生物还原 化学沉淀去除烟气 SO_2 中 Na_2SO_3 和硫化物的研究

程 为 辛宝平* 霍祥明 李玉平

(北京理工大学化工与环境学院环境工程系, 北京, 100081)

摘 要 利用硫酸盐还原菌(SRB)和金属离子沉淀剂对烟气 SO_2 进行生物还原 化学沉淀去除,考察了碳源类型、乙酸(碳源)浓度、沉淀剂投加量和反应时间对 SO_3^{2-} 去除的影响,研究表明,沉淀剂的加入导致 SRB转化产生的 S^{2-} 能很快生成硫化物沉淀,其它副反应被抑制. 乙酸 C原子 $/SO_3^{2-}$ 的浓度比为 1时, SO_3^{2-} 去除最大. 随着沉淀剂投加量的增加, SO_3^{2-} 去除率增大. $ZnCl_2$ 生化反应培养 14d后, SO_3^{2-} 去除趋于完全. FeCl_2生化反应培养 7d后, SO_3^{2-} 去除趋于完全.

关键词 二氧化硫, 生物还原, 硫酸盐还原菌, 化学沉淀.

燃煤烟气中 SO_2 的处理主要有三种途径,即燃烧前脱硫、燃烧中脱硫和烟气脱硫,其中烟气脱硫 (FGD) 被认为是最行之有效的方法. 近年来,生物脱硫技术受到广泛关注,包括利用微生物在厌氧条件下将 SO_2 还原成硫化氢,烟气生物脱硫回收单质硫颗粒,氧化亚铁硫杆菌脱除烟气二氧化硫等[1-3].

本文探讨了用 N aOH 碱液吸收 SO_2 气体生成 N a_2SO_3 ,N a_2SO_3 经硫酸盐还原菌 (SRB) 厌氧生物还原转化形成 S^{2-} , S^{2-} 与 FeC l或 ZnC l发生化学沉淀,同时完成烟气脱硫和 FeS或 ZnS生成的资源化处理的可行性.

1 材料与方法

1.1 试验材料及培养基

北京市高碑店污水处理厂消化池厌氧污泥作为接种污泥以富集培养 SRB.

模拟 SO₂碱液吸收培养基: 乙酸, 0.05mol (C 计 0.1mol 质量 计 3g); Na₂ SO₃, 0.1mol (12.6g); ZnCl₂, 0.1mol (13.6g) 或 FeCl₂, 0.1mol (19.8g); NH₄Cl₂ 1g KH₂PO₄, 0.5g NaCl₂ 1g 无水 CaCl₂, 0.1g 去离子水, 1000m² pH 7.0 ±0.1 根据实验目的培养基组分或浓度有相应变化. Na₂SO₃母液通过 NaOH 碱液吸收实验室模拟 SO₂烟气制备而成.

1.2 SRB厌氧生物脱硫实验

取 5g接种污泥移入装满 SRB富集培养液的 500m l附有密封气球的锥形瓶中,置于 35°C 恒温箱静止培养。每天手摇三次,每 10d 用注射器取出 150m l上层液接入新鲜培养液中。随着转接次数增加,SRB得以不断富集,FeS生成加快。经 40d 富集培养(4次转接),当培养液中 Fe²⁺ 被全部沉淀(加入 NæS无沉淀生成)且其浊度不再增加后,取上层液为生物还原脱硫反应的 SRB接种菌悬液。

将 SRB菌悬液按 5% (VN)接入附有密封气球和泡沫塑料载体的 500m l具塞锥形瓶中,并迅速加入模拟 SO₂碱液吸收培养基至满瓶, 35°C静置培养.每天手摇三次,定期取样对 S²⁻, S₂O₃²⁻和 SO₃²⁻离子进行定性或定量分析.

²⁰⁰⁴年 12月 10日收稿.

^{*} 通讯联系人: x inbaop ing@ b it edu. cn, 010 - 68912672.

1.3 S^{2-} 和 $S_2O_3^{2-}$ 的定性检测及 SO_3^{2-} 的定量测定

在 SRB厌氧生物脱硫体系中,可能存在 S^2 , $S_2O_3^{2-}$ 和 SO_3^{2-} 等不同价态的硫元素. $S_2O_3^{2-}$ 与 A_g^+ 的特殊显色反应鉴定 $S_2O_3^{2-}$ 的存在: S^2 与亚硝基铁氰化钠的特殊显色反应定性检测 S^2 的存在: 检 测不到 S^2 和 $S_2O_3^{2-}$ 存在的反应体系中,用碘量法直接测定 SO_3^{2-} 残留浓度 [5].

2 结果与讨论

2.1 不同碳源中金属离子沉淀剂的加入对厌氧生化反应的影响

5种碳源的 C 原子浓度均为 0.1 mol Γ^1 (质量浓度分别为草酸 6.3 g Γ^1 , 乳酸 3.0 g Γ^1 , 葡萄 糖 3. 3g• Γ¹, 乙醇 2. 3g• Γ¹和乙酸 3. 0g• Γ¹), 不加或加入 0. 1m ol• Γ¹的 ZnCl或 FeCl, 培养 7d 后定性或定量测定 S^{2-} , $S_2O_3^{2-}$ 和 SO_3^{2-} 残留浓度, 结果见表 1 在不含 Zn^{2+} 或 Fe^{2+} 的培养液中, $S_2O_3^{2-}$ 大量生成。 SO_3^{2-} 表现出较高的表观去除、但实际 SRB还原去除的 SO_3^{2-} 量只有表观去除量的 1/3 在此体系中,SRB还原 SO_3^{2-} 产生 S^{2-} ,导致 SO_3^{3-} 一次消耗; S^{2-} 与 SO_3^{3-} 发生氧化还原反应生 成单质硫、导致 SO_3^{2-} 二次消耗: 单质硫与 SO_3^{2-} 反应生成 SO_3^{2-} 导致 SO_3^{2-} 三次消耗. 但由于中间 反应速度很快,未能检测出单质硫和 S^{-} 的存在; $S_2O_3^{2-}$ 在厌氧环境中相当稳定,故大量积累.

在含 Zn^{2+} 或 Fe^{2+} 培养液中检测不到 Se^{2-} 和 SeO_3^{2-} 的存在,因为 SRB 生化还原 SO_3^{2-} 产生的 Se^{2-} 很 快与 Z_n^{2+} 或 F_n^{2+} 反应生成 Z_nS 白色沉淀 $[k_{sp}(Z_nS) = 2.5 \times 10^{-22}]$ 或 F_nS 黑色沉淀 $[k_{sp}(F_nS) = 2.5 \times 10^{-22}]$ 6.3×10^{-18}],抑制了其他副反应的发生并阻止了 $S_2 O_3^{2-}$ 的积累. 因此,在含 Zn^{2+} 或 Fe^{2+} 体系中, SO_3^{2-} 的表观去除完全是由于 SRB 的生物还原作用,生成的 S^{2-} 随即转化为 ZnS或 FeS沉淀. 研究还 发现,在 5种碳源中 (尤其是乳酸和乙酸),含 Fe^{2+} 体系具有比含 Zn^{2+} 体系更高的 SO_3^{2-} 去除,这可 能是由于 Fe^{2+} 促进了 SRB的代谢活性 [4]. 故单从 SO_3^{2-} 的去除效果来看, FeCl 优于 ZnCl: 但从无机 硫化物的制取来看,由于 ZnS价格远高于 FeS SRB还原-ZnCl沉淀脱硫具有更大的经济效益. 另一 方面,虽然 5种碳源都能满足 SR B还原反应的需要,导致一定的 SO_3^{2-} 去除,但无论含 Zn_3^{2+} 或含 Fe_3^{2+} 体系,乳酸和乙酸都表现出最好的去除效果,这与 SRB 利用不同脂肪酸作为碳源的生物反应活性有 关,考虑到 ZnS或 FeS制备的经济性,后续试验选择廉价的乙酸作为 SRB还原反应碳源,

表 1 不同碳源中金属离子沉淀剂的加入对厌氧生化反应的影响

Table 1	The effect of m etal	orecipitant in different carbon	sources on reaction products
---------	----------------------	---------------------------------	------------------------------

	碳源类型	草酸	乳酸	葡萄糖	乙醇	乙酸
	生成 S ₂ O ₃ ²⁻ 浓度 /m ol•	0 0406	0.0480	0. 0405	0. 0403	0. 0472
不含 Zn ²⁺ 和 Fe ²⁺	残留 SO ₃ ²⁻ 浓度 /m ol• 「¹	0 0187	0.0040	0. 0190	0. 0193	0. 0055
THE ZM THIE	SO3 ²⁻ 表观去除率 1%	81. 3	96. 0	81.0	80. 7	94. 5
	SRB对 SO ₃ ²⁻ 还原率 /%	27. 1	32. 0	27. 0	26. 9	31. 5
	生成 S ₂ O ₃ ²⁻ 浓度 /m ol•	未检出	未检出	未检出	未检出	未检出
含 Zn ²⁺ 不含 Fe ²⁺	残留 SO ₃ ²⁻ 浓度 /m ol• ↑¹	0 0499	0. 0371	0. 0502	0. 0510	0. 0356
	SRB 对 SO ₃ ²⁻ 还原率 /%	50. 1	62. 9	49. 8	49. 0	64. 4
	生成 S ₂ O ₃ ²⁻ 浓度 /m ol/•	未检出	未检出	未检出	未检出	未检出
含 Fe ²⁺ 不含 Zn ²⁺	残留 SO ₃ ²⁻ 浓度 /m ol• ↑¹	0 0483	0.0328	0. 0487	0. 0494	0. 0234
	SRB 对 SO ₃ ²⁻ 还原率 /%	51. 7	67. 2	51.3	50. 6	76. 6

2.2 乙酸浓度对 SO₃²去除和硫化物产生的影响

乙酸浓度分别为 1.5g* 「¹, 3.0g* 「¹, 4.5g* 「¹和 6.0g* 「¹ (C原子浓度为 0.05mol* 「¹, $0.10 \text{mol} \cdot \Gamma^1$, $0.15 \text{mol} \cdot \Gamma^1$, $0.20 \text{mol} \cdot \Gamma^1$), $ZnC] 或 FeC <math>\frac{1}{2}$ $0.1 \text{mol} \cdot \Gamma^1$, $Na_2 SO_3 0.1 \text{mol} \cdot \Gamma^1$, 7d后测定 SO²⁻ 残留浓度、结果见表 2

表 2 碳源浓度对 50² 去除和硫化物产生的影响

Table 2	The effect of	ace tic- ac id	concentration on SO_3^2	removal and	sulfide production
---------	---------------	----------------	---------------------------	-------------	--------------------

	乙酸 C原子 /SO32- 的浓度比	1: 2	1: 1	3 2	2: 1
含 Zn ²⁺ 不含 Fe ²⁺	残留 SO ₃ ²⁻ 浓度 /mol Γ ¹	0. 0698	0. 0356	0. 0465	0. 0513
	SO ²⁻ 去除率 /%	30. 2	64. 4	53. 5	48. 7
含 Fe ²⁺ 不含 Zn ²⁺	残留 SO ₃ ²⁻ 浓度 /mol Γ ¹	0. 0390	0. 0234	0. 0366	0. 0397
	SO ₃ ²⁻ 去除率 /%	61. 0	76. 6	63. 4	60. 3

由表 2 可知,碳源 C 原子 /SO $_3^{2-}$ 的浓度比为 1 时,无论含 Zn^{2+} 或含 Fe^{2+} 体系都表现出最高的 SO_3^{2-} 去除,而碳源浓度增加或减少都会导致 SO_3^{2-} 去除下降.崔高峰等报道 SRB 还原硫酸盐废水理论上要求 $COD/SO_4^{2-} = 0.67^{[8]}$,即碳源需高于某一特定浓度才能完全还原 SO_4^{2-} . 研究显示,在以乙酸为碳源含 $ZnCl_2$ 或 $FeCl_2$ 体系中, SRB还原 SO_3^{2-} 的最佳 C 原子 / SO_3^{2-} 的浓度比为 1 低于此值, SRB碳源不足,导致 SO_3^{2-} 还原减弱.高于此值,碳源供应充分,产甲烷菌优势生长 SRB 活性减弱同样导致 SO_3^{2-} 还原减弱.同时由于 SRB 厌氧生物作用缓慢,还原反应周期较长, SRB 活性减弱同样完全还原,因此, SO_3^{2-} 去除率相对较低,在最佳 C 原子 / SO_3^{2-} 的浓度比下含 SRB 不 SO_3^{2-} 的表除率分别为 SRB 不 SO_3^{2-} 不 SRB 不 SO_3^{2-} 的表除率分别为 SRB 不 SO_3^{2-} 不 SRB 不 SO_3^{2-} 的表除率分别为 SRB 不 SRB 不 SRB 不 SSO_3^{2-} 的表除率分别为 SRB SRB 不 SSO_3^{2-} 的表除率分别为 SRB SRB SSO_3^{2-} 的浓度比下含 SRB

2.3 沉淀剂投加量对 SO²⁻去除和硫化物产生的影响

表 3 沉淀剂投加量对 SO_{3}^{2} 去除和硫化物产生的影响

Table 3 The effect of acetic acid concentration on SO_3^{2-} removal and sulfide production

沉淀剂	沉淀剂 SO_3^{2-} 物质的量浓度比	1: 2	1: 1	2 1	4: 1
ZnC l ₂	残留 SO ₃ - 浓度 /mol l l	0. 0576	0. 0356	0. 0178	0
	SO3 ²⁻ 去除率 1%	42. 4	64. 4	82. 2	100
FeC l ₂	残留 SO3- 浓度/mol l1	0. 0350	0. 0234	0. 0034	0
	SO3 ²⁻ 去除率 1%	65. 0	76. 6	96.6	100

2.4 生化反应时间对 SO²⁻去除和硫化物产生的影响

表 4 生化反应时间对 SO_3^2 去除和硫化物产生的影响

Table 4 The effect of reaction time on SO_3^{2-} removal and sulfide generation

沉淀剂	生化反应时间 /d	7	14	20
ZnC l ₂	残留 SO ₃ ²⁻ 浓度 km ol· l ⁻¹	0. 0356	0. 0237	0. 0199
ZIC 5	SO3- 去除率 %	64. 4	76. 3	80. 1
FeC l ₂	残留 SO ₃ ²⁻ 浓度 km ol• l ⁻¹	0. 0234	0. 0219	0. 0184
r eC į	SO ₃ - 去除率 1%	76. 6	78. 1	81. 6

随着生化反应时间的增加, SO_3^{2-} 去除率不断提高. 沉淀剂为 ZnCl时,生化培养 14d后 SO_3^{2-} 的去除率较之 7d的 64. 4%增加到 76. 3%,随后 SO_3^{2-} 去除减缓,表明生化反应逐渐趋于完全. 沉淀剂为 FeCl时,生化培养 7d后 SO_3^{2-} 的去除率达 76. 6%,随后去除减缓,生化反应趋于完全. 研究表明,虽然含 Fe^{2+} 体系和含 Zn^{2+} 体系具有几乎相当的最终 SO_3^{2-} 去除效果,但 FeCl表现出更快的去除速率,显示了 Fe^{2+} 对 SRB活性的促进作用. 因此, 7d的生化培养对 SO_3^{2-} 微生物转化和 FeS制取是适宜的;而 14d的生化培养对于 ZnS制取是适宜的.

3 结论

- (1) SRB生物还原 化学沉淀能有效去除碱液吸收 SO_2 产生的 SO_3^2 , 并生成 ZnS和 FeS
- (2) 在乙酸 C原子浓度、 Na_2SO_3 浓度和沉淀剂量均为 $0.1 \text{mol} \cdot \text{I}^{-1}$ 的适宜条件下,含 Fe^{2+} 体系和含 Zn^{2+} 体系都表现出超过 80% 的 SO_3^{2-} 去除效率,但 FeC1显示出更高的去除速率,其 7d 的 SO_3^{2-} 去除率达 76.6%,而 ZnC114d的去除率为 76.3%.

参考文献

- [1] 吴根,陈旭东,夏涛,微生物脱硫技术的现状及发展前景.环境保护,2001,(1):21-22
- [2] 刘鸿元, TH IOPAQ 生物脱硫技术. 中氮肥, 2002, (5): 53-57
- [3] 王小燕,张永奎,梁斌,微生物脱硫工艺条件的研究. 环境科学,2003, 24 (5): 44-48
- [4] 张小里,刘海洪,陈开勋等,硫酸盐还原菌生长规律的研究。西北大学学报(自然科学版),1999. **29** (5):398—402
- [5] 武汉大学化学系无机化学教研室编,无机化学实验. 武汉: 武汉大学出版社, 1997
- [6] 崔高峰,柯建明,王凯军,COD/SO²-值对硫酸盐还原率的影响。环境科学,2000, **21** (4): 106—109
- [7] 杨柳燕、肖琳、环境微生物技术. 北京: 科学出版社, 2004, 311.

REMOVAL OF SO₂ BY COMBINED PROCESSES OF MICROBIAL DEOXIDIZATION AND CHEMICAL PRECIPITATION

CHENG Wei XIN Baoping HUO X iang ming LI Yuping

(Department of Environmental Engineering School of Chemical Engineering and Environment

Beijing Institute of Technology Beijing 100081)

ABSTRACT

In this paper, removal of SO_2 and production of sulfide by combined processes of microbial deoxidization and chemical precipitation were proposed. The effects of carbon-source type, acetic-acid concentration, precipitant dosage and reaction time on SO_3^{2-} removal were investigated. The results showed that presence of precipitant causes quick generation of sulfide precipitate due to chemical precipitation between metal ion and S^{2-} from SO_3^{2-} reduction by SRB, inhibiting the other reaction of S^{2-} . It is optimum for the SO_3^{2-} removal that molecular concentration rate between acetic-acid C and SO_3^{2-} equal to one SO_3^{2-} removal increases with the increase in precipitant dosage. The reaction for SO_3^{2-} removal approaches to finish after 14 day incubation when the precipitant was ZnC. The reaction for SO_3^{2-} removal approaches to finish after 7 day incubation when the precipitant was SnC.

Keywords SO₂, microbial deoxidization, sulfate reducing bacteria (SRB), chemical precipitation.