

第18卷第10期2024年10月 Vol. 18, No.10 Oct. 2024

(www) http://www.cjee.ac.cn

E-mail: cjee@rcees.ac.cn

(010) 62941074

DOI 10.12030/j.cjee.202401088 中图分类号 X703 文献标识码 A

高比表面积 Mn_xZr_{1-x}O_y 催化剂的制备及其在室温 下催化氧化甲醛的效果

唐瑞玖,施辉秋,郑振,贾丽娟,刘天成∞

云南民族大学化学与环境学院,云南省教育厅环境功能材料重点实验室,昆明 650504

摘 要 甲醛作为室内空气污染物之一,对人体产生的危害不可逆转。因此,高效去除甲醛成为研究热点之一。该研 究采用共沉淀法得到不同活性的 Mn,Zr1,_O、催化剂,利用 XRD、FT-IR、SEM、TEM、BET、XPS、O,-TPD 等方法对 材料进行了表征分析,评价了不同锰锆摩尔比在室温下催化氧化甲醛的影响效果。结果表明,锰与锆的摩尔比为 2:1 时反应得到的 Mn_{0.67}Zr_{0.33}O_v 催化氧化甲醛效果最好,去除率达到 100%,反应 50 h 后催化剂的活性仍在 90% 以 上。表征结果表明, Mn₀₆₇Zr₀₃₃O, 催化剂拥有最大的比表面积 (215.1 m²·g⁻¹), 加大了气体与催化剂的接触面积, 表面活 性氧和高价态 Mn 含量高成为催化剂性能优异的主要原因。 关键词 Mn_xZr_{1.x}O_y;甲醛;催化氧化;室温

甲醛 (HCHO) 是一类常见的室内空气污染物,主要来自建筑材料、家具和各种装饰材料^[1-3]。2000年, 世界卫生组织提出长时间接触甲醛的限值不应超过 0.2 mg·m^{-3[4]}。长期暴露于超过安全限制的 HCHO 可能会 引发严重的健康问题,比如眼睛、皮肤喉咙发炎以及咳嗽、支气管炎,甚至鼻咽癌和白血病[5-6]。因此,有效 清除甲醛对于改善空气质量和保护健康非常重要。各种去除 HCHO 的方法已在文献中报道,包括物理或化 学吸附^[7-8],等离子体技术^[9-10],光催化氧化^[11]和催化氧化(热和非热)。室温下催化氧化 HCHO 被认为是最 有前途的技术,可以完全转化为 CO, 和 H₂O,不会造成二次污染。

用于室温催化氧化 HCHO 的催化材料可分为两类:负载贵金属 (Pt、Pd、Au和 Ag) 和非贵金属氧化物 (MnO₂、CuO、TiO₂等)^[12]。负载贵金属催化剂在室温下具有较高的催化氧化 HCHO 为 CO₂ 和 H₂O,在 ZHANG 等^[13] 的研究中,二氧化钛负载铂在室温下氧化 HCHO 具有优异的催化性能;然而,贵金属催化剂 由于成本高、资源有限和热稳定性差,在实际应用中存在局限性[14]。为了取代贵金属催化剂,研究人员的目 标之一是寻找催化活性高、稳定性好的非贵金属催化剂。非贵金属多为过渡金属,含有不饱和的 d 轨道,容 易吸附反应物分子并活化,具有很好的催化活性[15-16]。Mn、Co、Ce、Cu等过渡金属的氧化物因具有多种化 合价态,经过预处理后会在催化剂表面产生缺陷进而增强吸附和活化 VOCs 的能力。由于具有独特的晶体结 构、高催化活性和低成本,二氧化锰是最有前途的甲醛催化剂之一[17]。氧化锆因其高腐蚀性,高机械和热阻 以及优异的氧迁移率成为一种有吸引力的过渡金属氧化物^[18-19]。单一锰氧化物在催化 VOCs 活性不理想,引 入第二金属组分 Zr 来对单一锰氧化物进行改性, 使之形成锰锆氧化物催化剂。DENG 等^[20] 采用溶胶-凝胶法 制备的 Mn₀₅Zr₀₅催化氯乙烯转化率可达 96%; 焦坤灵等^[21]采用溶胶凝胶法制备 Mn/Zr 负载稀土尾矿的 NH₃-SCR 催化剂,其脱硝活性可达 96%;谈冠希等^[22]采用柠檬酸络合法制备锰锆复合氧化物催化剂与纯相 MnO,相比, CO 催化还原 NO 活性有所提升。基于此,将 ZrO,掺杂到单一锰氧化物中,能够诱导更高的晶 格氧迁移率和高反应活性[23]。但使用锰锆氧化物去除甲醛方面的研究不多。

本研究采用简单的共沉淀法来制备 Mn,Zr,,,O, 催化剂,通过考察不同 Mn 与 Zr 摩尔比对室温催化氧化 甲醛的影响,筛选出催化氧化甲醛性能最佳的催化剂。结合各种表征手段,分析 Mn,Zr_{Lx}O,催化剂的催化性

收稿日期: 2024-01-17 录用日期: 2024-10-08

基金项目: 云南省中青年学术技术带头人储备人才项目 (202105AC160054)

第一作者: 唐瑞玖 (1999—), 女, 硕士研究生, 研究方向为大气污染控制, 17608714739@163.com 区通信作者: 刘天成 (1976—), 男, 博士, 教授, 研究方向为大气污染控制, liutiancheng76@163.com

能与其物理化学结构间的关系。

1 材料与方法

1.1 $Mn_x Zr_{1-x}O_v$ 催化剂的制备

所有用于制备的化学品均为分析级,水为去离子水,催化剂共沉淀法制备。将适量的硝酸锆五水合物和 硝酸锰 (Mn:Zr(摩尔比)=0.33、1、2、4) 在 100 ml 去离子水中搅拌溶解至澄清透明,加入氨水调节 pH 至 9,搅拌 3 h,所得沉淀抽滤并用去离子水洗涤 3 次,80 ℃ 干燥 12 h,最后以 5 ℃·min⁻¹、500 ℃、4 h 焙 烧,研磨过筛 (40~60 目)得到催化剂样品,记为 Mn_xZr_{1-x}O_y(Mn_{1.0}Zr₀O_y、Mn_{0.8}Zr_{0.2}O_y、Mn_{0.67}Zr_{0.33}O_y、 Mn_{0.5}Zr_{0.5}O_y和 Mn_{0.25}Zr_{0.75}O_y催化剂)。

1.2 催化剂表征

采用扫描电镜 (FEI, Nova Nano SEM450, USA) 观察催化剂的微观形貌。用透射电镜分析催化剂的晶格 间距,以乙醇为分散剂,用普通铜网进行样品制备。在 CuKα、2θ=10°~80°、扫描速率 10 °·min⁻¹、步长 0.01 °·s⁻¹ 的条件下,采用德国 Bruker D8 Advance X 射线衍射仪测定样品的相组成。用 Mack 2460 分析仪 测定了催化剂的比表面积和孔径等孔隙结构参数。X 射线光电子能谱采用 Thermo Scientific NEXSA, A1 Kα 进行表征,工作电压为 15 kV,结合能采用内标 C1s 峰 (Eb=284.80 eV)标定,精度为±0.2 eV。用傅立叶 红外光谱 (Thermo Scientific, Nicolet Is20, USA)分析催化剂的分子结构。采用氧气程序升温脱附 (O₂-TPD)分析催化剂内部活性氧的位点。

1.3 催化剂活性评价

采用自制装置评价催化剂活性,在常压石英管 (直径为 6 mm)固定床反应器中对 HCHO 进行催化氧化 试验。100 mg 的催化剂装入反应器中,引入含 1.5 mg·m⁻³HCHO 的模拟气流,载气为 N₂+20%O₂,气体总流 量 100 mL·min⁻¹。用酚试剂分光光度法分析反应物或产物气流中的 HCHO 浓度。将含有微量 HCHO 的气流 通过 5 mL 酚试剂溶液起泡 30 min,通过吸收收集 HCHO。然后加入 0.4 mL (质量分数为 1%)硫酸铁铵溶 液作为着色剂,振荡 5 s,静置 15 min 后,用分光光度计测量 630 nm 光吸光度,测定气流中 HCHO 浓度。根据 HCHO 的浓度变化计算其转化率,HCHO 转化率按式 (1) 计算。

$$X_{\rm HCHO} = \frac{C_{\rm in} - C_{\rm out}}{C_{\rm in}} \times 100\%$$
(1)

式中: X_{HCHO} 为甲醛的去除率,%; C_{in} 为甲醛的进口浓度,mg·m⁻³; C_{out} 为甲醛的出口浓度,mg·m⁻³。

为了确定实验产物,采用体积滴定法测定反应产物中二氧化碳的浓度,过量的氢氧化钡溶液与产物中的 二氧化碳反应生成碳酸钡沉淀。反应结束后,用标准草酸溶液滴定剩余的氢氧化钡,直至酚酞的红色刚好褪 去,反应后的二氧化碳浓度可以通过体积滴定(式(2))计算。

$$\varphi = \frac{20(V_1 - V_2)}{1000V_0} \tag{2}$$

式中: φ 为空气中二氧化碳体积分数,%; V_1 为样品滴定所用草酸标准溶液体积,单位 mL; V_2 为空白滴定 所用草酸标准溶液体积,单位 mL; V_0 为标准状态下的采气体积,单位为 L。

2 结果与讨论

2.1 XRD 和 FT-IR 分析

图 1(a) 为不同 Mn/Zr 摩尔比的 Mn_xZr_{1-x}O_y 催化剂的 XRD 测定结果。由图 1(a) 可以看到, 锰锆摩尔比 对催化剂的结晶度有显著影响, 当 *x*=1.0(只含 Mn 不含 Zr) 时, 只出现了 Mn₃O₄(PDF#80-0382) 的特征衍射 峰, 分别位于 2*θ* 为 18.01°、28.91°、32.38°、36.08°、38.09°、44.04°、50.83°、59.90°、64.01°。当 *x*=0.5, 0.67, 0.8 时, 未检测到 Zr 物种相关的特征峰,只出现了 Mn₂O₃(PDF#71-0635) 的特征峰,而 Mn₂O₃ 的特征峰向低角度方向偏移,并且衍射峰强度变弱、峰形宽化。可能是因为较小的 Mn³⁺离子半径 (0.67 Å) 被较大的 Zr⁴⁺离子半径 (0.79 Å) 替代^[23],从而渗进到 Mn₂O₃ 晶格中,形成锰锆固溶体结构,这有利 于锰锆之间的相互协同作用,促使其对甲醛的催化活性显著提高。当*x*=0.25 时,出现 Mn_{0.2}Zr_{0.8}O_{1.8} (PDF#77-2157) 的特征衍射峰,这表明 Mn 和 Zr 形成了 Mn_{0.2}Zr_{0.8}O_{1.8} 固溶体,且衍射峰强度高,峰形尖锐。 图 1(b) 为不同 Mn:Zr 摩尔比的 Mn_xZr_{1-x}O_y 催化剂的 FT-IR 测定结果。可见, Mn_{0.8}Zr_{0.2}O_y、Mn_{0.67}Zr_{0.33}O_y、 Mn_{0.5}Zr_{0.5}O_y、Mn_{0.25}Zr_{0.75}O_y 催化剂的 FT-IR 图谱基本一致, 且吸收峰位于同一波数处, 说明不同的锰锆摩尔 比对样品的结构影响不大。3 424 cm⁻¹ 的峰被认为是游离的—OH 伸缩振动峰^[24]; 1 384 cm⁻¹ 处的峰被认为是 硝酸盐中 v(N—O) 的不对称伸缩振动, 表明样品中可能存在少量的含氮物质^[25]; 632、526、436 cm⁻¹ 被认为 是 Mn—O 键的伸缩振动^[26]。当 *x*=1 时当 *x*=1 时,存在 Mn—O 键的吸收峰, XRD 的测试结果也表明主要物 相是 Mn₃O₄,进一步证明存在 Mn—O 键;当 *x*<1 时,由于锰和锆之间的协同作用未能见到 Mn—O 键的吸 收峰,提高了锰锆氧化物催化氧化甲醛的效率。

图 1 不同 Mn/Zr 摩尔比的 Mn_vZr_{1-v}O_v 催化剂的 XRD 图和 FTIR 图

Fig. 1 XRD pattern and FTIR pattern of Mn_xZr_{1-x}O_y catalyst with different Mn/Zr molar ratios

2.2 $Mn_x Zr_{1-x}O_v$ 催化剂的形貌分析

为了观察催化剂的表面形貌,对催化剂进行了 SEM 表征分析。由图 2(a)可以看出, Mn_{0.67}Zr_{0.33}O_y 催化 剂的微观形貌呈现不规则的块状,可能是由于共沉淀制备样品所致。为了进一步观察 Mn_{0.67}Zr_{0.33}O_y 催化剂的 晶格条纹及内部精细结构,进行 TEM 分析,由图 2(b)、(d)可知,样品整体为规则晶体与不规则无定型结构 的复合形貌,高分辨下规则形貌的晶格条纹明显,不规则区域基本为无定型结构。利用 Gatan digital micrograph 从 TEM 图像计算晶格间距,得到 Mn₂O₃ (040)和 Mn₂O₃ (412)平面的晶格间距 (*d*)分别为 0.212 2 nm 和 0.243 5 nm,如图 2(e)所示,这与 XRD 检测的主要物相为 Mn₂O₃ 一致。此外,利用 TEM HADDF 对 Mn_{0.67}Zr_{0.33}O_y 催化剂进行元素映射分析 (图 2(f)),进一步观察复合材料的空间分布和组合。结果 表明,Mn、Zr、O 在 Mn_{0.67}Zr_{0.33}O_y 催化剂中分布良好,EDS-mapping 显示规则晶体处 Mn 元素集中分布,不规则形貌处 Zr 元素集中分布。

2.3 N₂ 吸附-脱附分析

图 3(a) 为各催化剂的 N₂ 吸脱附等温线。由图 3(a) 可知, Mn_{1.0}Zr₀O_y 催化剂该等温线属 IUPAC 分类中 III 型,相对压力较低时,为单分子层吸附。Mn_{0.25}Zr_{0.75}O_y、Mn_{0.5}Zr_{0.5}O_y、Mn_{0.67}Zr_{0.33}O_y和 Mn_{0.8}Zr_{0.2}O_y 的吸 脱附等温线具有相同形状,属于典型的 IUPAC 分类中 IV 型等温线,在 P/P₀ 为 0.4~1.0 内检测到 H4 型滞 回,表明存在狭缝状的介孔结构。从图中可以看出,在低压段吸附量平缓增加,此时 N₂ 分子以单层到多层

(f) Mn_{0.67}Zr_{0.33}O_v的EDS图

Fig. 2 Morphological characterization of Mn_{0.67}Zr_{0.33}O_v catalysts

吸附在介孔的内表面。图 3(b)为相应的 BJH 孔径分布, Mn_{0.25}Zr_{0.75}O_y、Mn_{0.5}Zr_{0.5}O_y、Mn_{0.67}Zr_{0.33}O_y和 Mn_{0.8}Zr_{0.2}O_y催化剂的孔径分别为 3.78、3.4、3.8 和 3.8 nm, 说明样品为介孔结构, 有利于反应物的传输; 而 Mn_{1.0}Zr₀O_y催化剂的孔径主要分布在 2.4 nm 和 49.2 nm, 为双峰孔径分布。

Mn_xZr_{1-x}O_y催化剂的比表面积、孔容和孔径如表 1 所示。由表 1 可以看出,制备的单组分 Mn_{1.0}Zr₀O_y催化剂的比表面积只有 15.3 m²·g⁻¹,然而制备的锰锆氧化物的比表面积为 105.2~215.1 m²·g⁻¹,大约为 Mn_{1.0}Zr₀O_y催化剂的 7~14 倍,其中锰锆摩尔比为 2:1 时,得到 Mn_{0.67}Zr_{0.33}O_y催化剂具有最大的比表面积 (215.1 m²·g⁻¹),为反应物充分接触催化剂活性位点提供了较大的反应界面,从而使得催化剂拥有优异的催化 氧化甲醛活性。Zr 的添加使得催化剂的比表面积先增大后减小,这表明锰锆之间的相互作用可以大幅度提 高 Mn_xZr_{1-x}O_y催化剂的比表面积,这可能是因为锆氧化物本身具有很强的稳定性,与锰相互作用抑制了锰氧 化物在制备条件下的团聚。这表明适当的掺杂可以提高催化剂的比表面积,且较高的比表面积在催化氧化甲

醛方面效果明显提升,相较于单组份 Mn_{1.0}Zr₀O_y 催化剂在 6 h 甲醛的去除率只能保持在 62%,且 稳定性并不好;而 Mn_{0.67}Zr_{0.33}O_y 催化剂的甲醛去 除率在 6 h 依旧保持在 100%,在后续的稳定性测 试中,甲醛的去除率保持在 90% 以上可达 50 h, 延长了催化剂的使用寿命。

2.4 XPS 分析

为了进一步确定催化剂表面的元素价态变化,对催化剂进行了 XPS 分析。图 4 为 Mn2p、 Ols 和 Zr3d 相关的峰,表 2 是对各催化剂的

表 1 Mn_xZr_{1-x}O_y 催化剂的比表面积、孔容和孔径 Table 1 Specific surface area, pore volume and pore size of the Mn_xZr_{1-x}O_y catalyst

样品	比表面积/(m ² ·g ⁻¹)	总孔容/(cm ³ ·g ⁻¹)	平均孔径/nm
$Mn_{1.0}Zr_0O_y$	15.3	0.096	28.083
$\mathrm{Mn}_{0.25}\mathrm{Zr}_{0.75}\mathrm{O}_y$	105.2	0.149	4.579
$\mathrm{Mn}_{0.5}\mathrm{Zr}_{0.5}\mathrm{O}_{y}$	162.9	0.166	5.005
$Mn_{0.67}Zr_{0.33}O_y$	215.1	0.269	4.909
$Mn_{0.8}Zr_{0.2}O_y$	184.6	0.288	6.194

XPS 图谱进行积分处理后得到的数据。由图 4(a) 可知,各催化剂的 XPS 光谱图中含有 Mn、Zr、O 特征 峰,3 种元素共存且不含其他杂质峰,而 Mn₁₀Zr₀O_y 催化剂未能见到 Zr 的峰。图 4(b) 为不同 Mn_xZr_{1-x}O_y 催 化剂的 Mn2p 图谱, Mn2p1/2 是结合能约为 654 eV 时的峰值和 Mn2p3/2 是结合能约为 642 eV 时的峰 值^[27-28], Mn2p3/2 分为位于 641.4、642.5、644.5 eV 的 3 个峰,分别对应 Mn²⁺、Mn³⁺、Mn⁴⁺物种。人们普 遍认为高浓度的表面 Mn⁴⁺有利于通过可逆氧化还原循环低温氧化 HCHO^[29]。由表 2 可知, Mn₀₆₇Zr₀₃₃O_y 催

图 4 不同 Mn/Zr 摩尔比的 Mn_xZr_{1-x}O_y 催化剂的 XPS 图 Fig. 4 XPS spectra of Mn_xZr_{1-x}O_y catalysts with different Mn/Zr molar ratios

化剂中 Mn^{4+} 含量为 15.75%, Mn^{3+} 含量为 44.39%, 反应后 Mn^{4+} 含量降至 11.51%, Mn^{3+} 含量升至 54.57%。这表明 Mn^{4+} 被还原为 Mn^{3+} ,表面 Mn^{4+} 含量降低,不利于氧化甲醛,致使催化氧化 甲醛的活性下降。而 $Mn_{1.0}Zr_0O_y$ 催化剂中 Mn^{4+} 含量只有 6.85%,在室温下对甲醛的去除效率不高。

图 4(c) 为 O1s 的 XPS 图。结合能在 529.7~ 530.3、531.4~531.8 和 532.9~533.7 eV 的特征峰 分别对应于氧化物的晶格氧 (O_{lat})、表面活性氧 (O_{ads}) 和表面吸附的碳酸盐或水 (O_{H2O})^[30-32]。现有 研究^[33] 表明,表明活性氧对污染物的催化分解至 关重要。表面活性氧如 O²⁻、O⁻和-OH 具有较强的 氧化能力,因此,使用 O1s 的 XPS 图谱对表面活 性氧进行了评价。从表 2 可知, Mn_{0.67}Zr_{0.33}O_y 的表

表 2 Mn_xZr_{1-x}O_y 催化剂 Mn2p、O1s 峰曲线拟合结果

Table 2 Mn2p, O1s peak curve fitting results for Mn_xZr_{1-x}O_y catalyst

	元素比				
样品	Mn ²⁺	Mn ³⁺	Mn ⁴⁺	Mn ³⁺ /Mn ⁴⁺	$\mathrm{O}_{\mathrm{ads}}/(\mathrm{O}_{\mathrm{ads}}+\mathrm{O}_{\mathrm{H2O}})/\%$
$Mn_{1.0}Zr_0O_y$	75.1	18.05	6.85	2.63	0.21
$Mn_{0.25}Zr_{0.75}O_y$	50.09	40.77	14.78	2.76	0.28
$Mn_{0.5}Zr_{0.5}O_{y}$	31.52	53.5	14.98	3.57	0.27
Mn _{0.67} Zr _{0.33} O _y -反应前	39.87	44.39	15.75	2.82	0.34
Mn _{0.67} Zr _{0.33} O _y -反应后	33.91	54.57	11.51	4.74	0.32
$Mn_{0.8}Zr_{0.2}O_{\rm y}$	51.27	40.37	8.36	4.83	0.33

面活性氧含量为 0.34,其含量在所有催化剂中最高,在催化氧化甲醛的反应中保持较高的活性且较好的稳定 性。随着 HCHO 反应的继续,表面活性氧和晶格氧的含量下降,表面吸附的碳酸盐和水反而增加,这表明 表面活性氧在催化氧化甲醛的反应中起着重要作用。Mn_{1.0}Zr₀O₂催化剂中表面活性氧的含量最低 (仅为 0.21),而晶格氧含量最高 (0.65),表明晶格氧不利于 HCHO 的催化氧化,甲醛的去除效果不佳。由此可以 看出,掺杂锆元素后的催化剂表面吸附氧含量明显增加。当锰与锆摩尔比为 2:1 时,催化剂表面活性氧含量 最高,继续增加锰的含量,表面活性氧的含量反而有所下降。

图 4(d) 为 Zr3d 的 XPS 图谱。中心峰位于 182 eV, 肩峰位于 184.3 eV, 与 ZrO₂和 Zr⁴⁺的特征峰一 致, 并未出现明显的偏移, 表明锰锆摩尔比不会影响锆的峰位置, $Mn_{10}Zr_0O_y$ 催化剂并未出现 Zr 的特征峰, 这与制备条件一致。

2.5 O₂-TPD 分析

2.6

催化剂活性评价

Mn_{0.67}Zr_{0.33}O_y 催化剂反应前后的 O₂-TPD 图如 图 5 所示。一般来说,在低温条件下的脱附峰是 催化剂表面上化学吸附氧的脱附和吸附在氧空位上 的氧的脱附,而在较高温度下的脱附峰是样品中晶 格氧逸出所致^[34]。因此,表面活性氧主要表现在 134 ℃、139 ℃ 时较低的氧解吸峰值,而晶格氧解 吸峰一般表现在 555、574、679 ℃ 附近的氧解吸 峰。通过对比反应前后的 O₂-TPD 图,可以发现, 反应后的脱附峰向高温移动,且氧脱附峰信号减 弱。这表明表面活性氧降低,导致催化氧化甲醛的 效率下降。

图 5 Mn_{0.67}Zr_{0.33}O_y 催化剂反应前后的 O₂-TPD 曲线图

室温下 Mn_xZr_{1,x}O_y 催化剂摩尔比对甲醛去除率的影响结果如图 6(a) 所示。总体而言,催化剂的活性排序 为 Mn_{0.67}Zr_{0.33}O_y>Mn_{0.8}Zr_{0.2}O_y>Mn_{0.5}Zr_{0.5}O_y>Mn_{0.25}Zr_{0.75}O_y>Mn_{1.0}Zr₀O_y。 Mn_{1.0}Zr₀O_y 催化剂由于未掺杂 Zr 元 素,甲醛的去除率在 6 h 内仅为 61%,12 h 后急剧下降到 29%,去除效果差。而掺杂 Zr 元素之后,催化剂 催化氧化甲醛的效率大大提升,其中 Mn_{0.67}Zr_{0.33}O_y 表现出优异的甲醛去除率,6 h 内活性达到 100%,反应 12 h 后依旧保持在 97%,24 h 为 96.72%,在后续的反应中,该催化剂去除甲醛的效果在 90% 以上可持续 50 h,如图 6(c)所示,高于其他催化剂的最佳甲醛去除率。QIAN 等^[35]采用溶胶-凝胶制备锰铈复合氧化 物,室温下 24 h 的甲醛去除率为 90.9%;而本研究所制备的 Mn_{0.67}Zr_{0.33}O_y 催化剂室温下 24 h 的甲醛去除率为 90.9%;而本研究所制备的 Mn_{0.67}Zr_{0.33}O_y 催化剂室温下 24 h 的甲醛去除率为 90.9%;而本研究所制备的 Mn_{0.67}Zr_{0.33}O_y 催化剂室温下 24 h 的甲醛去除率 为 96%。周辉等^[36]使用氧化还原法制备二氧化锰催化剂,对甲醛的催化降解活性在 300 min 以内保持在 80% 以上,而本研究制备的 Mn_{0.67}Zr_{0.33}O_y 催化剂 300 min 以内可以 100%降解甲醛。Mn_{0.8}Zr_{0.2}O_y、

Mn_{0.5}Zr_{0.5}O_y和 Mn_{0.25}Zr_{0.75}O_y样品在 300 min 内对甲醛的去除率分别为 97.8%、91.4% 和 87%,且随着反应 时间的延长,HCHO 去除率呈现下降趋势。

BET 表征结果表明, Mn_{0.67}Zr_{0.33}O_y 催化剂拥有最大的比表面积 (215.1 m²·g⁻¹), 为反应物充分接触催化 剂活性位点提供了较大的反应界面; XPS 表征结果表明, Mn_{0.67}Zr_{0.33}O_y 催化剂表面拥有最高的表面活性氧 (0.34), 促进了甲醛的催化氧化,反应后的表面活性氧含量下降, Mn⁴⁺的含量降低, Mn³⁺的含量增加, Mn⁴⁺被还原为 Mn³⁺,导致催化氧化甲醛的性能下降。

室温下 Mn 与 Zr 摩尔比对 CO₂ 选择性的影响 结果如图 6(b) 所示。如图 6(b) 所示, Mn/Zr 摩尔 比对 CO₂ 的选择性有显著的影响。Mn_{0.67}Zr_{0.33}O_y 催化剂的 CO₂ 选择性在 6 h 内为 100%, 说明 Mn_{0.67}Zr_{0.33}O_y 催化剂能够有效地将 HCHO 氧化为 CO₂, 进一步说明了该反应为催化氧化。为了解 Mn_{0.67}Zr_{0.33}Oy 在反应过程中是否稳定,对反应前 后的样品进行 FT-IR 表征,结果如图 7 所示。可 见,反应前后未出现新的峰,说明反应过后并未出 现新的官能团,表明 Mn_{0.67}Zr_{0.33}Oy 在反应过程中 比较稳定。

3 结论

1) 通过简单的共沉淀法制备了 Mn_xZr_{1-x}O_y 催化剂, Mn_xZr_{1-x}O_y 可实现 100% 去除甲醛, 且具有良好的稳定性, 能够长时间去除甲醛 (50 h 后甲醛的去除率依旧在 90% 以上)。

2) 当 Mn/Zr 摩尔比为 2:1 时,催化剂的性能最佳, Mn_{0.67}Zr_{0.33}O_y 催化剂比表面积最大 (215.1 m²·g⁻¹), 较高的比表面积有利于暴露更多的活性位点,为反应物充分接触催化剂活性位点提供了较大的反应界面:表面 活性氧含量最高 (0.34), Mn⁴⁺含量高,更多的活性氧有利于吸附氧的活化,这对甲醛的催化氧化起着关键作 用。

参 考 文 献

- TANG X, MISZTAL P K, NAZAROFF W W, et al. Volatile organic compound emissions from humans indoors [J]. Environmental Science & Technology, 2016, 50: 12686-12694.
- [2] LIU F, CAO R, RONG S, et al. Tungsten doped manganese dioxide for efficient removal of gaseous formaldehyde at ambient temperatures [J]. Materials & Design, 2018, 149: 165-172.
- [3] BAI B, QIAO Q, ARANDIYAN H, et al. Three-dimensional ordered mesoporous MnO₂-Supported Ag nanoparticles for ctalytic removal of formaldehyde[J]. Environmental Science & Technology, 2016, 50: 2635-2640.
- [4] YUSUF A, SNAPE C, HE J, et al. Advances on transition metal oxides catalysts for formaldehyde oxidation: A review [J]. Catalysis Reviews, 2017, 59: 189-233.

[5]	QI L, CHENG B, YU J, et al. High-surface area mesoporous Pt/TiO_2 hollow chains for efficient formaldehyde decomposition at ambient temperature [J]. Journal of Hazardous Materials, 2016, 301: 522-530.
[6]	BOHM M, SALEM M Z, SRBA J. Formaldehyde emission monitoring from a variety of solid wood, plywood, blockboard and flooring products manufactured for building and furnishing materials [1] Journal of Hazardous Materials 2012 221-222: 68-79
[7]	WANG R, ZHU R, ZHANG D. Adsorption of formaldehyde molecule on the pristine and silicon-doped boron nitride nanotubes[J]. Chemical Physics Lotters 2008 467: 131-135
[0]	DELL ZUANC LS. On the norfermance and machanisms of formuldahuda removal by shami sorbarts[1]. Chamical Engineering Journal 2011, 167: 50.66
[9]	ZHAO D-Z, LI X-S, SHI C, et al. Low-concentration formaldehyde removal from air using a cycled storage–discharge (CSD) plasma catalytic process[J]. Chemical Engineering Science, 2011, 66: 3922-3929.
[10]	LIANG W J, LI J, LI J X, et al. Formaldehyde removal from gas streams by means of NaNO ₂ dielectric barrier discharge plasma[J]. Journal of Hazardous Materials, 2010, 175: 1090-1095.
[11]	KIBANOVA D, SLEIMAN M, CERVINI-SILVA J, et al. Adsorption and photocatalytic oxidation of formaldehyde on a clay-TiO ₂ composite[J]. Journal of Hazardous Materials. 2012. 211-212: 233-239.
[12]	NIE L, YU J, JARONIEC M, et al. Room-temperature catalytic oxidation of formaldehyde on catalysts [J]. Catalysis Science & Technology, 2016, 6: 3649- 3669.
[13]	ZHANG C, HE H, TANAKA K-I. Catalytic performance and mechanism of a Pt/TiO_2 catalyst for the oxidation of formaldehyde at room temperature[J]. Applied Catalysis B: Environmental, 2006, 65: 37-43.
[14]	CHEN T, DOU H, LI X, et al. Tunnel structure effect of manganese oxides in complete oxidation of formaldehyde[J]. Microporous and Mesoporous
	Materials, 2009, 122: 270-274.
[15]	TAN Y, ZHU F, WANG H, et al. Noble - Metal - Free metallic glass as a highly active and stable bifunctional electrocatalyst for water splitting[J].
	Advanced Materials Interfaces, 2017, 4.
[16]	FARBER C, STEGNER P, ZENNECK U, et al. Teaming up main group metals with metallic iron to boost hydrogenation catalysis[J]. Nature Communications 2022 13: 3210.
[17]	MIAO L, WANG J, ZHANG P. Review on manganese dioxide for catalytic oxidation of airborne formaldehyde[J]. Applied Surface Science, 2019, 466: 441-453
[18]	TSONCHEVA T, IVANOVA L, PANEVA D, et al. Cobalt and iron oxide modified mesoporous zirconia: Preparation, characterization and catalytic behaviour in methanol conversion [J]. Microporous and Mesoporous Materials. 2009. 120: 389-396.
[19]	COUZON N, BOIS L, FELLAH C, et al. Manganese oxidation states repartition in a channel-like mesoporous zirconium oxide[J]. Journal of Porous Materials. 2020. 27: 1823-1835.
[20]	DENG Z, WANG M, ZHANG H, et al. Mn–Zr composite oxides as efficient catalysts for catalytic oxidation of vinyl chloride [J]. New Journal of Chemistry, 2023 47: 9212-9221
[21]	年曲录 住吃子 刘佳木 筶 Mn/7r 改姓發土民矿催化剂 NH_SCR 脱硝机理分析[1] 中国环境科学 2023 43:5655-5662
[22]	※元天, 宗师云, 为庄杰, 寺, hhi zi 改臣前王光, 常福元前 http://ck.hhi lu z/h [1] / 百万元百子, 2025, 45, 5055-5002. 谈冠委 迟娜玲 李双 筌 轻结复合氧化物 CO 催化环原 NO 性能研究[1] 燃料化学学报 2019 47:1258-1264
[23]	BULAVCHENKO O A, VINOKUROV Z S, AFONASENKO T N, et al. Reduction of mixed Mn–Zr oxides: in situ XPS and XRD studies[J]. Dalton
[24]	Hallsacholls, 2015, 44. 15499-15507.
L 24]	Fa O [1] Journal of Colloid and Interface Science 2010 539-135 145
[25]	$rc_2 v_3 [J]$. Journal of Conou and micratic Science, 2019, 359, 155-145.
[23]	Journal of Hazardous Materials, 2012, 209-210: 385-391.
[26]	TODOROVA S, NAYDENOV A, KOLEV H, et al. Mechanism of complete n-hexane oxidation on silica supported cobalt and manganese catalysts[J]. Applied Catalysis A: General. 2012, 413-414: 43-51.

- [27] DUAN C, MENG M, HUANG H, et al. Effect of calcination temperature on the structure and formaldehyde removal performance at room temperature of Cr/MnO₂ catalysts[J]. Research on Chemical Intermediates, 2022, 48: 2705-2720.
- [28] LIU P, HE H, WEI G, et al. Effect of Mn substitution on the promoted formaldehyde oxidation over spinel ferrite: Catalyst characterization, performance and reaction mechanism [J]. Applied Catalysis B: Environmental, 2016, 182: 476-484.
- [29] LU S, ZHENG F, WANG H, et al. Engineering MnO₂ nanotubes@Co₃O₄ polyhedron composite with cross-linked network structure for efficient catalytic oxidation of formaldehyde[J]. Catalysis Letters, 2023, 154: 2949-2962.
- [30] BAI B, LI J, HAO J. 1D-MnO₂, 2D-MnO₂ and 3D-MnO₂ for low-temperature oxidation of ethanol[J]. Applied Catalysis B: Environmental, 2015, 164: 241-250.
- [31] YE Q, ZHAO J, HUO F, et al. Nanosized Au supported on three-dimensionally ordered mesoporous β-MnO₂: Highly active catalysts for the low-temperature oxidation of carbon monoxide, benzene, and toluene[J]. Microporous and Mesoporous Materials, 2013, 172: 20-29.
- [32] WANG J, LI J, JIANG C, et al. The effect of manganese vacancy in birnessite-type MnO₂ on room-temperature oxidation of formaldehyde in air[J]. Applied Catalysis B: Environmental, 2017, 204: 147-155.
- [33] WANG J, ZHANG P, LI J, et al. Room-temperature oxidation of formaldehyde by layered manganese oxide: Effect of water[J]. Environmental Science & Technology, 2015, 49: 12372-12379.

- [34] CAI T, HUANG H, DENG W, et al. Catalytic combustion of 1, 2-dichlorobenzene at low temperature over Mn-modified Co₃O₄ catalysts[J]. Applied Catalysis B: Environmental, 2015, 166-167: 393-405.
- [35] QIAN J, MO J, ZHOU Y, et al. Study of manganese-cerium composite oxide catalysed oxidation for low concentration formaldehyde at room temperature [J]. Materials Chemistry and Physics, 2022, 285: 126151-126167.
- [36] 周辉, 步宇婷, 唐兢, 等. 温和条件下 MnO, 催化剂的制备及其降解甲醛的研究[J]. 现代化工, 2023, 43: 233-237.

(责任编辑:曲娜)

Preparation of high specific surface area $Mn_xZr_{1-x}O_y$ catalyst and its catalytic oxidation effect of formaldehyde at room temperature

TANG Ruijiu, SHI Huiqiu, ZHENG Zhen, JIA Lijuan, LIU Tiancheng*

College of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650504, China *Corresponding author, E-mail:liutiancheng76@163.com

Abstract Formaldehyde, as one of the indoor air pollutants, produces irreversible harm to the human body. Therefore, the removal efficient of formaldehyde has become one of the research hotspots. In this study, $Mn_xZr_{1-x}O_y$ catalysts with different activities were obtained by the co-precipitation method, and the materials were characterized by XRD, FT-IR, SEM, TEM, BET, XPS and O₂-TPD. Effect of different manganese-zirconium molar ratios for the catalytic oxidation of formaldehyde at room temperature were evaluated. The results showed that catalytic oxidation effect of formaldehyde by $Mn_{0.67}Zr_{0.33}O_y$ obtained from manganese and zirconium at a molar ratio of 2:1 was the best, with the removal rate of formaldehyde reaching 100%, and the catalytic activity was above 90% after 50 h of reaction. The characterization results showed that the $Mn_{0.67}Zr_{0.33}O_y$ catalyst possessed the largest specific surface area (215.1 m²·g⁻¹), which increases the contact area between the gas and the catalyst, and high surface-activated oxygen and high valence Mn content are the main reasons for the excellent performance of the catalysts.

Keywords $Mn_xZr_{1-x}O_y$; formaldehyde; catalytic oxidation; room temperature