

第 18 卷 第 7 期 2024 年 7 月 Vol. 18, No.7 Jul. 2024

(www) http://www.cjee.ac.cn

E-mail: cjee@rcees.ac.cn

ees.ac.cn

(010) 62941074

DOI 10.12030/j.cjee.202401123 中图分类号 X703 文献标识码 A

S/N 对硫自养反硝化耦合厌氧氨氧化反应氮素转 化的影响

李寓哲^{1,2}, 顾晓丹^{1,2}, 黄勇^{1,2,∞}

1. 苏州科技大学环境科学与工程学院,苏州 215009; 2. 苏州科技大学环境生物研究所,苏州 215009

摘 要 S⁰基硫自养反硝化耦合厌氧氨氧化 (sulfur autotrophic denitrification anammox, S⁰ADN-Anammox) 工艺中普遍存 在 S/N 较高问题,从而造成 S⁰ 的浪费。为此,通过批次实验,在不考虑 S⁰ 流失条件下,优化了以 S⁰ 为电子供体的系 统中适宜的 S/N,并通过底物控制策略,模拟 S⁰ADN 前半程完全反应,仅存在后半程与 Anammox 的系统环境,讨论 在不同 S⁰存在的情况下 S⁰ADN 后半程和 Anammox 对 NO₂⁻-N 的竞争能力。结果表明,在不同的 S⁰ 投加量条件下, S⁰ADN-Anammox 系统会表现出不同的脱氮性能,当 S/N=1,S⁰ADN-Anammox 系统总氮去除率较高,达 89%,其中 NH₄⁺-N 和 NO₃⁻-N 的去除率分别为 77% 和 100%;当只存在 NO₂⁻-N 和 NH₄⁺-N 时,S⁰质量浓度越高,Anammox 可获 得的 NO₂⁻-N 越少,S⁰ADN 后半程对 NO₂⁻-N 的竞争能力要强于 Anammox,过高的 S/N 会影响 NH₄⁺-N 去除效果。 关键词 硫自养反硝化耦合厌氧氨氧化;S/N 的影响;底物竞争关系

在全球倡导高效、低耗、可持续脱氮要求的背景下,针对含氨氮 (NH₄⁺-N)、硝酸盐 (NO₃⁻-N) 工业废水 (光伏、化肥废水) 的脱氮处理受到人们的关注。目前,含氮废水普遍采用传统硝化反硝化技术^[1],但其具有 高能耗和温室气体排放等问题,背离了可持续发展的目标^[2]。厌氧氨氧化 (anaerobic ammonium oxidation, Anammox) 技术因其低能耗、高效率的特点被视为目前最具潜力的生物脱氮技术^[3-4]。Anammox 以 NH₄⁺-N 和亚硝酸盐 (NO₂⁻-N) 作为底物,在厌氧条件下生成 N₂ 和少量 NO₃⁻-N。然而,将 Anammox 应用于处理 含 NH₄⁺-N 和 NO₃⁻-N 工业废水时仍受到限制。一方面,在自然条件下 NO₂⁻-N 含量较低,而 NO₂⁻-N 作为 Anammox 的必要底物之一,通常需要通过其他方式提供足够的 NO₂⁻-N 以保证 Anammox 转化的需求。另 一方面,由于 Anammox 会产生一部分 NO₃⁻-N,总氮去除率最高为 89%,且废水中 NH₄⁺-N 浓度越高, Anammox 中出水 NO₃⁻-N 浓度也随之升高^[5]。

目前,普遍采用部分反硝化 (partial denitrification, PD) 与 Anammox 耦合处理含 NH₄⁺-N 和 NO₃⁻-N 的 废水^[6-8]。WANG 等^[9] 研究表明,硫自养反硝化 (sulfur autotrophic denitrification, SADN) 过程具有与 Anammox 耦合应用的优势。相较于其他形态的硫 (S² 和 SO₃²),单质硫 (S⁰) 作为 SADN 电子供体,具有对 微生物没有毒性、价格低廉、易于获取等优势。SUN 等^[10] 研究表明,在 NO₃⁻-N 和 NO₂⁻-N 共存环境中, S⁰ 倾向于选择 NO₃⁻-N 作为电子受体,极易发生 NO₂⁻-N 积累,为 Anammox 提供充足的底物,有利于 SADN 和 Anammox 耦合。CHEN 等^[11] 以序批模式运行 S⁰ADN-Anammox 耦合系统,总氮去除率维持在 90%。S⁰ADN 前半程、S⁰ADN 后半程、S⁰ADN 全程反应过程如式 (1)~(3) 所示^[13]。

$$S^{0} + 3NO_{3}^{-} + H_{2}O \rightarrow SO_{4}^{2-} + 3NO_{2}^{-} + 2H^{+}$$
 (1)

$$S^0 + 2NO_2^- \to SO_4^{2-} + N_2$$
 (2)

收稿日期: 2024-01-25; 录用日期: 2024-06-12

基金项目: 国家自然科学基金重点资助项目 (51938010)

第一作者: 李寓哲 (1999—),男,硕士研究生,研究方向为废水处理及资源化利用技术,2300318556@qq.com ⊠通信作者: 黄勇 (1958—),男,博士,教授,研究方向为废水生物处理及资源化利用等,yhuang@mail.usts.edu.cn

(3)

 $S^{0} + 1.2NO_{3}^{-} + 0.4H_{2}O \rightarrow SO_{4}^{2-} + 0.6N_{2} + 0.8H^{+}$

由于 S⁰ 溶解性较差,目前以 S⁰ 为电子供体的研究中均采用较大的 S⁰ 与进水硝态氮的质量比 (S/N) 运 行,例如 CHEN 等^[11] 以 S/N=2.1 投加 S⁰, HUO 等^[12] 和 ZHANG 等^[14] 的研究中采用 S/N=8~10。而在 S⁰ADN-Anammox 耦合系统中,理论上 S/N 仅需 0.762(式 (1)),即可实现 S⁰ADN 前半程的发生,可为 Anammox 提供充足的 NO2-N 底物,远小于现有研究[11] 中的 S/N。由此可见,现有研究均以较高 S/N 投加 S⁰,造成严重的 S⁰ 浪费。另一方面,CUI 等^[15] 和 CHEN 等^[16] 在研究以 S⁰ 作为电子供体的 S⁰ADN 过程中 发现, S⁰对 NO₃⁻N 的亲和力大于 NO₂⁻N, NO₂⁻N 转化仅在 NO₃⁻N 不存在的情况下发生。由于 S⁰ADN 前半程反应速率较快, NO₃⁻-N 全部转化为 NO₂⁻-N, 导致 NH₄⁺-N 和 NO₂⁻-N 共存, 此时是否会存 在 S⁰ADN 后半程与 Anammox 对底物 NO,-N 的竞争关系,若存在,对耦合系统具有何种影响尚不明确。 因此适宜的 S/N 对于 S⁰ADN-Anammox 耦合系统的稳定运行至关重要,目前针对此方向的研究很少。

本研究通过批次实验,首先探讨了 S/N 对 S⁰ADN-Anammox 耦合系统脱氮性能的影响,优化了 S⁰ADN-Anammox 耦合系统适宜的 S/N;其次,模拟了在 NO₅⁻-N 完全转化为 NO₅⁻-N 以及不同 S⁰ 投加量的 条件下, S⁰ADN 后半程与 Anammox 对 NO₂⁻-N 的竞争能力。

1 材料及方法

1.1 实验装置

将污泥和进水放置于封口瓶中,封口瓶选择液面高度与瓶口距离为3 cm 型号,尽可能减少测样时空气 进入,避免对实验造成影响,并置于恒温振荡器 (THZ320-JINGHONG-CHN) 保温振荡,控制内部完全混合 状态。

1.2 实验方法

本实验采用批次实验方法。接种污泥取自实验室长期培养一步式连续流 S^oADN-Anammox 反应器不同 运行阶段的污泥,控制封口瓶内污泥质量浓度 (mixed liquor suspended solids, MLSS)。其中含有活性良好厌 氧氨氧化菌 (anaerobic ammonia oxidation bacteria, AnAOB) 和硫自养反硝化菌 (sulfure oxidizing bacteria, SOB),视实验情况采取清水清洗污泥 5 遍的预处理方式,批次实验接种污泥情况和连续流反应器中对应的进 出水水质如表1和表2所示。进水中投加不同底物及质量浓度,同时添加营养物质和微量元素以维持微生物 生长,控制不同 S/N,控制温度为 35 ℃ 及初始 pH为 8.5±0.2。定时取样检测,观察 S⁰ADN 和 Anammox 反应情况。

Table 1 Physical and chemical properties of inoculated sludge in batch experiments							
批次实验 连续流反应器运行时间/d MLSS/(mg·L ⁻¹)				污泥性状	预处理		
	1	149	2 500	S ⁰ ADN及Anammox反应均良好	有		
	2	93	1 320	污泥中S ⁰ 含量较高	无		
	3	102	1 350	污泥中S ⁰ 含量较少	无		
	4	116	2 100	S ⁰ ADN及Anammox反应均良好	有		

表1 批次实验接种污泥理化性质

批次实验	连续流反应器运行时间/d	$MLSS/(mg \cdot L^{-1})$	污泥性状	预处理
1	149	2 500	S ⁰ ADN及Anammox反应均良好	有
2	93	1 320	污泥中S ⁰ 含量较高	无
3	102	1 350	污泥中S ⁰ 含量较少	无
4	116	2 100	S ⁰ ADN及Anammox反应均良好	有

表 2	连续流反应器进出	7	k7	КJ	责

Table 2 Inlet and outlet water quality of the continuous flow reactor

连续流反应器	$NH_4^+ - N/(mg \cdot L^{-1})$		$NO_3^{-}-N/(mg \cdot L^{-1})$		$NO_2^{-}-N/(mg \cdot L^{-1})$		$SO_4^{2-}/(mg \cdot L^{-1})$		C D I
	进水	出水	进水	出水	进水	出水	进水	出水	- 5/N
149	50	7	63	10	7	1	27	95	1.5
93	50	45	60	0	2	0	20	139	3.0
102	55	25	60	0	3	0	19	128	0.0
116	55	4	60	0	4	0	17	93	2.0

1.3 批次实验条件

本实验共设置 4 次批次实验,采用 1 000 mL 规格封口瓶。设置摇床仓内温度为 35 ℃、转速 180 r·min⁻¹。营养液包括 27 mg·L⁻¹ KH₂PO₄、10 mg·L⁻¹ MgCl₂、10 mg·L⁻¹ CaCl₂、250 mg·L⁻¹ NaHCO₃, 225 mg·L⁻¹ 微量元素 A、337.5 mg·L⁻¹ 微量元素 B。以 5 mol·L⁻¹ NaOH 和 1 mol·L⁻¹ HCl 调节初始 pH 为 8.5±0.2,每组批次实验设置 3 组平行样,各批次实验具体条件如表 3 所示。底物中 NH₄⁺-N、NO₂⁻-N、NO₃⁻-N 分别采用 NH₃Cl、NaNO₂、NaNO₃ 配制,底物质量浓度均为实际测量值,微量元素配方^[17] 包括微量元素 A 和微量元素 B,微量元素 A 包括 5 g·L⁻¹ EDTA·2Na,5 g·L⁻¹ FeSO₄·7H₂O;微量元素 B 包括 15 g·L⁻¹ EDTA·2Na、0.43 g·L⁻¹ ZnSO₄·7H₂O、0.24 g·L⁻¹ CoCl₂·6H₂O、0.99 g·L⁻¹ MnCl₂·4H₂O、0.25 g·L⁻¹ CuSO₄·5H₂O、0.22 g·L⁻¹ Na₂MoO₄·2H₂O、0.19 g·L⁻¹ NiCl₂·6H₂O、0.014 g·L⁻¹ H₃BO₃。

世步立心	配水水质	底	~ ~ ~				
机伏头短		$NH_4^+ - N/(mg \cdot L^{-1})$	$NO_3^{-}-N/(mg \cdot L^{-1})$	$NO_2^{-}-N/(mg \cdot L^{-1})$	S/N	四日时间/11	
	自来水	60	66	0	0.8	72	
1		60	66	0	1.0	72	
		60	66	0	2.0	72	
2	连续流反应器出水	45	0	60	较高	48	
3	连续流反应器出水	47	0	48	较低	48	
	自来水	60	0	66	0.0	72	
4		60	0	66	0.5	72	
4		60	0	66	1.1	72	
		60	0	66	4.0	72	

	表3	批次实验条件	ŧ
Table 3	Batch	experimental	conditions

1.4 测定方法

常规分析项目。每隔 12 h 将封口瓶静置 2 min,用胶头滴管吸取上清液 5 mL,经过中速定性滤纸过滤 后检测 NH₄⁺-N、NO₃⁻-N、NO₂⁻-N、SO₄⁻等指标。NH₄⁺-N、NO₂⁻-N、NO₃⁻-N 均采用标准方法^[18]测定; SO₄⁻经过 0.22 μm 聚醚砜注射器过滤头 (Therom ScientificTM) 过滤,采用电导检测器 (IC-900, DIONEX, USA) 离子色谱法测定; pH 采用 pH 计 (PHS-3E, SINCE, CHN) 监测; MLSS 采用污泥浓度计 (TSS-PORTABLE, HACH, USA) 监测,并用标准方法^[18] 辅助校准。

1.5 计算方法

NO₃⁻-N、NO₂⁻-N、NH₄⁺-N 去除速率根据式 (4) 进行计算; Anammox 在 NO₂⁻-N 去除过程中贡献比根 据式 (5) 进行计算; SADN 后半程在 NO₂⁻-N 去除过程中贡献比根据式 (6) 计算; S⁰ADN 前半程 SO₄⁻²产生 浓度根据式 (7) 计算; S⁰ADN 后半程 SO₄⁻²产生浓度根据式 (8) 计算; S⁰ADN 全程 SO₄⁻²产生浓度根据式 (9) 计算; Anammox 去除 NH₄⁺-N 需要的 NO₂⁻-N 浓度根据式 (10) 计算。

$$R = \frac{\Delta C}{\Delta T} \tag{4}$$

式中: R 为污染物去除速率, $kg \cdot (m^3 \cdot d)^{-1}$; ΔC 表示氮素转化量, $mg \cdot L^{-1}$; ΔT 表示反应时间, d_{\circ}

$$P_{\rm A} = \frac{1.32\Delta C_{\rm NH_4^+-N}}{\Delta C_{\rm NO_2^--N}} \tag{5}$$

式中: P_A 表示 Anammox 在 NO₂⁻-N 去除过程中贡献比,%; $\Delta C_{NH_4^+-N}$ 表示 NH₄⁺-N 转化量, mg·L⁻¹; ΔC_{NO_5-N} 表示 NO₂⁻-N 转化量, mg·L⁻¹; ΔC_{NO_5-N} 表示 NO₃⁻-N 转化量, mg·L⁻¹。

$$P_{\rm S2} = 1 - P_{\rm A} \tag{6}$$

式中: P_{s_2} 表示 SADN 后半程在 NO₂⁻-N 去除过程中贡献比, %。

 $C_{\rm S1} = 0.762 \times 1.32 \Delta C_{\rm NH_4^+-N}$ (7)

式中: C_{S1} 表示 S⁰ADN 前半程 SO₄²⁻产生浓度, mg·L⁻¹。

$$C_{\rm S2} = 1.143(\Delta C_{\rm NO_7^-N} - 1.32\Delta C_{\rm NH_4^+-N})$$
(8)

式中: C_{s_2} 表示 S⁰ADN 后半程 SO₄²⁻产生浓度, mg·L⁻¹。

$$C_{\rm S} = 1.905(\Delta C_{\rm NO_2^--N} - 1.32\Delta C_{\rm NH_4^+-N})$$

式中: $C_{\rm s}$ 表示 S⁰ADN 全程 SO₄²⁻产生浓度, mg·L⁻¹。

$$C_{\rm N0^-_2-N} = 1.32\Delta C_{\rm NH^+_4-N} \tag{10}$$

式中: C_{NO5-N}表示 Anammox 去除 NH₄⁺-N 需要的 NO₂⁻N 浓度, mg·L⁻¹。

结果与讨论 2

1786

2.1 S/N 对 S⁰ADN-Anammox 耦合的影响分析

NH₄⁺-N、NO₃⁻-N 去除和 NO₂⁻-N 与 SO₄²⁻的 生成情况如图 1 所示。在 S⁰ADN-Anammox 系统 中, NH4+-N并未被快速去除, 随着 NO2-N 的逐 渐累积,NH₄⁺-N 去除率显著提升;而在运行初 期, NO3-N 发生了明显转化。当 S/N=0.8 时 (图 1(a)), NH₄⁺-N 和 NO₃⁻-N 质量浓度均呈下降趋 势, 72 h 后分别剩余 22 mg·L⁻¹ 和 10 mg·L⁻¹, NH₄⁺-N和 NO₃⁻-N最高去除速率分别为 0.023 kg·(m³·d)⁻¹和 0.026 kg·(m³·d)⁻¹, 在此过程中 NO₂⁻-N 累积最高达 9 mg·L⁻¹, SO₄²⁻增加至 50 mg·L⁻¹。当 S/N=1 时 (图 1(b)), NH₄⁺-N 和 NO₃⁻-N 均被显著去除, 72 h 后 NH₄⁺-N 剩余 14 mg·L⁻¹, 而 NO_3^-N 在 48 h 后 被 完 全 去 除 , NH_4^+-N 和 NO,⁻-N 去 除 速 率 最 高 达 0.042 kg·(m³·d)⁻¹ 和 0.045 kg·(m³·d)⁻¹, NO₂⁻-N 累积最高达 22 mg·L⁻¹, SO₄²⁻共增加 60 mg·L⁻¹。当 S/N=2 时 (图 1(c)), NO,⁻-N 明显去除, 而 NH₄⁺-N 去除效果不佳, 72 h 后 NH₄⁺-N 仍剩余 31 mg·L⁻¹, NO₃⁻-N 则在 36 h 完全去除, NO,-N 去除速率最高达 0.049 kg·(m³·d)⁻¹, NH₄⁺-N 去除速率最高仅为 0.019 kg·(m³·d)⁻¹, NO₂⁻-N 累积情况与 S/N=1 时类似, 最高为 24 mg·L⁻¹, SO₄⁻²共增加约 97 mg·L⁻¹。

上述实验结果表明,当 S/N为1时, Anammox 充分反应, 耦合系统脱氮性能较好; 而 在 S/N 不足时, S⁰ADN 前半程无法提供充足 NO₂-N底物,导致 Anammox 无法充分反应; S/N 过高, S⁰ADN 前半程快速将 NO₃⁻-N 转化为 NO₂-N, 但 Anammox 反应受到抑制。

批次实验1以NH₄⁺-N和NO₃⁻-N作为底物, 在 S⁰ADN-Anammox 条件下探究适宜的 S/N。当

图 1 不同 S/N 条件下 S⁰ADN-Anammox 系统耦合效果 Fig. 1 Coupling effect of S⁰ADN-Anammox system under different S/N conditions

(9)

S/N 充足时, S⁰ADN 前半程会快速提供足量的 NO₂⁻-N 底物, S⁰ADN 前半程没有完成时, Anammox 反应仍具备一定 NO₂⁻-N 竞争能力。这 与 ZHOU 等^[19] 研究结果一致,他们发现,当存 在 NO₃⁻-N 时, S⁰ 往往优先与 NO₃⁻-N 反应生成 NO₂⁻-N, S⁰ADN 后半程速率很低。故 S⁰ADN-Anammox 系统耦合情况可以根据 S⁰ADN 前半程 产生的 NO₂⁻-N 分别通过 Anammox 和 S⁰ADN 后 半程去除的占比情况进行判断,根据式 (5) 和式 (6) 计算可得,系统中通过 Anammox 和 S⁰ADN 后半程去除的 NO₅⁻-N 占比情况如图 2 所示。

由图 2 可以看出,当 S/N 由 0.8 增加至 2, P_{s2} 由 1% 升至 44%,而 P_A 由 99% 下降至 56%, 总氮去除率在 S/N=1 时最高,可达 89%,而 S/N 为 0.8 和 2 时,总氮去除率仅为 72% 和 76%。根据式 (7)~(9) 计算可得,批次实验 1 中在 S/N 分别为 0.8、1.0、2.0 的实验组中,理论上用

图 2 批次实验 1 Anammox 和 S⁰ADN 后半程去除 NO₂⁻⁻ N 占比及总氮去除率情况

于将 Anammox 产生的 NO₃⁻-N 转化为 NO₂⁻-N 所需的 SO₄²⁻和通过 S⁰ADN 后半程去除 NO₂⁻-N 所产生的 SO₄²⁻质量浓度总和分别为 50、56 和 86 mg·L⁻¹,与实际测量值近似,这可验证上述结果的准确性。数据分 析结果表明,当 S/N=1 时,Anammox 反应充分,系统总氮去除率较高,当 S/N 较低时,S⁰ 溶解产生可被微 生物利用的多硫化物速率较慢,限制 S⁰ADN 前半程反应速率,即 NO₂⁻-N 生成速率降低,故 Anammox 虽 然可以获得系统中大部分 NO₂⁻-N 进行反应,但 NO₂⁻-N 质量浓度不足以将 NH₄⁺-N 完全去除,NO₃⁻-N 和 NH₄⁺-N 均未完全去除,导致系统总氮去除率较低。S/N 过高则会导致大量 NO₂⁻-N 通过 SADN 后半程去 除,Anammox 反应占比下降,最终导致系统总氮去除率降低。

综上所述,在批次实验中,S/N=1更有利于 S⁰ADN-Anammox 系统的高效运行,由于 S⁰参与反应需要 溶解的过程,系统中需要保存一定量固态 S⁰以确保具有生物有效性的多硫化物供微生物进行 S⁰ADN 前半程 反应^[20-21],因此,该 S/N 控制值略高于理论值;而 S/N 过高则会导致 Anammox 反应受到抑制,进而不利 于 NH₄⁺-N 的去除。

在 HUO 等^[12] 的研究中,UASB 反应器内部完全依靠水流作用进行泥水混合,系统内会因重力不均出现 分层现象,较重的 S⁰ 颗粒大部分沉在反应器底部形成沉淀,无法与微生物充分接触并参与反应。LI 等^[22] 在 连续流厌氧发酵罐中以 S/N 为 2.1 启动 S⁰ADN-Anammox 系统,当 NO₃⁻-N 完全转化后,仍剩余 S/N 约为 1.34,由于实验装置没有泥水分离装置,发酵罐内污泥携带 S⁰ 随出水持续排出,经外接沉淀池沉淀后,再用 蠕动泵将污泥送回发酵罐,此时部分 S⁰ 以溶解态存在于上清液或小颗粒态漂浮在表面没有被抽入发酵罐,因 此实际重返发酵罐的 S⁰ 远低于 1.34。这些研究中虽然投入大量 S⁰,但实际只有小部分参与反应,因此没有 表现出 S/N 过高对 Anammox 反应的抑制现象。

2.2 S⁰ 对 S⁰ADN 后半程与 Anammox 反应的底物竞争影响分析

在 S⁰ADN-Anammox 耦合系统中,当系统中 NO₃⁻-N 被 S⁰ADN 前半程转化后,Anammox 反应与 S⁰ADN 后半程竞争共同底物 NO₂⁻-N。为考察 S⁰ 的含量对这一竞争过程的影响,进行了 3 次批次实验。批 次实验 2 和 3 的进水中仅含 NH₄⁺-N 和 NO₂⁻-N,接种污泥分别取自同一连续流 S⁰ADN-Anammox 反应器的 不同运行阶段,中间间隔 9 d,批次实验 2 的污泥中 S⁰ 含量远高于批次实验 3。2 次实验中 NH₄⁺-N、NO₂⁻-N 和 NO₃⁻-N 的转化情况如图 3 所示。

当 S⁰含量较高时 (图 3(a)),反应初期,NO₂⁻-N 质量浓度显著下降,48 h 后 NO₂⁻-N 被完全去除; NO₂⁻-N 去除速率在前 24 h 升至 0.050 kg·(m³·d)⁻¹,之后开始逐渐下降,至 48 h 仅为 0.002 kg·(m³·d)⁻¹。而 NH₄⁺-N 质量浓度始终保持在 45 mg·L⁻¹ 左右,几乎没有发生转化,NH₄⁺-N 去除速率始终处于 0.004 kg·(m³·d)⁻¹以下。在这过程中始终未检测到 NO₃⁻-N。

图 3 不同 S⁰ 含量下 S⁰ADN 后半程与 Anammox 底物转化情况 Fig. 3 Transformation of substrate in the second half S⁰ADN and Anammox under different S⁰ contents

当 S⁰ 含量较低时 (图 3(b)),在反应 48 h 后,NH₄⁺-N 下降至 15 mg·L⁻¹,其去除速率上升至 0.021 kg·(m³·d)⁻¹,而后逐渐下降至 0.003 kg·(m³·d)⁻¹。NO₂⁻-N 经过 36 h 后被完全去除,其转化速率在 24 h 升高 至 0.038 kg·(m³·d)⁻¹。随着反应进行,NO₃⁻⁻N 质量浓度在前 24 h 逐渐升高至 2.7 mg·L⁻¹, 36 h 后又降为 0 mg·L⁻¹。在整个实验过程中,NO₂⁻⁻N、NH₄⁺-N 分别去除了 48 mg·L⁻¹和 32 mg·L⁻¹。

上述实验结果表明,在高 S⁰ 含量的条件下,仅有 S⁰ADN 后半程反应发生,而无 Anammox 反应发生; 而在低 S⁰ 含量条件下,Anammox 反应在 NO_2^--N 、 NH_4^+-N 的去除过程中表现明显的主导作用。这可能是 S⁰ 对 S⁰ADN 后半程和 Anammox 的底物竞争产生了明显的影响。

为进一步明确不同 S⁰含量对上述 2 个反应过程的影响程度,进行了批次实验 4。将连续流反应器中取出的污泥用清水清洗 5 遍,以去除污泥中存留的 S⁰。将等量的污泥加入 4 个封口瓶中,并投加不同的 S⁰(S/N 分别为 0、0.5、1.1 和 4),NH₄⁺-N 和 NO₂⁻-N 的初始质量浓度均分别控制在 60 mg·L⁻¹ 和 66 mg·L⁻¹ 左右。实验中 NO₂⁻-N、NH₄⁺-N 表除和 NO₃⁻-N 与 SO₄²⁻的生成转化情况如图 4 所示。如图 4(a) 所示,当 S/N=0 时,NH₄⁺-N 和 NO₂⁻-N 被明显去除,在反应的前 36 h,NH₄⁺-N 和 NO₂⁻-N 去除速率持续上升至 0.031 kg·(m³·d)⁻¹ 和 0.037 kg·(m³·d)⁻¹,反应过程中发现 NO₃⁻-N 生成,24-48 h NO₃⁻-N 质量浓度维持在 1~2 mg·L⁻¹,SO₄²⁻在整个过程增加了 11 mg·L⁻¹,NH₄⁺-N 和 NO₂^{--N}分别去除了 55 mg·L⁻¹ 和 68 mg·L⁻¹。如 图 4(b) 所示,当 S/N 增至 0.5 时,NO₂⁻-N 去除情况不变,NH₄⁺-N 在 72 h 后仍剩余 32 mg·L⁻¹,NH₄⁺-N 去除速率略微下降至 0.022 kg·(m³·d)⁻¹。过程中并未检测出 NO₃⁻⁻N,SO₄²⁻在整个批次实验中增加了 39 mg·L⁻¹,NH₄⁺-N、NO₂^{--N}分别去除了 31 mg·L⁻¹和 70 mg·L⁻¹。如图 4(c) 所示,继续增加 S/N 至 1.1 时,NO₂^{--N}去除效果良好,而 NH₄⁺-N 质量浓度下降缓慢,72 h 后仍剩余 50 mg·L⁻¹,NH₄⁺-N 和 NO₂^{--N}分别去除了 57 mg·L⁻¹和 67 mg·L⁻¹。如图 4(d) 所示,当 S/N 继续增加 72 mg·L⁻¹,NH₄⁺-N 和 NO₂^{--N}分别去除 12 mg·L⁻¹和 67 mg·L⁻¹。如图 4(d) 所示,当 S/N 继续增加至 4 时,72 h 后 NH₄⁺CR 和 NO₂^{--N}分别去除了 5 mg·L⁻¹,NH₄⁺-N 和 NO₂^{--N}分别去除了 57 mg·L⁻¹和 67 mg·L⁻¹。如图 4(d) 所示,当 S/N 继续增加至 7 mg·L⁻¹、NH₄⁺-N和 NO₂^{--N}分别去除 12 mg·L⁻¹和 67 mg·L⁻¹。如图 4(d) 所示,当 S/N 继续增加至 4 时,72 h 后 NH₄⁺CR 和 NO₂^{--N}分别去除了 5 mg·L⁻¹和 70 mg·L⁻¹。0 和图 4⁻CR 和 NO₂^{--N}分别去除 12 mg·L⁻¹和 67 mg·L⁻¹。如图 4(d) 所示,当 S/N 继续增加至 4 时,72 h 后 NH₄⁺CR 和 NO₂^{--N}分别去除了 57 mg·L⁻¹和 70 mg·L⁻¹。0 和图 4⁻CR 和 NO₂^{--N}分别去除 12 mg·L⁻¹和 67 mg·L⁻¹。0 和图 4⁻CR 和 72 h 后 NH₄⁺CR 和 NO₂^{--N}分别去除 12 mg·L⁻¹和 67 mg·L⁻¹。0 和图 4⁻CR 和 72 h 后 NH₄⁺CR 和 NO₂^{--N}分别去除 12 mg·L⁻¹和 67 mg·L⁻¹。0 和图 4⁻CR 和 72 h 后 NH₄⁺CR 和 NO₂^{--N}分别去除 12 mg·L⁻¹和 67 mg·L⁻¹。0 和图 4⁻CR 和 72 h 后 NH₄⁺CR 和 NO₂^{--N}分别去除 12 mg·L⁻¹和 67 mg·L⁻¹。0 和图 4⁻CR 和 72 h 后 NH₄⁺CR 和 72 h for mg·L⁻¹。0 for mg·L⁻¹和 70 mg·L⁻¹

批次实验 4 结果表明,当耦合系统中 S⁰ADN 前半程将 NO₃⁻-N 转化后,S/N 极低情况下,Anammox 可 以在 NO₂⁻-N 和 NH₄⁺-N 的去除中占据主导地位,随着 S/N 增加,Anammox 反应情况逐渐恶化,当 S/N 为 0.5、1.1 时,NH₄⁺-N 去除量分别减少了 24 mg·L⁻¹ 和 43 mg·L⁻¹,当 S/N 为 4 时,主要发生 S⁰ADN 后半程 反应,Anammox 已无法正常进行。

批次实验 2 和 3 中的底物转化情况表明,实验中 NH_4^+ -N 和 NO_2^- -N 不同的转化情况,不是由于 2 次实 验接种污泥中 Anammox 数量不同所致,而是由于不同 S⁰ 含量对 Anammox 的转化作用所致。

通过批次实验 4, 探究不同 S⁰ 含量对 S⁰ADN 后半程与 Anammox 竞争的影响。结果表明,当耦合系统 中 S⁰ADN 前半程将 NO₃⁻-N 转化完成,随着 S/N 增加,更多 NO₂⁻-N 会通过 S⁰ADN 后半程去除,而并没有 通过 Anammox 途径去除,导致 NH₄⁺-N 去除效果恶化。根据式 (5) 和式 (6) 计算可得批次实验 4 中 P_{s2} 和

P_A的分布情况,结果如图 5 所示。

由图 5 可以看出,随着系统中 S/N 由 0 增加 至 4, P_{s2} 逐渐由 9% 升至 96%,而 P_A从 91% 下 降至 4%,根据式 (7)~(9) 计算可得,在批次实验 4 中,当 S/N 分别为 0.0、0.5、1.1、4.0 的实验组 中,理论上产生的 SO₄²⁻质量浓度总和分别为 26、 37、62 和 77 mg·L⁻¹,与实际测量值近乎一致,可 验证上述结果的准确性。

结果表明,当 S⁰ADN-Anammox 系统中 NO₃⁻-N 通过 S⁰ADN 前半程快速转化后,仅存在 NO₂⁻-N 和 NH₄⁺-N 时,S⁰的存在会加快 S⁰ADN 后半程对 NO₂⁻-N 的利用速率,从而对 Anammox 过程产生抑制作用,且 S/N 越高,S⁰ADN 后半程 获得的 NO₂⁻-N 越多, Anammox 越难发挥作用。 FU 等^{23]}在 USAB 反应器中启动 S⁰ADN-Anammox 系统,将进水中 NO₃⁻-N 换为 NO₂⁻-N,过量投加

图 5 批次实验 4 中 Anammox 和 S[®]ADN 后半程 去除 NO₂⁻-N 占比情况

 S^0 , NO₂⁻-N 去除率为 100%, NH₄⁺-N 去除率仅为 50%, 将近 50% NO₂⁻-N 通过 S⁰ADN 后半程去除, 说明 当 S⁰存在时, 确实会导致 SADN 后半程竞争更多的 NO₂⁻-N 底物。

3 结论

1) 采用略高于理论值的 S/N, 使系统中固态 S⁰ 存量满足多硫化物溶解的需求,即可保证 S⁰ADN-Anammox 耦合系统有良好的性能。批次实验的结果表明,S/N 为1时,系统的总氮去除率可达 89%,其中 NH₄⁺-N 去除率为 77%, NO₃⁻-N 去除率为 100%。

2) 在进水含 $NO_2^{-}N$ 和 $NH_4^{+}-N$ 的实验结果表明, S⁰ 含量会明显增强 S⁰ADN 后半程对 NO_2^{-} 的竞争能力。因而 S/N 过高会抑制 S⁰ADN-Anammox 耦合系统中 Anammox 过程对底物的竞争能力,降低 $NH_4^{+}-N$ 去除效果。

参考文献

- ZHANG M, WANG S Y, JI B, et al. Towards mainstream deammonification of municipal wastewater: Partial nitrification-anammox versus partial denitrification-anammox [J]. Science of the Total Environment, 2019, 692: 393-401.
- [2] TOMASZEWSKI M, CEMA G, ZIEMBIŃSKA-BUCZYŃSKA A. Influence of temperature and pH on the anammox process: A review and metaanalysis[J]. Chemosphere, 2017, 182: 203-214.
- [3] WETT B, OMARI A A, PODMIRSEG S M, et al. Going for mainstream deammonification from bench to full scale for maximized resource efficiency[J]. Water Science and Technology, 2013, 68(2): 283-289.
- [4] GRAAF. A A V D, BRUIJN. P D, ROBERTSON. L A, et al. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. [J]. Microbiology, 1996, 142(8): 2187-2196.
- [5] XU D D, YING S Y, WANG Y H, et al. A novel SAD process: Match of anammox and denitrification [J]. Water Research, 2021, 193: 116874-116874.
- [6] CUI B, YANG Q, LIU X H, et al. Achieving partial denitrification-anammox in biofilter for advanced wastewater treatment[J]. Environment International, 2020, 138: 105612-105612.
- [7] LIU H G, DONG W Y, ZHAO Z Z, et al. Anammox-based technologies for municipal sewage nitrogen removal: Advances in implementation strategies and existing obstacles [J]. Journal of Water Process Engineering, 2023, 55: 104090-104090.
- [8] Li Y, Chen B H, Zhang X L, et al. Elemental sulfur autotrophic partial denitrification (S⁰-PDN) with high pH and free ammonia control strategy for lowcarbon wastewater: From performance to microbial mechanism. Chemical Engineering Journal. 2023; 474: 145419-145419.
- [9] WANG T, LI X, WANG H, et al. Sulfur autotrophic denitrification as an efficient nitrogen removals method for wastewater treatment towards lower organic requirement: A review[J]. Water Research, 2023, 245: 120569-120569.
- [10] SUN Y M, NEMATI M. Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters[J]. Bioresource Technology, 2012, 114: 207-216.
- [11] CHEN F M, LI X, YUAN Y, et al. An efficient way to enhance the total nitrogen removal efficiency of the Anammox process by S⁰-based short-cut autotrophic denitrification [J]. Journal of Environmental Sciences, 2019, 81: 214-224.
- [12] HUO D, DANG Y, SUN D Z, et al. Efficient nitrogen removal from leachate by coupling Anammox and sulfur-siderite-driven denitrification [J]. Science of The Total Environment, 2022, 829: 154683-154683.
- [13] POKORNA D, ZABRANSKA J. Sulfur-oxidizing bacteria in environmental technology [J]. Biotechnology Advances, 2015, 33(6): 1246-1259.
- [14] ZHANG K, KANG T L, YAO S, et al. A novel coupling process with partial nitritation-anammox and short-cut sulfur autotrophic denitrification in a single reactor for the treatment of high ammonium-containing wastewater [J]. Water Research, 2020, 180: 115813.
- [15] CUI Y X, GUO G, EKAMA G A, et al. Elucidating the biofilm properties and biokinetics of a sulfur-oxidizing moving-bed biofilm for mainstream nitrogen removal [J]. Water Research, 2019, 162: 246-257.
- [16] CHEN F M, LI X, GU C D, et al. Selectivity control of nitrite and nitrate with the reaction of S0 and achieved nitrite accumulation in the sulfur autotrophic denitrification process[J]. Bioresource Technology, 2018, 266: 211-219.
- [17] WANG T, GUO J B, SONG Y Y, et al. Efficient nitrogen removal in separate coupled-system of anammox and sulfur autotrophic denitrification with a nitrification side-branch under substrate fluctuation [J]. Science of the Total Environment, 2019, 696: 133929-133929.
- [18] AMERICAN PUBLIC HEALTH ASSOCIATION (APHA) A W W A A, WATER ENVIRONMENT FEDERATION (AEF). Standard methods for the examination of water and wastewater. [J]. Washington, DC, USA, 2005.
- [19] ZHOU W L, SUN Y J, WU B T, et al. Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone[J]. Journal of Environmental Sciences, 2011, 23(11): 1761-1769.
- [20] HUILINIR C, ACOSTA L, YANEZ D, et al. Elemental sulfur-based autotrophic denitrification in stoichiometric S(0)/N ratio: Calibration and validation of a kinetic model[J]. Bioresource Technology, 2020, 307: 123229-123229.
- [21] WANG Y, BOTT C, NERENBERG R. Sulfur-based denitrification: Effect of biofilm development on denitrification fluxes [J]. Water Research, 2016, 100: 184-193.
- [22] LI X, YUAN Y, HUANG Y, et al. Simultaneous removal of ammonia and nitrate by coupled S0-driven autotrophic denitrification and Anammox process in fluorine-containing semiconductor wastewater [J]. Science of the Total Environment, 2019, 661: 235-242.
- [23] FU K M, ZENG Z X, HUANG S W. Effect of sulfur autotrophic denitrification sludge on the start-up characteristics of anaerobic ammonia oxidation[J]. Water, 2023, 15(7): 1275-1275.

(责任编辑:曲娜)

Effect of S/N on nitrogen transformation in sulfur autotrophic denitrification coupled anaerobic ammonium oxidation reaction

LI Yuzhe^{1,2}, GU Xiaodan^{1,2}, HUANG Yong^{1,2,*}

School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;
 Institute of Environmental Biology, Suzhou University of Science and Technology, Suzhou 215009, China

*Corresponding author, E-mail: yhuang@mail.usts.edu.cn

Abstract There is a common problem of high S/N in the S⁰-based sulfur autotrophic denitrification coupled anaerobic ammonium oxidation (sulfur autotrophic denitrification anammox, S⁰ADN-Anammox) process, resulting in the waste of S⁰. Thus, batch experiments were conducted to optimize the appropriate S/N in the sulfur autotrophic denitrification coupled anaerobic ammonium oxidation system when S⁰ was taken as the electron donor without considering the loss of S⁰. And the first half stage of the complete reaction of S⁰ADN was simulated through the substrate control strategy, then in the system environment of the second half stage of S⁰ADN and Anammox, their competitive ability for NO₂⁻-N in the presence of different S⁰ was discussed. The results showed that the S⁰ADN-Anammox system had a different denitrification performance at different S⁰ dosage. When S/N=1, the total nitrogen removal rate of the S⁰ADN-Anammox system was high and reached 89%, of which the removal rates of NH₄⁺-N and NO₃⁻-N were 77% and 100%, respectively; when only NO₂⁻-N and NH₄⁺-N existed, the higher the S⁰ mass concentration, the less NO₂⁻-N available to Anammox, and the competitive ability for NO₂⁻-N in the second half of S⁰ADN was stronger than Anammox, and too high S/N could affect the NH₄⁺-N removal effect.

Keywords S⁰ADN-Anammox; the impact of S/N; substrate competition relationship