# 络合物吸附波法测定痕量铜

黄正忠

杜祥云

(宜昌电子管厂)

(宜昌地区环境监测站)

摘 要

用络合物吸附波法测定微量铜和痕量铜已有报导<sup>[1]</sup>。在 H<sub>2</sub>SO<sub>4</sub>-KCNS 介质中,铜波具有良好的选择性。其检测限为 0.01µg ml<sup>-1</sup>,用于废水中微量铜的测定。但对于测定地表水痕量铜灵敏度还达不到要求。乙二胺-三乙醇胺-八-羟基 喹啉介质中,铜波具有很高的灵敏度,适于地表水痕量铜的测定。但该法选择性较差,对于组份较为复杂的工业废水中铜的测定,难于满足要求。

本文在过去工作<sup>121</sup>基础上进一步研究了在盐酸介质中,铜与巯基乙酸、邻菲绕啉络合物的吸附波。此波既具有良好的选择性,又有与铜-八-羟基喹啉络合物相当的灵敏度,最低可检出0.0001µg mL<sup>-1</sup>的铜,大量K<sup>+</sup>、Na<sup>+</sup>、NH<sup>+</sup>、5mg Fe<sup>3+</sup>及二十余种常见金属离子和阴离子在一定量时不干扰。用本法测定地表水、工业废水中痕量铜有较好的效果,与其他方法对照,不仅结果十分吻合,而且具有简便、灵敏、重现性好的特点。

## 实验部分

- 1. 仪器 JP-2型示波极谱仪; 二阶导数部分; 三电极系统。
- 2. 试剂 铜的标准溶液: 用纯金属铜按常法配制成100μg ml<sup>-1</sup>铜储备液,用时逐 级稀释成 1 μg ml<sup>-1</sup>, 0.1μg mL<sup>-1</sup>的铜, 0.5%竞基乙酸 (乙醇溶液); 0.1%邻菲绕啉 (0.1%HCl溶液); 0.1%硫脲溶液; 0.1%聚乙烯醇溶液; 6N HCl溶液。
- 3. 实验方法 取 $0.1\mu$ g铜的标准溶液,加入6N HCI 1mL, 0.5% 巯基乙酸0.4mL, 0.1% 邻菲绕啉 0.25mL,摇匀,加入0.1% 硫脲 0.75mI,用水稀释至 10mL,摇匀,于原点电位 -0.36V 扫描,在 -0.53V 读取铜的导数波,波形清晰,见图 1.6

## 结果与讨论

#### 1. HCI 溶液用量的影响

按照实验方法取 0.1µg 的铜标准溶液,改变HCl 溶液的用量。实验表明,取0.5—2.8mL 6N HCl,铜的催化电流最大,且出现一平台,少于0.5mL或多于3mL 6N HCl,铜的催化电流均下降,故取1mL 6N HCl。见图 2.

2. 底液中各组份浓度对催化电流的影响 巯基乙酸和邻菲绕啉与铜形成的络合物是 产生催化波的必要条件。 硫脲有改善波形, 使 波略为后移与试剂波分辨得更好的作用。不加 硫脲,波形较差,加0.1%硫脲 0.5—1mL能改 善波形,且波高恒定。但用量超过1mL,波高 开始降低,故应控制硫脲的加入量。在测定含 量极低的铜时,由于试剂波的限制,铜波不好 读数,补加0.1%聚乙烯醇溶液0.2-0.3mL, 对铜波有增敏作用。但用量超过0.3mL,波高 降低,直至消失。故应准确加入0.25mL0.1% 聚乙烯醇溶液。根据以上实验,确定测定铜的 最佳条件为: (一) 0.6N HC1-0.02%巯基乙 酸-0.0025%邻菲绕啉-0.0075%硫脲; (二) 0.6N HCI-0.02% 巯基乙酸-0.0025%邻菲 绕 啉-0.0075% 硫脲 --0.0025% 聚乙烯 醇。 见 图 3

#### 3. 铜浓度与峰电流的关系

在确定的底液条件下,加聚乙烯醇的i,最佳条件(二),铜浓度在1—50ppb/10mL范围内与峰电流有线性关系,不加聚乙烯醇的i,最佳条件(一),铜浓度在30—2000ppb/10mL范围内与峰电流有线性关系。

#### 4. 共存离子的影响

在选定的条件下,对铜有很好的选择性。 相对于0.1μg/10mL 的铜, 大量的 K<sup>+</sup>、Na<sup>+</sup>、 NH<sup>+</sup>, 5mg Fe<sup>3+</sup>, 2mg Ca<sup>2+</sup>、Mg<sup>2+</sup>、Sr<sup>2+</sup>、

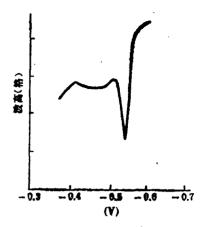



图 1 铜的导数示波图

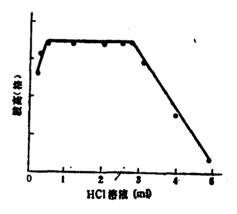



图 2 6N HC1溶液用量对波高的影响

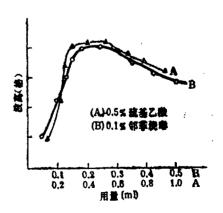



图 3 体系中各组份浓度对波高的影响 :~ Ca<sup>3+</sup> Ca<sup>8+</sup> 104g Ni<sup>2+</sup>

Ba<sup>2+</sup>, 500 $\mu$ g Al<sup>3+</sup>, 50 $\mu$ g Zn<sup>2+</sup>, 25 $\mu$ g Ag<sup>+</sup>, 20 $\mu$ g Ga<sup>3+</sup>、Cr<sup>8+</sup>、Cr<sup>8+</sup>、10 $\mu$ g Ni<sup>2+</sup>、Co<sup>2+</sup>、Sb<sup>3+</sup>、Mn<sup>2+</sup>、In<sup>3+</sup>、Tl<sup>+</sup>、Cd<sup>2+</sup>、V<sup>5+</sup>, 5 $\mu$ g As<sup>2+</sup> 以及大量F<sup>-</sup> NO<sub>1</sub><sup>-1</sup>、

 $CNS^{-1}$ 、酒石酸根、柠檬酸根、磺基水杨酸根不干扰测定。等量的 $Sn^{2+}$ 不干扰测定。10 倍的 $Sn^{2+}$ 有正干扰,在试样处理过程中可加几滴HI 将锡蒸干挥发除掉。10倍的  $Pb^{2+}$ 也产生正干扰,可采用 $SrSO_4$ 共沉 $Pb^{2+}$ ,除掉铅的干扰。

- 5. 极谱催化波性质的探讨
- ①表面活性物质的影响 表面活性物质如动物胶、四丁基溴化铵,溴化十六烷基吡啶,随着加入量增加,波高逐渐降低直至消失。
  - ②温度系数 铜波随着温度的增高而增高,其温度系数,从4-34℃间为2,1%/℃。
  - ③扫描静止时间对峰电流的影响 扫描静止时间越长,峰电流越高。
  - ④扫描速度对峰电流的影响 扫描速度越快,峰电流越高,与峰电流成正比关系。 从上述实验可以认为,此波系铜的络合物吸附波。
- 6. 样品分析 取1—7mL水样于10mL比色管中,加入6N HCl 1mL,0.5%巯基乙酸0.4mL,0.1%邻非绕啉0.25mL,摇匀,加入0.1%硫脲0.75mL,以水定容,摇匀。于原点电位-0.30V扫描,在-0.53V读取铜的导数波,如果铜含量很低,可补加0.1%聚乙烯醇溶液0.25mL,摇匀。于原点电位-0.30V扫描,在-0.53V读取铜的导数波、对于含有机物质较多的废水样,可预先用HNO<sub>3</sub>-H<sub>2</sub>O<sub>2</sub>消化,然后蒸干,用6N HCl 1mL浸取,以下步骤同实验方法。

| 试 样           | 本                  | 本 法 Cu <sup>2+</sup> (μg/mL) |       |
|---------------|--------------------|------------------------------|-------|
|               | Cu <sup>2+</sup> ( |                              |       |
| 清江河中段         | 0,015              | 0.017                        | 0.015 |
|               | 0.011              | 0.015                        |       |
| 精江与长江汇合处      | 0.0107             | 0.012                        | 0.012 |
|               | 0.0115             | 0.0114                       |       |
| 祖韓稱上段         | 0.0065             | 0.0063                       | 0.008 |
|               | 0.0070             | 0.0066                       |       |
| <b>沮捧河</b> 中段 | 0.125              | 0.131                        | 0.131 |
|               | 0.131              | 0.127                        |       |
| 沮漳河下段(1)      | 0,021              | 0.026                        | 0.021 |
|               | 0.025              | 0.022                        |       |
| 沿漳河下段 (2)     | 0,023              | 0.025                        | 0.023 |
|               | 0.021              | 0.022                        |       |
| 半导体」。 总口      | 0.068              | 0,065                        | 0.065 |
|               | 0.066              | 0.064                        |       |
| 电子管厂总口        | 0.076              | 0.078                        | 0.078 |
|               | 0.075              | 0.079                        |       |

表 1 样品中铜的分析结果对照

取 0, 0.005, 0.01, 0.05µg 铜的标准溶液于若干 10mL 比色管中,分别加入 6N HCl 1mL,加入0.5%巯基乙酸 0.4mL,0.1% 邻菲绕啉 0.25mL,摇匀,加入 0.1%硫 脲0.75mL,摇匀,加入0.1%聚乙烯醇0.25mL,用水稀释至10mL,以下操作同实验方法。另取 0; 0.05; 0.1; 0.5; 1.0; 1.5; 2.0µg铜的标准溶液于若干 10mL比色管中,此系列不加聚乙烯醇溶液,操作同实验方法。表 1 为本法结果与其他 方 法 测 定结果对照。

宜昌地区监测站郭玉芳同志提供对照数据,在此谨致谢意。

#### 参 考 立 献

- [1] 孟凡昌, 赵 藩, 1985。分析化学, 13(3):167
- [2] 杜祥云、黄正忠等。1987。分析化学。15(3):240

1987年6月9日收到。

# CATALYTIC POLAOGRAPHIC DETERMINATION OF TRACE COPPER

Huang Zhengzhong

Du Xiangyun

(Yichang Electronic Tube Factory) (Yichang Prefecture Environmental Monitoring Station)

#### ABSTRACT

The polarographic adsorptive complex wave of copper with thioglycollic acid and 1,10-phenathroline in HCl solution has been studied. This method is applicable to the rapid determination of trace copper in wastewater with satisfactory results.