大亚湾的有机碳*

蔡艳雅 韩舞鹰 林洪瑛

(中国科学院南海海洋研究所)

摘 要

本文基于实测资料,分别讨论了大亚湾的溶解有机碳、颗粒碎屑有机碳、沉积物有机碳 及生物碳的含量、分布及其相互关系。

大亚湾位于珠江口东部,是一个大型山地溺谷海湾,水域面积达600km²,平均水深约10m,大亚湾是广东省最大的海湾之一,该湾受人类活动影响较少,是广东省目前保持自然生态环境较好的一个海湾,著名的大亚湾核电站建址其西南岸。1985年—1986年我们开展大亚湾碳循环的专题调查,本文根据调查资料,研究大亚湾海水中 溶 解有 机碳、颗粒碎屑有机碳、生物碳和表层沉积有机碳的含量、分布及变化规律。

采样站位及分析方法

我们于1985年10月,1986年1月,1986年5月,1986年8月对大亚湾进行了四航次的碳循环专题调查,站位见图1.

颗粒有机碳(POC)、颗 粒 有 机 氮 (PON)及表层沉积物中的总碳采用 240C 型元素分析仪测定。溶解有机碳(DOC) 采用过硫酸盐高温氧化法。碳水化合物用 酚硫酸法测定。叶绿素a用751型分光光度 计测定。表层沉积物的无机碳用酸碱容量 法、温度、盐度、碱度、pH、溶解氧的分 析方法见文献^[1]。

有机碳的含量 及分布特征

大亚湾的有机碳按其不同的存在形式,基本可分为四种:存在于海水中的溶

Fig. 1 Sketch of investigated station

^{*} 国家自然科学基金资助课题,

解有机碳、悬浮在海水中的颗粒碎屑有机碳、以生物形式存在的有机碳及表层沉积物中的有机碳。

1. 海水中的溶解有机碳 (DOC) 的含量及分布特征

大亚湾的 DOC含量范围是 1.03—3.95mg/l, 平均值约 2.31mg/l. 一年四航次观测 中的最大值及最小值分别出现在春季的表层(海水表面)及底层(离水底 2m), 各季 节平均含量见表 1.

海水中的DOC,大部分较为稳定,一 些结构稳定的多糖、腐殖酸等在海水中相 当稳定,生物降解、化学过程只能使之缓 慢降解。另一小部分来自生物的DOC较不 稳定,如一些生物的代谢产物,死亡生物 的分解产物中较易分解的氨基酸、碳水化 合物等^[2].DOC 发生的变化主要是小部 分不稳定的DOC所引起。因此,当不考虑

表 1 大亚湾DOC的平均含量 (mg/l) Table 1 Average content of DOC in Daya Bay(mg/l)

		春	夏	秋	冬
表	层	2.36	2.47	2.07	2.17
底	层	2.48	2.64	2.06	2.26
平	均	2.42	2.56	2.06	2.21

外界环境的影响, DOC的含量是比较恒定的(在大洋中的 DOC 便是如此). 然而象大 亚湾这样的近岸水域,还要考虑环境对它的影响. 由表 1 可知,各季节的 DOC 相 差不 大,夏季DOC稍高,这主要是由于大亚湾夏季多雨,雨水把陆地的溶解态有机质带入湾 内,使DOC增加;而且亦与夏季海水的平均温度较高(29.5℃)有关. 温度较高有利于 生物残骸及颗粒有机物的溶解,也使DOC含量增加. 当然温度高亦有利于DOC的分解, 但当温度不是太高,DOC的氧化分解作用不及残腐生物的溶解快,因而其总的结果还 是使DOC有所增加.

DOC的平面分布: 春季表 层 北 部 较高, 西部及湾口较低。底层湾中部较低, 沿岸水域除西南侧有一较低值外, 其余均 较高(如图 2)。夏季表层湾北部、东部 较高, 西部较低。底层中部有较高值, 与 其它季节的底层分布有较大差异。秋季表 层东北角较高, 西南角有较低值, 其余地 方较均匀。底层东北角较高, 在湾北部存 在由东北向西南递减的浓度梯度。冬季表 层西南部较高, 中部较低, 由中部向北浓 度稍有增加。

总的说来,DOC的水平分布一般在北 部有较高值,湾口有较低值,湾西部比湾 东部低。表层分布除夏季外较底层均匀。 春季底层DOC分布最不均匀,其标准偏差

图 2 大亚湾DOC的平面分布 (春季) Fig.2 Horizontal distribution of DOC in Daya Bay(spring)

为1.05,极差为2.92.夏季底层最均匀,标准偏差为0.52,极差为1.81(见表2). DOC在垂直方向上表层的浓度比底层稍低,一般差别不大,最大的表底层差值不超 过2.59mg/1。

若以大亚湾水体积为6.43×10⁹m³ 计 算,整个海水碳贮库的溶解有机碳贮量为 1.49×10⁷kg.

溶解状态的碳水化合物是生命过程的 必需物,是海水溶解有机碳化合物的重要 组成部分,大亚湾碳水化合物的含量在 0.16—2.34mg/l(单位为葡萄糖)之间, 年平均值是0.71mg/l,夏季较大(见表 3).

碳水化合物的平面分布: 春季表层北 部稍高,其余地区较均匀(大于 0.5mg/l, 小于 1mg/l)。底层西南侧靠岸较高,湾 口较低(见图 3)。夏季表层北部较高, 中部靠湾口较低。底层中部偏北较低、偏 南稍高,西侧湾口较低。秋季北部及东北角 较高,西南部较低。冬季东北部较高。表 层西南角较低,但底层较高。

碳水化合物的垂直分布较均匀,表底 层含量基本一样,

以碳水化合物形式存在的溶解有机碳 平均占DOC的14%左右。

2. 海水中碎屑POC的含量及分布特征

大亚湾海水中的 悬 浮 颗 粒 有 机 碳 (POC),主要包括有生命的浮游植物碳 和无生命的有机颗粒碳^[2](碎屑POC), 浮游植物碳可由叶绿素a乘上一因子(f) 来估计:POC-af=碎屑POC,这里取 f为 60^[3]。

碎屑 POC 的含量为 31.9—933.7 mg/m³。最大值及最小值分别出现在夏季 的底层及表层,年均值为339.2mg/m³。表 层平均值各季节很接近,约 260mg/m³。 底层平均值春、冬两个季节较为接近,约 345mg/m³,夏季最高达556.96mg/m³(见 表4).夏季底层碎屑POC特别高,可能是 由于生物大量繁殖后,有较大量的生物碎

表 2 大亚湾DOC的标准偏差、极差 Table 2 Standard deviation and extreme difference of DOC in Daya Bay

		春	L	秋	۶.
	标准偏差	0.73	0.75	0.65	0.64
层	极差	2.48	3.59	1,99	2.50
底	标准偏差	1.05	0.52	0.64	0.58
层	极差	2.92	1.81	2.39	1.75

表 3 大亚湾碳水化合物平均含量 (mg/l)

Table	3	Average	content of	carbohy drate
		in Daya	Bay(mg/1)	

		春	夏	秋	<u>چ</u>
表	层	0.42	1.02	0.79	0.59
底	层	0.56	0.99	0.70	0.58
₹	均	0.48	1.01	0.75	0.58

图 3 大亚湾碳水化合物的平面分布 Fig.3 Horizontal distribution of carbohydrates in Daya Bay

表 4 大亚湾碎屑POC的平均含量 (mg/m³) Table 4 Average content of non living POC in Daya Bay (mg/m³)

_	[春	U.	秋	冬
表	层	237.65	274.79	277.85	258.25
底	层	351.84	556.96	418,60	337.68
平	均	294.74	415.88	348.22	297.97

片沉降造成。

碎屑POC的平面分布:春季表层最均匀(见图4),标准偏差为86.5,极差为356 (见表5),北部稍高。东部沿岸亦有一较高值,西南有较低值。底层碎屑POC的浓度

由北部的600mg/m³递減至南部的 200mg/ m³.夏季表层中部较高,由中部往东北 及西南两边递减.底层碎屑POC分布最不 均匀、标准偏差210.7.极差664。中部最 高.达900mg/m³,西岸大坑附近浓度较 低,南岸及东岸靠湾口处有较高值,中部 湾口较低.秋季表层碎屑 POC 分 布 较均 匀、与其余季节不同的是西部有较高浓度 的碎屑POC,东北角亦有较高值.冬季表 层水东北角的范和港附近最高,中部亦较 高,湾口稍低.底层东北部较高,由湾内 向湾外浓度递减.

碎屑 POC 在垂直方向上底层比表 层高,春、秋、冬三个季节表底层差值小于 360mg/m³,整个海湾平均约相差70 mg/m³。夏季表底层差别最大,差值最大 的达598mg/m³,平均约相差310mg/m³。

海水中浮游生物残骸沉降及海底的有 机颗粒再悬浮,使底层碎屑 POC 较 上 层 高。由于海水的季节性分层,阻碍海水在 垂直方向上的混合,在夏季成层现象最为 突出,海水表底层的浓度差达到最大。

大亚湾海水中颗粒碎屑碳贮库有机碳 贮量为0.21×10⁷kg.

3. 表层沉积物的有机碳含量及分布特征

大亚湾一年的沉积物厚度约1cm,表层沉积物季节变化不明显。有机碳含量是表层 干泥重的0.15%—1.07%。平均为0.67%。平面分布如图5,东北角较高,湾中部及湾 口较低,极差为0.93。标准偏差为0.22。

沉积物贮库一年的有机碳含量为1.5×10⁷kg.

4. 生物碳贮库的碳含量

生物碳包括有浮游植物碳、浮游动物碳、潮间带生物碳及底栖生物碳。 蔡艳雅等曾 根据实测的生物资料计算了以上各生物碳贮库的贮量。浮游植物 碳 贮 库 年 均 贮 量 为 0.0589×10⁷kg。潮间带生物碳年均贮量为0.00108×10⁷kg。鱼类碳年均 量 为 0.695× 10⁷kg。底栖生物碳年均量为0.467×10⁷kg。整个生物碳贮库的年均 贮 量 为 1.22×10⁷ kg。各贮库的季节贮量如表 6 所示。

Fig.4 Horizontal distribution of nonliving POC in Daya Bay

表 5	碎屑P	'OC的标准偏差、	极差
-----	-----	-----------	----

 Table 5
 Standard deviation and extreme difference of non-living POC

		春	夏	秋	冬
表	偏差	86,46	153.58	126.28	144.57
层	极差	355.9	558.4	450,3	579.2
底	偏差	151.98	210.67		139.85
层	极差	459.8	663.5	·	561.8

结果与讨论

大亚湾总有机碳年平均值为4.4×10⁷ kg.其中DOC和沉积物有机碳所占比例为 最大,分别占33.7%和33.5%,生物占 27.8%,碎屑POC只占4.9%.大亚湾初 级生产力年平均值为224.6mg/m²·d, 总有机碳一年的现存量是年生产总量的 90%,每年沉积下来的有机碳是年生产量 的30%,以生物形式存在的有机碳是年生 产量的25%.

总观大亚湾的DOC、碳水化合物、碎 屑POC及沉积物有机碳的平面分布,可看 到在湾的北部及东北部有较高的浓度分 布,西岸附近则常有较低的浓度分布。

大亚湾的溶解有机碳与其它海区相比 较是较高的(见表7)。在表7的各海区 中,大亚湾与陆地的关系较为密切,其周 围季节的河流以及海水的潮汐运动,把陆 地上溶解状态的有机质带入海湾。使大亚 湾的DOC含量较高。

大亚湾的溶解有机碳与碎屑POC、叶 绿素a、表观耗氧量AOU和CO₂之间均无显 著相关性。这说明:DOC向碎屑POC的转 化、浮游植物的排泄及藻细胞破裂向海水 析出DOC,以及由于DOC的氧化要消耗 氧气,产生CO₂等有可能影响DOC含量的 因素都未能控制DOC在海水中的含量及分 布。碎屑POC与沉积物有机碳之间亦无显 著相关性,因此,碎屑POC与沉积物有机 碳之间的相互影响不明显。

图 5 大亚湾沉积有机碳的平面分布

Fig.5 Horizontal distribution of organic carbon in the sediment of Daya Bay

表 6 大亚湾生物碳贮库含量 (×10⁷kg) Table 6 Carbon content of biosphere carbon reservoir in Daya Bay

	春	夏	秋	冬
浮游植物	0.0413	0.0926	0.0413	0.0601
浮游动物	0.00225	0.00569	0.00343	0.00850
鱼	0.39	0.89	1,00	0.50
潮间带生物	0.0011	0.0011	0.00106	0.00106
底栖生物	0.577	0.328	0.447	0.514
生物总碳	1.01	1.32	1.49	1.08

表 7 各海区表层DOC的含量 (mg/l) Table 7 Content of DOC in surface layer at sea area

——————————————————————————————————————	DOC	海区	DOC
东北太平洋	0.7	珠江口海区	1.7-5.0
北大西洋	1.0-1.3	南海东北部海区	0.6-2.1
墨西哥湾	0.6-1.1	大亚湾	2.31

悬浮颗粒有机物主要是由浮游植物和颗粒有机碎屑组成,有机颗粒中的氮主要是以 蛋白质和核酸等形式存在于浮游植物及生物残骸中,浮游植物的排泄、碎裂及生物残骸 的腐化分解都使悬浮有机颗粒中的氮失去,与此同时碳亦随之失去。本调查发现大亚湾 有机颗粒中的碳与氮具有显著的线性相关,说明有机颗粒碎屑中易分解的部分主要为含 氮的生物碎片,颗粒有机碎屑的另一部分为较难分解的有机物,这部分约占颗粒碎屑的 25%。在悬浮的生物颗粒和生物碎屑中,其碳、氮比处于5.45—6.87之间(见表 8)。 各季节不同但差别不大,并且都略大于健康浮游植物的碳氮比值(约5.3)¹⁴¹,这是由于 浮游植物腐屑在分解时,较易水解的化合物(蛋白质、核酸等)首先失去,因而其碳、 氮比值变大,

大亚湾悬浮颗粒有机碳与湾内海水中的Fe有显著的线性相关,并且颗粒有机碳POC 与Fe的回归方程: POC = A + B × Fe (A、B为常数)具有显著性(见表9).因此,我 们可以用此方程来预测其中任一未知项的量.若将这方程与上述所用的关系式: POC = 碎屑POC + af结合起来,则可得:碎屑POC = A + B × Fe - af,因此,在同一时期内碎屑 POC的量可由Fe及叶绿素a的值来估计,

麦 8 大亚湾悬浮有机颗粒的碳氮关系

Table 8Correlation between carbon and
nitrogen in the suspended
particles in Daya Bay

春	R = 0,919	n = 30	C/N = 6.87	
夏:	R = 0.706	n = 30	C/N = 5.45	
秋:	R = 0.803	n = 30	C/N = 5.95	
冬日	R = 0.756	n = 30	C/N = 6.08	

表 9 大亚湾悬浮有机颗粒碳与Fe的关系

Table 9Correlation between carbon and
iron in the suspended particles
in Daya Bay

春: POC=271.84+1.65 Fe,	n = 30, R = 0.74
夏: POC = 397.67 + 0.95 Fe,	n = 30, R = 0.67
秋: POC=211.88+4.02Fe,	n = 30, R = 0.69
冬: POC = 288.19 + 2.86 Fe,	n = 30, R = 0.69

多多 文 献

[1] 韩舞鹰等, 1986。海水化学要素调查手册, 36—101, 海洋出版社
[2] J. P、 腴利, 崔清晨等译, 1982。化学海洋学, 327—483, 海洋出版社
[3] R. A. 霜恩, 厦门大学海洋系译, 1976。海洋化学, 77—198, 科学出版社
[4] W. S. 布罗克, 1981。化学海洋学, 22—131, 科学出版社

1988年11月21日收到。

ORGANIC CARBON IN DAYA BAY

Cai Yanya Han Wuying Lin Hongying (South China Sea Institute of Oceanology, Academia Sinica)

ABSTRACT

Based on the actual data of determination, the content, distribution and correlation of each form of organic carbon in Daya Bay were discussed.