辽东湾海域短链氯化石蜡的生物累积特征^{*}

王 成¹² 高 媛¹² 张海军¹ 樊景凤³ 陈吉平[™]

(1 中国科学院大连化学物理研究所,大连,116023; 2 中国科学院研究生院,北京,100049;3 国家海洋局国家海洋环境监测中心,大连,116023)

摘 要 为了解短链氯化石蜡 (SCCPs)在我国海域的污染现状,于 2009年采集了渤海辽东湾海域的浮游动物、8种底栖动物 (虾、蟹、蛤、扇贝和螺)和 6种鱼类,采用高分辨气相色谱 /电子捕获负离子化-低分辨质谱 (HRGC/ECN FLRMS)分析了其中的 SCCPs 结果表明,渤海辽东湾海域水生动物体中 SCCPs的含量变化范围为 0 66-20 32 μ g g⁻¹ dw(干重).采集的 15 种水生动物样品中 SCCPs以 C₁₀-SCCPs和 C₁₁-SCCPs为主, C₁₃-SCCPs含量最低,并且低氯取代 (五氯和六氯)的 C₁₀-SCCPs和 C₁₁-SCCPs在绝大多数生物体内累积量 较高.

关键词 短链氯化石蜡,生物累积,辽东湾,高分辨气相色谱/电子捕获负离子化-低分辨质谱.

氯化石蜡是直链正构烷烃的氯代衍生物,工业上用作阻燃剂、增塑剂、金属加工油和皮革处理剂 等,其中碳链长度为 10—13个碳原子的氯化石蜡被定义为短链氯化石蜡 (SCCPs),氯化程度在 30% — 72% 之间 (按质量计)^[1].现有研究表明,SCCPs具有生物毒性、环境持久性、生物蓄积性和远距离环境 迁移能力^[2-7].2000年,欧盟水框架指令禁止使用 SCCPs,并将其列为水中的首要危险化学品之一^[8]; 2007年由欧盟及其成员国提议,在联合国环境规划署 UNEP/POPS/COP.3/12文件中把 SCCPs列入持 久性有机污染物 (POPs)候选清单^[9].

SCCPs组成复杂,有数千个异构体,尚无一套标准的方法能将其完全分离和准确定性. Bayen等总结了现有的氯化石蜡分析方法,其中,最常用的是气相色谱 电子捕获负离子化 (低分辨质谱 (HRGC / ECN FLRMS) 法^[10].该方法灵敏度高、选择性强,且分析成本相对较低,最有可能成为未来的 SCCPs 环境监测方法.目前关于 SCCPs的生物蓄积和环境行为的研究和积累的数据非常有限,主要由欧洲和 北美等发达国家提供^[11-18].我国是氯化石蜡生产第一大国,估计年产量超过 25万吨^[19].然而,由于分 析技术的限制,SCCPs在我国环境中的存量数据几近空白.在前期的研究工作中,本实验室建立了环境样品中 SCCPs定量分析的 HRGC/ECN FLRM S法^[20].基于此方法,本研究分析了渤海辽东湾海域浮游动物、代表性底栖动物和鱼类体内的 SCCPs的含量和分布,旨在了解 SCCPs在我国海域的污染现状.

1 实验部分

1.1 试剂与材料

正己烷、二氯甲烷和甲苯 (J T. Baker, USA) 均为农残级. 活性硅胶 (PCB 专用, W ako, 日本)采用 加速溶剂萃取 (ASE 350, D ion ex, 美国)进行净化处理, 萃取溶剂为二氯甲烷, 萃取温度 120 °C, 三次 循环, 使用前于 130 °C在烘箱中活化 10 h, 置于干燥器中保存. 44% 酸化硅胶的制备方法为: 将 200 g 活性硅 胶和 157 g浓硫酸放于棕色瓶内, 充分振荡 2—3 h, 置于干燥器中保存. 活性中性氧化铝 (activated, S ign a-A ldrich, USA)的净化处理方式同活性硅胶, 使用前于 180 °C在烘箱中活化 10 h, 置 于干燥器中保存.

三种不同氯含量的 SCCPs混合物标准样品购于 Labor Dr Ehrenstorfer Schäfers (Augsburg 德国), 其氯含量分别为 51.5%, 55.5%和 63%, SCCPs浓度为 100 ng ^µL⁻¹, 溶解在环己烷中.此外, 由氯含

2010年 8月 3日收稿.

^{*} 国家重点基础研究发展计划 (973计划)项目 (2009CB421602); 国家自然科学基金 (21077102)资助.

^{* *} 通讯联系人,Tel 0411-84379562; E-mail chenjp@ dicp ac on

量为 51.5%和 55.5%按 1:1 (VN)混合得到氯含量为 53.5%的 SCCPs混合物标准样品;由氯含量为 55.5%和 63%按 1:1 (VN)混合得到氯含量为 59%的 SCCPs混合物标准样品.

标准储备液的配制:分别取不同氯含量的 SCCPs标准样品 1 mL,转移到 5 mL容量瓶中,用壬烷稀释定容,配成 20 ng• μ L⁻¹的标准储备液.

采用^{¹³}C₁₀ 反式氯丹 (购于 Cambridge Isotope Laboratories 美国)和六氯苯 (购于天津光复精细化工研究所,色谱纯)分别作为提取内标和回收率内标,用壬烷分别配制成 12 ng L⁻¹的提取内标溶液和 20 ng L⁻¹的回收率内标溶液,低温冷藏保存.

1.2 样品的采集

生物样品于 2009年 5月采集于渤海辽东湾营口大辽河入海口处海域.采集的样品包括浮游动物、 底栖动物 (虾、蟹、蛤、扇贝和螺) 8种和鱼类 6种,浮游动物的样品采集使用浅海 I 型网 (大网)和 II 型网 (中网)标准浮游生物网自底至表垂直拖取,其余生物样品采用拖网捕捞方法捕集,部分样品购买于营 口海岸刚刚捕捞上岸的渔船.生物样品采样后立即装入密封的 PTFE 塑料袋并放入冰箱,带回实验室 后,将样品进行冷冻干燥,研磨后装入棕色玻璃瓶,低温冷藏保存.

1.3 样品的提取与净化

准确称取 1.5 g的生物样品置于玻璃质滤纸筒,加入 10 ^µL提取内标溶液,置于索氏提取器中,加入 250 mL 1:1甲苯 /二氯甲烷 (*V*/*V*)混合溶液萃取 20 h 采用浓硫酸酸化方法除脂. 将提取液旋转蒸发 至 2-4 mL后加入 15 mL的浓硫酸,置于振荡器振荡 24 h 用 20 g硅胶吸附酸化处理后溶液,转移到 硅胶层析柱的柱头.所用的硅胶层析柱的装填方法为:从下往上依次为 6 g无水 N_&SO₄、4 g硅胶、8 g 44% 酸化硅胶和 7 g无水 N_&SO₄. 用 60 mL的正己烷冲洗硅胶层析柱,淋出液记为淋洗液 1,为弃液. 然后用 180 mL 1:1正己烷 /二氯甲烷 (*V*/*V*)混合溶液冲洗,淋出液记为淋洗液 2 再用 90 mL 1:2正己烷 /二氯甲烷 (*V*/*V*)混合溶液冲洗,淋出液记为淋洗液 3 将淋洗液 2和 3合并,旋转蒸发浓缩至 1-3 mL,转移到中性氧化铝层析柱柱头.所用中性氧化铝层析柱的装填方法为:从下往上依次填入 5.4 g 无水 N_&SO₄、5 g中性氧化铝和 5 g无水 N_&SO₄. 首先用 60 mL的正己烷冲洗,淋出液为弃液. 然后用 120 mL 1:1正己烷 /二氯甲烷 (*V*/*V*)混合溶液冲洗,收集淋出液,浓缩,氮吹干,然后用 10 µL含六氯苯的壬烷溶液 (回收率内标溶液)定容,待仪器分析.

1.4 仪器分析条件

利用高效气相色谱仪 (Themo Trace GC U hra, 美国)进行分离.采用的色谱柱为 DB-5 M S毛细管 柱 (30 m, 0 25 mm i d, &W Scientific, 美国),进样量 1 ^µI, 不分流进样,进样口温度为 250 ℃.气 相分离升温程序为: 100 ℃保持 1 m in,以 7℃•m in⁻¹升至 260 ℃,保持 8 m in,以高纯 H e气作载气,流 速为 0 8 mL•m in⁻¹.低分辨质谱 (Themo Trace DSQ II,美国).电离模式: ECN I,以甲烷作为反应气, 离子源温度 150 ℃,电子能量 70 eV,传输线温度 250 ℃,溶剂延迟 5 m in

选择性离子扫描 (SM)模式检测 19个 $[M-HC1]^{-}$ 的 SCCPs碎片离子,对应的 SCCPs组分和它们 的色谱保留时间如表 1所示. SM 模式检测¹³ C₁₀-反式氯丹的电离产物 $[M]^{-}$ 离子和六氯苯的电离产物 $[M]^{-}$ 离子.

1.5 脂肪含量的测定

采用索氏抽提法测定生物样品的脂肪含量. 以石油醚作为脂肪提取溶剂,将冷冻后的生物样品索 氏抽提约 12 h 通过差重法计算冷冻干燥生物样品中的脂肪含量.

2 结果与讨论

2 1 定量分析与最低检出限

SCCPs标准品的总离子流色谱图见图 1. 从图 1可见, SCCPs标准样品 ($C_{10}-C_{13}$, 63% Cl)的 HRGC /ECN FLRM S总离子流色谱图为大量共流出物的驼峰,保留时间跨度大.采用 Reth等人^[11]提出 的方法定量计算生物样品中 SCCPs的浓度.首先对 5个氯含量不同的 SCCPs标准储备液进行分析,计 算各储备液中 SCCPs总响应因子和 ECN FLRM S氯含量,并对二者进行线性回归分析,获得回归方程,

然后用此方程定量计算待测样品中 SCCPs的含量.获得的回归方程如图 2所示, SCCPs总响应因子与 ECN FLRMS氯含量呈 0 95水平显著线性相关.按固定的保留时间段 (表 1),计算生物样品中 SCCPs 同系物的色谱峰面积,并折算成 ECN FLRM S氯含量,代入此线性回归曲线计算出生物样品中 SCCPs的 总响应因子,然后计算出 SCCPs的浓度.如果生物样品中计算的 ECN FLRM S氯含量低于回归曲线的下 限值 58 56%,则生物样品中 SCCPs的总响应因子比对于最低氯含量标样的响应因子按正比折算.同时,取浓度为 20 mg L⁻¹氯含量为 55 5% 的 SCCPs标准储备液,经过系列稀释后进行仪器分析,得到 仪器对 SCCPs的检出限 LOD为 50 µg L⁻¹(S/N≥3),方法检出限为 160 µg L⁻¹(S/N≥10).

m ixed SCCPs standard ($C_{10} - C_{13}$, 63% Cl)

图 2 SCCPs总响应因子与 ECN HLRMS 测得的氯含量关系曲线

Fig 2 Dependence of the total response factor on the ch brine content of SCCPs determ ined by ECN FLRM S

表 1	用于 SCCPs定量计算的[[M—HCI] ⁻ 的质	荷比及不同	SCCPs同糸物B	的色谱保留时间
Table 1	Calculated m / z values of	[M—HCl] ⁻ ions	s m on itored and	retention time	of SCCPs homologue

SCCD a	m / z		化四叶间	SCCD	I	化的时间	
同系物	定量离子	确证离子 (相对丰度 /% ^a)	/m in	同系物	定量离子	确证离子 (相对丰度 /%)	休田町町 /m in
$C_{10}H_{17}C$ }	278. 0	276 0 (75 0)	8 5-14	C ₁₁ H ₁₅ Cl ₉	429 9	427. 9 (85.7)	15 5-21
$\mathrm{C_{10}H_{16}C}\ \natural$	312.0	314 0 (66 7)	10-15 5	$C_{11}H_{14}Cl_{10}$	463 8	465 8 (77.8)	17-22 5
$C_{10}H_{15}C_{1}$	345. 9	347. 9 (83. 3)	11. 5—17. 5	$C_{12}H_{20}Cl_{6}$	340 0	342 0 (83 3)	12 5-19
$C_{10}H_{14}C_{8}$	381. 9	379. 9 (100)	13-18 5	$C_{12}H_{19}C$ b	374 0	375 9 (83 3)	13-20
$C_{10}H_{13}C$	415.8	413 8 (85 7)	14 5-20	$C_{12}H_{18}Cl_8$	409 9	407. 9 (100)	15-21
$C_{10}H_{12}Cl_{10}$	449.8	451 8 (77.8)	16-21 5	$C_{12}H_{17}Cl_{9}$	443 9	441 9 (85 7)	16 5-22
$C_{11}H_{19}C_{11}$	292. 0	290 0 (75 0)	9 5-16 5	$C_{13}H_{21}CL$	388 0	390 0 (83 3)	14-21 5
$\mathrm{C_{11}H_{18}C}\ \mathrm{L}$	326. 0	328 0 (66 7)	11-17.5	$C_{13}H_{20}Cl_{8}$	423 9	421 9 (100)	16-22 5
C ₁₁ H ₁₇ C 1/2	359. 9	361 9 (83 3)	12 5-18 5	C ₁₃ H ₁₉ C l ₉	457.9	455 9 (85 7)	17. 5—23. 5
$C_{11}H_{16}C_{1}$	395. 9	393. 9 (100)	14-20				

注: a理论相对丰度,与定量离子相比,定量离子的丰度为 100%.

2 2 生物体中 SCCPs的含量

采集于渤海辽东湾海域浮游生物、底栖动物和鱼样品中总的 SCCPs含量及脂肪含量汇总于表 2 SCCPs含量最高的生物样品是海鲈鱼,达 20 $32 \,\mu_g \, g^{-1} \, dw$; SCCPs含量最低的生物样品是小黄花,为 0 $66 \,\mu_g \, g^{-1} \, dw$. 采集的浮游动物包括水母类、桡足类、毛颚类、十足类、糠虾和一些仔鱼,其中 SCCPs 的含量为 5 09 $\,\mu_g \, g^{-1} \, dw$. 8种底栖动物 (包括虾、蛤、蟹、螺和扇贝)中 SCCPs的含量变化范围为 1.35 $\,\mu_g \, g^{-1} \, dw - 12.51 \,\mu_g \, g^{-1} \, dw$. 总体上,生物样品中 SCCPs的浓度与脂肪含量没有明显的相关关系,这

可能是由于各种生物的生活习性不同.

表 2 HRGC /ECN FIRM S法测定的 15种生物样品中 SCCPs的含量	
--	--

		6			
生物样品	浓度 / (µg g ⁻¹ dw)	脂肪含量 / (g kg ⁻¹ dw)	生物样品	浓度 / (µg g ⁻¹ dw)	脂肪含量 / (g kg ⁻¹ dw)
浮游动物 P lankton	5. 09	_	香螺 H en ifu su s tuba	1 35	48 3
中国对虾 Fenneropenaeus chinensis	3. 85	102 2	小鱼 Sm all fish es	1 71	123 7
中华管鞭虾 Solen ocera m elan tho	9. 20	86 3	鲬鱼 P la tycephalus indicus	5 04	99 8
四角蛤蜊 Mactra quad rangu laris	9. 15	71 4	中华舌鳎 Cynoglossus sinicus	7 51	146 6
锯缘青蟹 Scylla serrata	6 15	105 4	小黄花 P seudosc iaena polyactis	0 66	64 9
栉孔扇贝 Chlamys farreri	5. 25	89 3	孔鳐 Raja porosa gunther	4 45	61 1
文蛤 M eretrix m eretrix linna eu s	12 51	83 5	海鲈鱼 La teolabrax japonicus	20 32	176 2
红螺 Rapana bezona linnaeus	2 98	72 9			

Fable 2	Concentration	of SCCPs in	15	organism	samples determ	ined b	yHRGC/EC	N FLRM S
				()			1	

在欧洲, Reh 等^[11]检测了北海和波罗的海的比目鱼、鳕鱼和比目鱼肝脏中的 SCCP_{\$} 含量在 0.02-0 52 µg g⁻¹ ww (湿重), 按 80% 含水量折算成干重浓度为 0 11 -2 60 µg g⁻¹ dw, Coehan 等^[12]检测了北海、马尔马拉海、地中海和大西洋中海鱼的 SCCP_{\$} 含量为 0.25-1 22 µg g⁻¹ w(脂肪 重); Bogen等^[13]报道挪威海域紫贻贝中 SCCP_{\$}含量为 0 01-0.13 µg g⁻¹ ww, 鳕鱼肝脏中 SCCP₅含量为 0 02-0 75 µg g⁻¹ ww, 按 80% 含水量折算成干重浓度分别为 0 07-0 65 µg g⁻¹ dw 和 0 12-3.75 µg g⁻¹ dw, N thols^[14]等分析了从英国重工业区采集的石泥鳅、鲈鱼、斜齿鳊和鳗鱼,其中 SCCP₅ 的含量为 0 05-5.2 µg g⁻¹ ww, 按 80% 含水量折算成干重浓度为 0 25-26 0 µg g⁻¹ dw. 在北美, M u r等^[15]分析了加拿大 Ontario湖的红点鲑、饵料鱼和无脊椎动物中的 SCCP₅ 其含量水平在 0 10-0.50 µg g⁻¹ ww, 按 80% 含水量折算成干重浓度为 0.50-2 50 µg g⁻¹ dw; Benn i等^[16]测定的加拿大 境内白鲸的 SCCP₅含量,结果为 1 10-166 µg g⁻¹ ww, 按 80% 含水量折算成干重浓度为 5.50-830 µg g⁻¹ dw, Tony等^[17]分析了加拿大伊利湖底特律河口的鲈鱼、鲶鱼、斑马贝中的 SCCP₅ 含量为 0.31-1 21 µg g⁻¹ ww, 按 80% 含水量折算成干重浓度为 1 55-6 05 µg g⁻¹ dw. 在澳洲, Kemm lein 等^[18]检测了澳大利亚受 SCCPs生产商影响地区的贻贝和蟹类,表明其 SCCPs含量分别为 35 00 µg g⁻¹ w和 109 50 µg g⁻¹ w. 与以上数据相比较可知,本研究 (渤海辽东湾)海域生物中 SCCPs的含量水平位于目前世界报道水生动物体 SCCPs含量范围的中高端.

2 3 SCCPs各同系物分布模式

分别计算了 19种不同 SCCPs同系物的色谱峰面积占总 SCCPs色谱峰面积的百分比 (相对丰度), 结果如图 3所示.如果 ECN FLRM S的信号响应与 SCCPs同系物的氯含量正相关,那么可将 SCCPs同系 物的相对丰度看成是 SCCPs同系物的相对浓度.这种粗略计算 SCCPs同系物浓度分布的方法已被广泛 采用^[11-1217].从图 3可见,渤海辽东湾水生动物样品中 SCCPs以 C₁₀-SCCPs和 C₁₁-SCCPs为主,两者相对 丰度之和变化范围为 66.8% — 95.3%; C₁₂-SCCPs含量较少, C₁₃-SCCPs含量最低.这与世界其它地区 已报道的水生动物中 SCCPs的浓度分布模式是一致的^[11-12,17].

与本实验在同一区域采集的沉积物中 SCCPs同系物的浓度分布相比,绝大多数采集的水生动物体内的 C_{10} -SCCPs和 C_{11} -SCCPs的含量明显增高,尤其是五氯和六氯取代的 SCCPs相对含量^[20].这意味氯 取代度相对较低的 C_{10} -SCCPs和 C_{11} -SCCPs更易于被生物体累积.

3 结论

渤海辽东湾海域水生动物体中 SCCPs的含量变化范围为 0 66 $\mu_{g^{\bullet}}$ g⁻¹ dw - 20 32 $\mu_{g^{\bullet}}$ g⁻¹ dw, 其含量水平位于世界已报道水生动物体中 SCCPs含量变化范围的中高端.

采集的水生动物体中 C_{10} -SCCPs和 C_{11} -SCCPs为优势组分,并且低氯取代 (五氯和六氯)的 C_{10} -SCCPs和 C_{11} -SCCPs更易于被生物体累积.

图 3 基于 HRGC/ECN FLRMS测定的渤海湾生物样品中 SCCPs同系物组分的相对丰度 Fig 3 Relative abundance of SCCPs homologue in organism samples from Bohai Bay determined by HRGC/ECN FLRMS

- [1] Filyk G, Lander L, Eggleton M, et al Short chain chlorinated paraffins (SCCP) substance dossier (final draft II) [R]. Canada Environm ent Canada 2002
- [2] Nicholls C R, Allchin C R, Law R J. Levels of short and medium chain length polychlorinated rralkanes in environmental samples from selected industrial areas in England and Wales [J]. Environ Pollut 2001, 114: 415-430
- [3] Houde M, Muir D C G, Tony G T, Bioaccumulation and trophic magnification of short and medium drain chlorinated paraffins in food webs from Lake Ontario and Lake M ichigan [J]. Environ Sci Technol 2003, 37 1344-1351
- [4] Jozza S, Muller C, Schmid P. Historical profiles of chlorinated paraffins and polych brinated biphenyls in a dated sed in ent core from Lake Thun (Switzerland)
 [J]. Environ Sci Technol. 2008, 42 1045-1050
- [5] Marvin C H, Painter S, Tomy G T et al Spatial and temporal treands in short chain chlorinated paraffins in Lake Ontario aediments [J]. Environ Sci Technol 2003, 37: 4561-4568
- [6] Wania F. A seessing the potential of persistent organic chemicals for long-range transport and accumulation in polar regions [J]. Environ Sci Technol 2003, 37: 1344-1351
- [7] 王亚韡,傅建捷,江桂斌. 短链氯化石蜡及其环境污染现状与毒性效应研究 [J]. 环境化学, 2009, 28 1-9
- [8] European Commission Directive 2000/60/EC of the European Parliament and of the Council of 23 O ctober 2000 establishing a framework for Community action in the field of water policy [R]. Official Journal of the European Communities 2000
- [9] 联合国环境规划署. UNEP / POPS/COP. 3 / 12, 持久性有机污染物审查委员会:引发缔约方大会酌情采取行动的相关事态进展

[R]. 达喀尔, 2007

- [10] Bayen S, Obbard JP, Thomas G O, Chlorinated paraffins a review of analysis and environmental occurrence [J]. Environ Int 2006 32 915-929
- [11] Reth M, Zencak Z, Oehm e M, et al. New quantification procedure for the analysis of chlorin ated paraffins using electron capture negative ionization m ass spectrom ety. [J]. J Chrom atogr A, 2005, 1081: 225-231
- [12] Coelhan M, Determ ination of short chain polychlorinated paraffins in fish samples by short column GC/ECNIM S [J]. An al Chem, 1999, 71: 4498-4505
- [13] Borgen A R, Schlabach M, Mariussen E, et al Screening of chlorinated paraffins in Norway [J]. Organohalogen Compd 2003, 60 331-334
- [14] Nicholls C R, Allchin C R, Law R J Levels of short and medium chain length polychlorinated n-alkanes in environmental samples from selected industrial areas in England and W ales [J]. Environ Pollut 2001, 114 415-430
- [15] Muir D, Braekevelt E, Tomy T, et al Medium chain chlorin ated paraffins in great lakes food webs [J]. Organoha bgen Compd 2003, 61: 295-298
- [16] Bennie D T, Sullivan J M aguire R J et al O ccurrence of chorinated paraffins in Beluga W hales (Delphinaptenus leucas) from the St Law rence R iver and rainbow trout (Oncorhynchus mykiss) and carp (Cyprinus carpio) from Lake Ontario water [J]. Qual Res J Can 2000 5: 263-281
- [17] Tony G T, Stem G A, Muir D C G, et al Quantifying C₁₀-C₁₃ polych broakanes in environmental samples by high-resolution gas chromatography electron capture negative ion high resolution mass spectrum [J]. Anal Chem, 1997, 69: 2762-2771
- [18] Kemmlein S, Hemeneit A, Rotard W, et al Carbon skeleton analysis of chloroparaffins in sediment mussels and crabs [J]. Organohalogen Compd 2002 59: 279-282
- [19] 王申生,赵小平.斯德哥尔摩公约对我国氯化石蜡产业的影响及对策建议 [J]. 安徽化工, 2009, 35(1): 5-6
- [20] 高媛, 王成, 张海军等. HRGC/ECNFLRMS测定大辽河入海口表层沉积物中短链氯化石蜡 [J]. 环境科学, 2010, 31: 1904-1908

B IOACCUMULATION CHARACTERISTICS OF SHORT-CHAIN CHLORINATED PARAFFINS IN LIAODONG BAY, NORTHEAST CHINA

WANG Cheng^{1, 2} GAO Yuan^{1, 2} ZHANG Haijun¹ FAN Jingfeng³ CHEN Jiping¹ (1. Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian, 116023, China

2 Graduate University of Chinese Academy of Sciences, Beijng 100049, China,

3 National Marine Environmental Monitoring Center, State Oceanic Administration, Dalian, 116023, China)

ABSTRACT

In order to know the pollution status of short-chain chbrinated paraffins (SCCPs) in China seas, organism samples including plankton, 8 kinds of benthic organism (shrin p, crab, clam, scallop, and turn pet shell) and 6 kinds of fish were collected from the sea area of Liaodong B ay in 2009. SCCPs in these organism samples were analyzed using gas chromatography/electron capture negative chemical ionization low-resolution mass spectrom etry (HRGC/ECN FLRM S). The total concentrations of SCCPs in these organism samples were determined to be in the range of 0. 66—20 32 μ g^o g⁻¹ dw. C₁₀-SCCPs and C₁₁-SCCPs predominated over the SCCPs compounds in 15 kinds of organism samples, and the relative concentration of C₁₃-SCCPs was low est M eanwhile, the accumulative levels of lower chlorinated (penta- and hexa-chlorinited) C₁₀-SCCPs and C₁₁-SCCPs in most of collected organism samples were found to be higher

Keywords short-chain chlorinated paraffins, bioaccumulation, Laodong Bay, HRGC / ECN FLRMS.

1期