August, 1982

石墨炉原子吸收测定土壤中锡

金龙珠 倪哲明

摘 要

土壤样品用高氯酸——硝酸——氢氮酸或在高压罐中分解后,以 0.2% 草酸水溶液提取,继以最大功率升温石墨炉原子吸收测定锡.将草酸介质与目前常用的盐酸介质比较,具有试剂空白低、灵敏度高和干扰少等优点。本文还讨论了用抗坏血酸消除高氮酸干扰的方法。在含锡量为3.5—12.54g/g的样品中加入标准锡的回收率为92—112%。取锡含量为3.84g/g的土壤样品,作七份平行试验,其相对标准偏差为3.2%。

电热原子吸收法已经广泛地应用于各种环境样品的分析。Ohta⁽¹⁾等应用钼管原子化器以萃取及反萃取技术测定地质样品中锡,在保护气体氩气中加入氢可改善锡的原子化效率,而磷酸的存在降低原子化温度并能减少共存离子的干扰。Tominaga等⁽²⁾报道了石墨炉原子吸收测定废水和沉积物中亚微克量锡,着重讨论了用有机试剂消除硫酸盐和金属离子对锡的干扰。Sterritt⁽³⁾等将污泥样品用硝酸酸化,并稀释10倍以后,用8000周/分的均相器搅匀10分钟,直接取混浊液进样,用石墨炉原子吸收测定。该方法虽然毋需溶样和分离等预处理手续,但测定精密度差。由于岩石和土壤中锡普遍以硅酸盐晶格键及锡石的形式存在,为了得到准确的分析结果,样品必须完全分解。Subramanian等⁽⁴⁾应用偏硼酸锂熔融地质样品后氢化物发生法测定锡。

本文指出了高氯酸对锡的测定有严重的抑制作用,但如果在进样的同时,往石墨炉中加入适量抗坏血酸溶液,则土壤样品溶液中小于0.2N的高氯酸,不再抑制锡的原子吸收信号,可以直接测定。原子化阶段采用最大功率升温方式,在较低的温度原子化,从而延长石墨管寿命,改善测定精密度。为了防止锡的水解,锡标准溶液或样品溶液均配成 0.2%草酸介质。

一、实验部分

1. 仪器

Perkin-Elmer 503型原子吸收分光光度计,400型石墨炉及56型记录仪. 国产锡空心阴极灯,灯电流18毫安.光谱通带宽0.7毫微米. 氘弧灯背景校正器.10和20微升 Eppendorf 微量进样器.

2. 试 剂

锡标准溶液,1000 µg/ml:0.500 克金属锡(G. R)溶于50毫升浓盐酸(优级纯)并用二次去离子水稀释至500毫升。其余工作溶液均由此储备液用 0.2% 草酸溶液稀释而成。

0.2%草酸溶液:溶解0.2克草酸 $H_2C_2O_4 \cdot 2H_2O(A \cdot R)$ 于100毫升去离子水中。

10% 抗坏血酸溶液: 1克抗坏血酸 $C_0H_sO_0(A\cdot R)$ 溶于10毫升 去 离 子 水. 当天配制.

68%硝酸、72%高氯酸及35%氢氟酸均为高纯试剂。

3. 操作步骤

(1) 土壤样品的分解

- 1·1. 高氯酸一硝酸一氢氟酸混合酸分解法: 准确称取0.1克已风干研细过 200目的样品,置于35毫升聚四氟乙稀坩埚中(南京塑料八厂). 加入高氯酸1.5毫升,加盖,于160°C加热分解约1小时,稍冷后,用1毫克硝酸淋洗坩埚盖的内壁,去盖加热至体积约为0.2毫升. 加入3毫升氢氟酸,于100°C加热去硅,然后升温至160°C继续分解样品,待呈黄色粘稠液后,用10毫升0.2%草酸溶液加热浸取,得到清亮的黄色溶液. 将此溶液转入25毫升容量瓶中(为防止锡水解,预先用0.2%草酸液润湿其内壁),并用草酸溶液稀释至刻度,摇匀.
- 1·2. 高压闷罐熔样法:准确称取 0.1克样品于容量为20毫升的聚四氟乙稀管内,加入高氯酸、硝酸及氢氟酸各 1 毫升,加盖后,将高压罐的不锈钢外套拧紧(高压罐的结构图见参考文献等)。于170°C加热 4 小时。冷至室温,打开高压罐,取出聚四氟乙稀管置电炉上,开盖加热,先于100°C去硅,然后升温至160°C,至是黄色粘稠液(体积 约 为 0.2毫升),用0.2% 草酸溶液加热浸取,并品溶液总体积为25毫升。
- (2) 锡的石墨炉原子吸收测定: 庄石墨管中依次加入10微升10%抗坏血酸溶液和20微升待测样品溶液,于100°C于燥40秒,700°C 灰化30秒,2400°C 最大功率升温,原子化4秒,最后在2700°C空烧3秒。原子化阶段停气,并用氘弧灯校正背景。在286.3nm处纪录峰值。

二、结果与讨论

- 1. 草酸介质与盐酸介质的比较: 为了防止锡的水解,目前石墨炉原子吸 收 分析中常用10%盐酸溶液. 高浓度盐酸溶液直接进样容易腐蚀炉体;而且盐 酸 中常 有锡 的空白. 同时,共存离子对锡测定的干扰比较严重;测定灵敏度也较低. Nyagah 等⁶³ 在研究锡的络合配位剂时,指出氟化铵、酒石酸、草酸、柠檬酸或2-巯基丙酸等络合剂能防止稀盐酸溶液中锡(1mg/ml)的水解. 我们的工作证明,草酸介质与盐酸介质比较,具有明显的优点. 0.2%草酸溶液中,10μg/ml 锡的标准溶液至少可以稳定 3 个月. 浓度更低的锡标准溶液(0.1μg/ml) 也能保存一星期. 此外,草酸溶液所含杂质锡,低于本法的检出限.由图 1 锡的灰化温度曲线与原子化温度曲线可见,当进样20微升 0.1μg/ml 锡溶液(最大功率升温),草酸介质中锡的灵敏度为10%盐酸介质时的 3 倍,而且允许灰化温度也 从 盐酸介质中的 800°C 上升到1000°C.另一不可忽视的优点是共存离子对测定锡的干扰较少.
- 2. 斜坡升温与最大功率升温的比较: 我们用 0.1 µg/ml 锡的草酸溶液比较了斜坡升温与快速升温两种原子化方式. 斜坡升温原子化时, 锡的吸收峰值随原子化温度 升 高而增加.最大功率升温原子化时,原子化曲线在温度2200°C以上出现平台区.用最大功率升温,2400°C原子化,锡的灵敏度为斜坡升温 2600°C原子化的 1.6 倍,这些结果如图1 所示.

不少作者在石黑管内注入 钼⁽¹⁾⁽¹⁾、钨⁽¹⁾⁽¹⁾⁾、银⁽¹⁾、银⁽¹⁾、银⁽¹⁾、银⁽¹⁾、银⁽¹⁾、银⁽¹⁾、银⁽¹⁾、银⁽¹⁾、银⁽¹⁾、银⁽¹⁾、银⁽¹⁾、银⁽¹⁾、银⁽¹⁾、战⁽

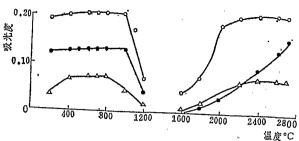


图 1 锡的灰化温度与原子化温度曲线

- (〇) 20µ10.1µgSn/ml标准草酸溶液,最大功率升温原子化
- (●) 20µ10.1µgSn/ml标准草酸溶液,普通斜坡升温原子化
 - Δ) 20μ10.1μgSn/ml标准盐酸溶液,最大功率升温原子化

感效应随着高氯酸含量和进样次数的增加不断递降。故本法不采用涂层技术。

3. 共存离子的影响:根据小林隆⁽¹²⁾报道的土壤中各种金属离子含量的平均值,按取样0.1克和土壤分解液的最终体积为25毫升计算,我们试验了20多种离子对测定锡的干扰影响,结果列于表1.由表1看出,绝大多数共存离子均不干扰锡的测定,仅1000倍过量的Zn²⁺,Si⁴⁺,SO²⁻和5×10⁴倍的ClO₂对锡呈抑制作用,锡的回收率分别为85%、73%、33%和43%。硫酸根的干扰之所以如此严重,Hocguellet等⁽⁸⁾认为是硫酸根在石墨炉内热

离子 加入形式		加入浓度(µg/ml)	共存离子存在时Sn的吸收值: 同体积同浓度Sn标准溶液吸收值	
Al3+	Al(NO ₃) ₃	500	0.95	
Si ⁴ +	Na ₂ SiO ₃	100	1.12*	
Zn2+	Zn(NO ₃) ₂ •6H ₂ O	100	1.05*	
Fg3+	Fe(NO ₈) 3•9H ₄ O	100	0.95	
Mn^{2+}	MnCl ₂	100	. 0.98	
K+	KNO ₃	100	1.00	
Na+	NaC1	100	1.03	
Mg ² +	Mg(NO ₃) ₂ •6H ₂ O	100	0.97	
Ca2+	Ca(NO ₃) ₂ •4H ₂ O	100	1.06	
Sr2+	SrCl ₂	100	1.00	
Mo6+	(NH4)6M07O44	100	1.03	
V5+	NH ₄ VO ₈	100 ,	1.00	
Zr4+	ZrO(NO ₃) ₂	100	0.96	
Pb2+	Pb(NO ₃) ₂	10	0.96	
Cu2+	Cu(NO ₃) ₂	. 10	0.98	
Cr ⁶ +	K ₂ Cr ₂ O ₇	10	0.98	
Ni2+	Ni(NO ₈) ₂	10	0.98	
$Cd_{2}+$	Cd(NO ₃) ₂	1.0	0.96	
'As5+	NaAsO ₈	. 1.0	0.96	
SO2-	Na ₂ SO ₄	100	0.91*	
PO3-	(NH ₄) ₂ HPO ₄	100	0.97	
F-4	NH ₄ F	100	0.98	
C10-	NaClO ₄	5×10 ³	0.92*	

表 1 共存离子的影响(0.1μgSn/ml标准溶液,20μl)

^{.*} 测定时,往石墨管中加入10H110%抗坏血酸溶液,

分解产生硫,进而与锡形成易挥发的硫化锡(熔点882°C,沸点1230°C). 但加入抗坏血酸以后,这些干扰均可消除. 所以进行原子吸收测定时均加入10微升10%抗坏血酸溶液.

为分解土壤中的有机物,高氯酸是相当有效的.但残留在样品溶液中的少量 高氯酸对锡有抑制效应,导致分析结果偏低.由图 2 可见,在 0.1μ g/ml 锡的标准草酸溶液中,若含有0.05N的高氯酸溶液,吸收峰值将只有原来的50%.高氯酸浓度为0.3N时,吸收峰高仅是标准值的25%.为了去除高氯酸对锡的干扰,Tominaga^{co}建议样品预处理或应用标准加入法.也有作者^{coo}认为用石墨炉原子吸收法测锡时,溶液中不能含有高氯酸.本实验结果表明,若加入10微升 10%的抗坏血酸溶液,可完全消除浓度不大于 0.2N 高氯酸的干扰.当进样20微升高氯酸浓度为0.1N的 0.1μ g/ml 锡的草酸溶液,并同时加入10微升不同浓度的抗坏血酸溶液,浓度大于 5%时,高氯酸的干扰可以完全消除(图 3).

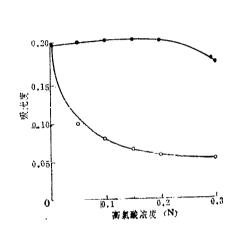


图 2 高氯酸浓度对锡测定的干扰及其消除

- (○) 20µ1含不同高氯酸浓度的0.1µg/ml锡草酸溶液
- (●) 10µ110%抗坏血酸溶液+20µ1含不同高氯酸浓度的0.1µg/四1锡草酸溶液

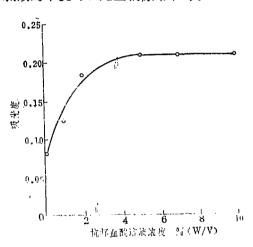


图 3 抗坏血酸消除高氯酸干扰的作用 10^μl不同浓度抗坏血酸溶液+20^μl0.1NHClO_μ-0.1^μg/ml锡草酸溶液

土壤样品经混合酸分解后,待测溶液中高氯酸的浓度不超过 0.2N,即可直接进 样 测定.为了研究高氯酸对锡干扰的机理,我们从石墨管的一端(进样时取下石英窗,进样 后 立即安上)将10微升0.2N高氯酸溶液和 $10微升0.2\mu$ g/ml 锡的标准溶液分别置于普通石墨管中心位置的两旁,即在进样和干燥过程中不互相接触。在这种条件下,高氯酸仍然抑制锡的信号,可见,高氯酸对锡的干扰是一种气相反应。但将0.2N高氯酸与等体积 10% 抗 坏血酸溶液混合后,取 $20微升此混合液与10微升0.2\mu$ g/ml 锡标准溶液分别进样于石墨管中心的两侧,或者同时从进样孔注入石墨管,均不再干扰锡的测定。这可能是由于抗坏血酸与高氯酸反应,使高氯酸分解,从而消除了它对锡的干扰。

4. 土壤样品的分解和锡的测定: Agterdenbos 等人⁽¹⁸⁾ 指出, 硅酸盐岩石中的锡, 一部分以硅酸盐晶格(晶格键)锡存在, 一部分以锡石一二氧化锡存在. 为了得到准确的分析结果, 岩石样品必须完全分解. 在400—500°C 的条件下, 应用碘化铵可以将锡石 定量转变为碘化锡(Ⅱ), 但不能分解品格键锡. 相反, 氢氟酸和硫酸或高氯酸和硝酸可以分解晶格键锡而不能分解锡石. 所以作者先用氢氟酸一硝酸混合酸后用碘化铵分解样品. 我

8

们比较了高氣酸一硝酸、高氯酸一硝酸一氢佩酸和高压罐法分解土壤样品,对测定锡的影响.实验结果证明,若应用高氯酸一硝酸分解时,大部分锡仍包藏在硅酸盐不溶物中,测定结果偏低.应用高氯酸一硝酸一氢佩酸分解土壤样品,样品基本上分解完全,与高压罐溶样方法测得锡的含量相符(见表 2).加入标准锡的回收率为92—112%.在若干土壤样品中取含量为3.8μg/g 锡的土壤样品作七份平行测定,其相对标准偏差为3.2%.

样		土 壤 中 Sn(µg/g)		Sn的回收(混合酸分解法)		
	品	高压闷罐法	混合酸分解法	加入Sn(µg/g)	测得总Sn (μg/g)	回收率%
	1	12.0	12.5	12.5	25.8	106
	2	3.8	3.5	10.0	14.0	105
	3.	, –	6.5	10.0	16.6	101
	4	 .	5.0	5.0	9.9	98
	5 .	7.3	8.0	5.0	13.0	100
	6	3.8	3.8	5.0	8.4	92 106
	7	_	5.0	5.0	10.3	106

表 2 土壤样品分析结果

(1982年2月6日收到)

12.2

12.1

参 考 文 献

5.0

5.0

(1) K. Ohta and M. Suzuki, Anal. Chim. Acta, 107, 245 (1979).

8.9

- (2) M. Tominaga and Y. Umozaki, Anal. Chim. Acta, 110. 55 (1979).
- (3) R. M. Storrit and J. N. Lester, Analyst, 105, 616 (1980).
- (4) K. S. Subramanian and V. S. Sastri, Talanta, 27, 469 (1980).
- (5) L. Kotz, G. Kaiser, P. Tschöpel and G. Tölg, Fresenius Z. Anal. Chem., 260, 207 (1972).

7.5

5.5

- [6] C. G. Nyagah and S. O. Wandiga, Tatanta, 26, 333 (1979).
- (7) H. Fritzsche, W. Wegscheider, G. Knapp, Talanta, 26, 219 (1979).
- (8) P. Hocguellet and N. Labeyvie, At. Absorpt. Newsl., 16, 124 (1977).
- (9) V. J. Zatka, Anal. Chem., 50 538 (1978).
- (10) E. Norval, H. G. C. Human and L. R. P. Butler, Anal. Chem., 51, 2045 (1979).
- [11] 齐加窗彦,池田友成,分析化学(日),29,309 (1980).
- (12) 小林隆,公害と对策,11,1300 (1975).
- (13) J. Agterdenbos and J. Vlogtman, Talanta, 19, 1295 (1972).