2.2 DBD反应器内电极形状对CO₂选择性的影响

图 10 为 NTP 作用下内电极形状对 CO₂ 选 择性的影响。内电极形状对 CO₂ 选择性的影 响较小,相对于螺纹电极,使用圆杆电极的 反应器 CO₂ 选择性高、CO 选择性低。如 2.2.1 所述,螺纹电极间隙内场强分布不均匀,螺 牙附近的折合场强过高,使得·O 自由基的生 成速率降低,从而抑制了 CO₂ 的生成。且螺 纹的存在部分增大了放电间隙,降低了有效 范围内的折合场强,亦减少了氧化性粒子的

1894

2.3 DBD 反应器电极长度的影响

2.3.1 DBD反应器电极长度对脱除效率的影响

图 11 为 NTP 作用下电极长度对 CH₄ 脱除效率和 NO_x 生成的影响。随着能量密度从 0 升至 500 J·L⁻¹,相比于长度为 50 mm 和 75 mm 的电极,使用 100 mm 电极时系统 CH₄ 的脱除效率更低, 生成更多 NO_x。这与课题组关于电极长度对 NO 氧化脱除效率影响的研究结果在本质上是相似的。

Fig. 11 Effect of electrode length on CH4 removal efficiency and NOx generation

电极长度为 50 mm 或 75 mm 时 CH₄ 脱除效率和 NO_x生成无明显差异。为解释电极长度过长 (100 mm) 导致 CH₄ 脱除效率降低、NO_x增加的原因, 图 12 展示了电极长度对 DBD 放电电压峰峰值 的影响。对于不同电极长度的 DBD 反应器,放电电压随着能量密度的增加而增大,电极长度越 长,电压增长速率越小。同时,在相同能量密度下,100 mm长度电极反应器的放电电压峰峰值明 显小于 75 和 50 mm 长度电极反应器。这表明当能量密度相同时,100 mm 电极长度反应器可获得 的折合场强小,电子平均能量低。如图 5 所示,折合场强的降低使得 CH₄ 的分解反应 (R1~R2) 速率 降低,同时氧化性活性粒子 OH 生成 (R7) 速率降低,使 CH₄ 的氧化效率减小。但是折合场强的减 小反而增大了 N₂ (X,v) 生成速率 (R8),促进了副反应 (式 (14))的发生,从而增大了 NO_x体积分数。另外,虽然电极长度增加导致放电区间体积增大,气体停留时间增长。但在富氧条件下,DBD 放电区间内,氧化性自由基和气体振动激发态体积分数在几个放电周期内便达到平衡,此后随时间变化基本稳定^[43],故增大停留时间对脱除效率的影响并不明显。因此,电极长度过长会导致 CH₄ 脱除效率降低、NO_x增加,使反应器能耗增加。

. 12 Effect of electrode length on peak-to-peak valu DBD discharge voltage

NTP

2.3.2 DBD反应器电极长度对CO,选择性的影响

图 13 为 NTP 作用下电极长度对 CO₂ 选择性的影响。随着能量密度从 0 升至 500 J·L⁻¹,电极长度为 50 mm 或 75 mm 时 CO₂ 和 CO 选择性无明显差异,使用 100 mm 电极时系统 CO₂ 的选择性更低。如 2.3.1 所述,在相同能量密度时,100 mm 电极长度反应器放电间隙内的折合场强小,电子平均能量低,氧化性活性粒子少。因此,电极长度过长也会降低 CO₂ 选择性。

3 结论

1) 增大内电极直径使得 DBD 反应器的气隙减小,从而在相同电源电压下提高了气隙的折合场 强 E/N,增加了平均电子能量,因此更容易产生 O 和 OH 自由基促进 CH₄ 氧化为 CO₂。同时,增大 电极直径使得气隙中 E/N 变化减小,抑制了 N₂(X, v) 和 N 自由基的生成,且抑制了副反应的发生。 2) 螺纹电极的螺牙顶部附近的电场强度远高于圆杆电极的表面,促进了 N 自由基的生成,N 和 O 自由基等反应会生成更多的 NO_x。3) 电极长度过长使可以获得的折合场强小,电子平均能量低,不利于氧化性活性粒子生成,却促进了 N₂(X,v) 的生成,导致 CH₄ 脱除效率降低、NO_x增加。使用 圆柱型内电极、增大内电极直径、避免使用过长电极,可提高 CH₄ 脱除效率和 CO₂ 选择性、减少 NO_x生成。

参考文献

- ÆSØY V, MAGNE E P, STENERSEN D, et al. LNG-fuelled engines and fuel systems for medium-speed engines in maritime applications[C]// SAE Technical Paper 2011-01-1998, 2011
- [2] SCHINAS O B, BUTLER M A. Feasibility and commercial considerations of LNG-fueled ships[J]. Ocean Engineering, 2016, 122: 84-96.
- [3] INGEMAR N, MARCEL O. Development of a dual fuel technology for slow-speed engines[C]//第27届国际内燃机学会(CIMAC)大会论文集, 2013, 1-12
- [4] LINDSTAD E, ESKELAND G S, RIALLAND A, et al. Decarbonizing maritime transport: The importance of engine technology and regulations for LNG to serve as a transition fuel[J]. Sustainability, 2020, 12(21): 1-19.
- [5] IPCC. Climate change 2014: Synthesis report [R/OL]. [2021-01-10].https://www.cma.gov.cn/2011xzt/2014zt/20141103/2014050703/20 1411/P020141113358178198444.pdf
- [6] 环境保护部会同质检总局,船舶发动机排气污染物排放限值及测量 方法(中国第一、二阶段): GB15097-2016 [S]. 北京. 中华人民共和国 生态环境部, 2018
- [7] SHI Y, PU J L, GAO L W, et al. Selective catalytic reduction of NO_x with NH₃ and CH₄ over zeolite supported indium-cerium bimetallic catalysts for lean-burn natural gas engines[J]. Chemical Engineering Journal, 2020, 403(126394). 1-17.
- [8] ALVA É, PACHECO M, COLÍN A, et al. Nitrogen oxides and methane treatment by non-thermal plasma[J]. Journal of Physics Conference, 2015, 591(012052): 1-7.
- [9] HUU T P, GIL S, COSTA P D, et al. Plasma-catalytic hybrid reactor: Application to methane removal [J]. Catalysis Today, 2015: 86-92
- [10] PAN H, GUO Y H, JIAN Y F, et al. Synergistic effect of non-thermal plasma on NO_x reduction by CH_4 over an In/H-BEA catalyst at low temperatures[J]. Energy Fuels, 2015, 29(8): 5282-5289.
- [11] SHREKA M. 低温等离子体催化系统降低船用低压燃气发动机逃逸 甲烷的研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
- [12] GHOLAMI R, STERE C, CHANSAI S, et al. Optimization of nonthermal plasma-assisted catalytic oxidation for methane emissions abatement as an exhaust aftertreatment technology[J]. Plasma Chemistry

and Plasma Processing, 2022, 42(4): 709-730.

- [13] WEI L, PENG B, LI M, et al. Dynamic characteristics of positive pulsed dielectric barrier discharge for ozone generation in air[J]. Plasma Sci. Technol., 2016, 18(2): 147-156.
- [14] 董冰岩,李贞栋,宿雅威,等.高压脉冲介质阻挡放电协同金属有机骨架材料催化剂去除氮氧化物的实验研究[J].电工技术学报,2021, 36(13): 2740-2748.
- [15] 王晓玲, 高远, 张帅, 等. 脉冲参数对介质阻挡放电等离子体CH4干重 整特性影响的实验[J]. 电工技术学报, 2019, 34(6): 1329-1337.
- [16] INNES W. Effect of nitrogen-oxide emissions on ozone levels in metropolitan regions[J]. Environmental Science & Technology, 1981, 15(8): 904-912.
- [17] JEDRYCHOWSKI W, MAUGERI U, FLAK E. The effect of prolonged occupational exposure to the low concentrations of nitrogen oxides in combination with ammonia on chronic bronchitis and the lung function[J]. Giornale Italiano Di Medicina Del Lavoro, 1987, 9(3/4): 147-151.
- [18] XIE H W, ZHANG Y. The research status of acid rain[J]. Advanced Materials Research, 2013, 726-731: 4033-4036.
- [19] HUEBERT B. Computer modelling of photochemical smog formation[J]. 1974, 10(51): 644-645
- [20] 王伟彬,曹昌魁.船舶减排满足IMO Tier Ⅲ 法规的探讨与实践[J].中 国航海, 2017, 40(2): 108-111.
- [21] 赵如金,储金宇,王瑞静,等.粉煤灰小球协同低温等离子体处理汽车 尾气[J].高电压技术,2008,34(3):517-520.
- [22] 刘彤, 于琴琴, 王卉, 等. 等离子体与催化剂协同催化CH₄选择性还原 脱硝反应[J]. 催化学报, 2011, 32(9): 1502-1507.
- [23] 刘飞. 低温等离子体氧化NO的实验研究[D]. 武汉: 武汉理工大学, 2018
- [24] CAI Y K, LU L, LI P. Study on the effect of structure parameters on NO oxidation in DBD reactor under oxygen-enriched condition[J]. Applied Sciences, 2020, 10(19): 2-16.
- [25] 米彦, 万佳仑, 卞昌浩, 等. 基于磁脉冲压缩的DBD高频双极性纳秒脉 冲发生器的设计及其放电特性[J]. 电工技术学报, 2017, 32(24): 244-256.
- [26] DENYSENKO I, YU M Y, XU S. Effect of plasma nonuniformity on

electron energy distribution in a dusty plasma [J]. J. Phys. D: Appl. Phys. 2005, 38(3): 403-408

- [27] CAI Y K, LV L, LU X P. The Effects of inner electrode diameter on the performance of dielectric barrier discharge reactor for desulfurization and denitrification[J]. IEEE Transactions on Plasma Science, 2021, 49(2): 786-793.
- [28] FRIDMAN A. Plasma Chemistry[J]. Plasma Chemistry, 2008, 29(1): 355-362.
- [29] PENETRANTE B M, HSIAO M C, MERRITT B T, et al. Pulsed corona and dielectric-barrier discharge processing of NO in N₂[J]. Appl. Phys. Lett. 1996, 68, 3719-3721
- [30] YOSHIDA K, GOTO S G, TAGASHIRA H, et al. Electron transport properties and collision cross sections in CF[J]. Journal of Applied Physics. 2002, 91(5), 2637-2647
- [31] Community database, Available online: www. lxcat. net, retrieved on October 25, 2022.https://nl.lxcat.net/home/
- [32] TRINITI database, Available online: www. lxcat. net, retrieved on June 26, 2020.https://nl.lxcat.net/home/
- [33] Itikawa database, Available online: www. lxcat. net, retrieved on June 26, 2020.https://nl.lxcat.net/home/
- [34] ZHAO G B, GARIKIPATI S, HU X, ARGYLE M, et al. The effect of oxygen on nonthermal-plasma reactions of dilute nitrogen oxide mistures in N₂[J]. AIChE Journal. 2005, 51(6), 1813-1821
- [35] KOSSYI I, KOSTINSKY A, MATVEYEV A, et al. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures[J]. Plasma

(责任编辑: 靳炜)

Sources Sci. Technol. 1992, 1(3), 207-220

- [36] GUERRA V, SÁ P, LOUREIRO J. Role played by the N₂ (A3Σu+) metastable in stationary N2 and N₂-O₂ discharges[J]. Journal of Physics D Applied Physics, 2001, 34(12): 1745-1755.
- [37] PENG B, JIANG N, YAO X, et al. Experimental and numerical studies of primary and secondary streamers in a pulsed surface dielectric barrier discharge[J]. Journal of Physics D:Applied Physics, 2019, 52(32): 1-35.
- [38] 吴淑群, 董熙, 裴学凯, 等. 基于激光诱导荧光法诊断大气压低温等离 子体射流中OH自由基和O原子的时空分布[J]. 电工技术学报, 2017, 32(8): 82-94.
- [39] LATHAM R V. High Voltage Vacuum Insulation[M]. Academic Press, 1981
- [40] NEMMICH S, TILMATINE A, DEY Z, HAMMADI N, et al. Optimal Sizing of a DBD Ozone Generator Using Response Surface Modeling[J]. Ozone: Sci. Eng. 2015, 37(1), 3-8
- [41] NUR M. Plasma Technology Research and Its Applications: developing in the Faculty of Science and Mathematics Diponegoro University[C]// International Seminar on New Paradigm and Innovation on Natural Sciences and Its Application. 2013, 3
- [42] SUN B, WANG T, YANG B, et al. Effect of Electrode Configuration on NO Removal in a Coaxial Dielectric Barrier Discharge Reactor[J]. Journal of Chemical Engineering of Japan. 2013, 46(11), 746-750
- [43] WANG L N, ZHONG W L, ZHU A M, et al. Numerical simulation of OH and HO₂ radicals in dielectric barrier discharge plasmas[J]. Acta Physico-Chimica Sinica, 2008, 24(8): 1400-1404.

Effect of DBD structure on oxidative removal of CH₄ from marine LNG engine exhaust

LI Hongyu¹, CAI Yunkai^{1,*}, ZHU Neng², XIANG Chuang¹, JIANG shunhao³, LYU Lin¹

 School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China;
 School of Automotive and Transportation Engineering, Wuhan University of Science and Technology, Wuhan 430081, China;
 Weichai Power Co., Ltd., Weifang 261061, China

*Corresponding author, E-mail: caiyunkai@whut.edu.cn

Abstract In order to improve the removal efficiency of CH_4 by plasma and avoid the generation of the byproduct—NO_x, the influence of electrode structure parameters in the dielectric barrier discharge (DBD) reactor on CH_4 removal efficiency and NO_x generation, and its mechanism were studied under simulated liquified natural gas (LNG) engine exhaust. The results showed that the reduced field strength (E/N) in the air gap increased with the increase of inner electrode diameter. And the increase of E/N increased the formation of O and OH radicals, promoted the oxidation of CH_4 , and improved the CO_2 selectivity; At the same time, the increase of the inner electrode diameter made the distribution of E/N more concentrated in the air gap, inhibited the formation of N_2 (X, v) and N radicals, and reduced the occurrence of side reactions. Compared with the round rod electrode, the screw electrode had a higher electric field strength near the top of the thread, which promoted the generation of N free radicals and inhibited the generation of O free radicals. Therefore, the round rod electrode had a higher CH_4 removal efficiency and lower NO_x generation than the screw electrode. Excessive electrode length reduced the converted field strength and the average electron energy, which was not conducive to the generation of active particles, leading to the reduction of CH_4 removal efficiency, the reduction of CO_2 selectivity and the increase of NO_x .

Keywords plasma; DBD; structure parameter; CH_4 oxidative removal; NO_x generation