油气水中苯系物的分析方法:

童 清 木

(江汉石油管理局勘探开发研究院生油室)

摘 要

本法经硝化、蒸馏除去二硫化碳中的苯系物,然后用处理后的二硫化碳作原油的稀释剂,水和大气中苯系物的浓缩剂。用邻苯二甲酸二壬酯(2,5%)+有机皂土(3%)作周定液,硅烷化101白色担体(60—80目) 作载体,填充在2米长的不锈钢管中作为苯系物的分离柱,用氢火焰离子化鉴定器测定。最后用1毫克/升左右的苯系物标准样按外标法进行定性定量分析。其灵敏度对水中苯系物可达0,005毫克/升,准确度在90以上。

来源于化工产品和天然石油的苯系物,微溶于水,易逸散到大气里,量虽少但毒性大,影响人体健康,因此,测定油、气、水里苯系物的含量不仅对环境保护,而且对寻找石油都具有重要的意义。

用化学方法测定水中苯系物含量,流程复杂,分析时间长,灵敏度为0.01毫克/升。近年来,测定水中苯系物的含量采用了色谱法,我们对水中苯系物的定性定量的测定方法作了一些改进,优选出一种简便、灵敏度高、误差小的方法。对水中的苯、甲苯、乙苯、对二甲苯、间二甲苯、邻二甲苯、正丙苯等的灵敏度为0.005毫克/升。加在蒸馏水中的0.008—1.1905毫克/升的苯系物的萃取率除苯为 89.4%外,其余的接近 100%,平行误差一般小于8%,准确度在90%以上。

一、分析方法原理

根据相似相溶的原则,采用对 氢火焰 离子化鉴定器的信号很微弱,与苯系物的保留时间差别很大的二硫化碳作水中苯系物的萃取剂,原油中苯系物的稀释剂,大气中苯系物的低温吸收剂,使溶解在水中、逸散到大气里的苯系物得到浓缩,对原油中苯系物进行稀释,其后进入色谱柱分离,流入氢火焰鉴定器转化成电量记录器记录,依据苯系物的标准样进行定性定量分析,算出单位体积中苯系物的含量。

二、仪器和试剂

- 1. 气相色谱仪 (SP-2305,带氢火焰鉴定器)
- 2. 苯系物标准样 苯、甲苯、乙苯、对二甲苯、间二甲苯、邻二甲苯、正丙苯等。
- 3. 二硫化碳 二硫化碳 (分析纯)中含有苯系物,影响样品的定性定量及基线,可用硝化重蒸法除净。浓硫酸:浓硝酸:二硫化碳=25:25:100。在梨形分液漏斗内边摇动边

^{*} 张宝生同志参加了实验。

放气,静置分层后,取二硫化碳溶液测试苯系物,一次处理不净,多次处理,直至无苯系物显示为止,然后在46-47°C条件下重蒸,使二硫化碳与高沸点的硝基苯系物分离,待剩余20-30毫升后停止(干蒸易爆炸)。

三、分析方法

1. 水中苯系物的萃取 混浊的水样特别是带油的水样,必须快速过滤及时萃取,不得存放非满瓶的样品。否则因苯系物的易挥发而影响分析精确度(萃取在二硫化碳中的苯系物用水密封后放置几个月基本不变)

取滤液200毫升于梨形分液漏斗内,加2毫升二硫化碳,用力振荡 5 分钟,静置分层后,将二硫化碳样品转入10毫升的比色管内加水密封,作色谱分析。

- 2、大气中苯系物的浓缩 在两个塔式冷凝管中各加入2毫升二硫化碳,保温壶中装入一定量的浆糊状干冰酒精混合液(-80℃),尾气瓶盛满水,按图 1 装好流程(流程要求不堵不漏),使尾气瓶的冰成连续的滴状流出,取样10升,对前后两级苯系物二硫化碳溶液作色谱分析。
 - 3. 石油中苯系物的稀释 称取0.100克石油于10毫升比色管中,加水3-5毫升、

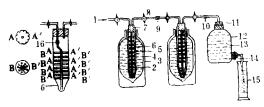


图1 气体中本系物富集流程示意图

- 1. 汽源 2. 二硫化碳 3. 保温壶 4. 酒精-干冰 5. 外套管 6. 煤式冷凝管 7. 11 胶寒 8. 活寒
- 5. 外套管 6. 塔式冷凝管 7. 11.胶塞 8. 活塞
- 9.10.16胶管 12.下口瓶 13.水 14.螺旋夹

15. 量信

二硫化碳 2 毫升,振摇使石油溶于二硫化碳,成均匀的溶液,作色谱分析。

若石油中苯系物的含量高,色谱峰顶不对称,呈"刀"形,应再加一定量的二硫化碳稀释,重作色谱分析。

4. 色谱分析 色谱柱为长2米,内径4毫米的不锈钢柱,柱内填充2.5%邻苯二甲酸二壬酯+3%有机皂土+101硅烷化白色担体(60—80目),氮气60毫升/分,氢气35毫升/分,空气900毫升/分(空气

量低,二硫化碳显负峰),柱温80℃汽化温度250℃(温度低,二硫化碳汽化不好,苯系物的分离度差),检测器温度150℃,记录纸速300毫米/小时。

称取0.42克的有机皂土于500毫升烧坏中,加40—50毫升苯,在60—70℃热水中振摇5—10分钟,至有机皂土溶解为淡黄色半透明乳浊液,加入0.35克邻苯二甲酸二壬酯,摇匀后加14克101白色担体,在通风柜内晃动至载体呈松散颗粒,用红外线灯烘烤半小时,装柱在100℃以下老化3—4小时。

仪器在上述条件稳定后,用10微升的注射器取3微升通过配制、萃取所得的已知浓度 苯系物标准样(各苯系物组分约1毫克/升),从仪器进样口进样,记录各种素系物的保 留时间。其后,采用与标准样相同的分析条件作样品分析,用标准样定性定量。

若样品组分复杂,色谱峰的保留时间差别不大,可用注射器取一定**量的标准样**和样品再作分析,视色谱峰高低变化定性。

5. 计算 从0.010—1.191毫克/升苯系物标准样的定量试验看出,苯系物线性范围宽(图2),用水密封的二硫化碳苯系物溶液不易变化,采用1毫克/升左右的苯系物为标准样,按下列公式计算样品中苯系物的含量。

$$C_{\text{id}} = \frac{A_i}{W} \cdot \frac{m}{A_o} \cdot 1000$$

$$C_{\text{id}} = \frac{A_i}{V} \cdot \frac{m}{A_o} \cdot 1000$$

$$C_{\text{id}} = A_i \cdot \frac{m}{A_o}$$

式中,C为样品中苯系物组分的含量(油:毫克/公斤,水:毫克/升,气:毫克/立方米);A.为样品中苯系物组分峰面积(毫米²);A.为苯系物标准样峰面积(毫米²);m为苯系物标准样重量(毫克);W为样品重量(克);V为进气量(升)

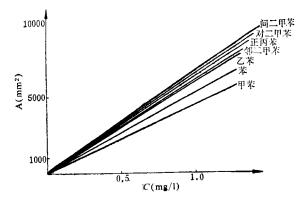


图2 苯系物含量与峰面积关系

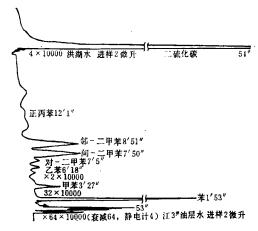
四、样品的测定

- 1. 配制样品的测定 称取 0.100 克左右的苯系物,用冰醋酸稀释成200毫克/升,然后取一定量的苯系物溶液于 200 毫升蒸馏水中,按上述方 法分析、计算,一般相对误差 在 10%以内(表1)。
- 2. 油气水样中苯系物的测定 通过对油田的地下水,化工厂、化验室的污水,汉江水,洪

	组分 组分		,	苯	系 物			
序号	结果	苯	甲苯	乙苯	对二甲苯	间二甲苯	邻二甲苯	正丙苯
1	理论值(g/1)	0.0119	0.0086	0.0082	0.0080	0.0082	0.0090	0.0091
	实测值(g/1)	0.0127	0.0083	0.0083	0.0086	0.0076	0.0093	0.0083
	相对误差(%)	6.72	3.49	1.22	7.50	7.32	3.33	8.79
2	理论值(g/1)	0.5595	0.4067	0.3841	0.3750	0.3869	0.4246	0.4288
	实测值(g/1)	0.5135	0.3728	0.3482	0.3650	0.3588	0.4356	0.4058
	相对误差(%)	8.22	8.34	9.34	2.67	7.26	2.59	5.36
3	理论值(g/1)	1.1905	0.8653	0.8173	0.7978	0.8232	0.9035	0.9123
	实测值(g/1)	1.2213	0.8837	0.8125	0.8082	1.8372	0.9205	0.8808
	相对误差(%)	2.54	2.13	0.59	1.30	1.70	1.88	3.45

表1 配制苯系物的测定结果

湖水,泉水,化工厂附近的大气,江汉、任丘、长庆、东漠、胜利、南阳油田部分石油样品分析,可以看出本方法能够为环境保护和寻找石油提供可靠数据,分析样品实例见图3、表2。



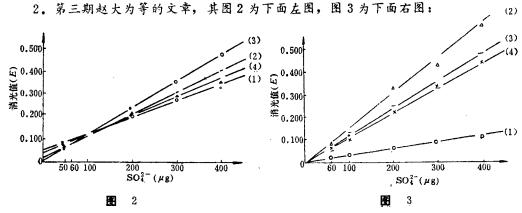

图3 水中苯系物色谱图

表2 油、气、水中苯系物的测定实例 ##

组	苯 系 物 含 量								
4 易 分	苯	甲苯	乙苯	对二甲苯	间二甲苯	邻二甲苯	正丙苯	总量	单位
E4033*石油	0.73	2,90	0.40	2.66	0.70	0.87	1,38	9,64	g/kg
K3*石油	17,79	15.06	1,58	6.40	5.64	2,77	2.07	51.31	g/kg
小炼厂处理池出口水	1.3619	6.4262	7,2017	未检出	0.4508	1.5661	0.5108	17.5175	mg/1
E25*油田水	1.2658	0.2607	0.0051	0.0210	0.0481	0.0251	0.0102	1.6360	mg/l
洪湖水									
咸宁泉水									
小炼厂高硫车间外大气	0.018	0.0359	0.151	未检出				0.518	mg/m ³

更 正

1. 第三期包志成等的文章, 其英文题目应为: Gas chromatographic Determination of phenolic Compounds in Water by Direct Derivatization.

特此更正,并致歉意。