生物质燃烧的二噁英排放特性*

陈德翼¹² 彭平安^{1**} 胡建芳¹ 任 曼¹ 陈 \mathbf{A}^{12}

(1. 中国科学院广州地球化学研究所有机地球化学国家重点实验室,广州,510640; 2. 中国科学院研究生院,北京,100049)

摘 要 通过室内模拟燃烧 5 种生物质 分别采集燃烧排放的烟气作为样品 ,然后分析生物质和燃烧产物的 二噁英含量 ,得到玉米秸秆、稻草、松树、桉树、松针燃烧的二噁英排放因子分别为 2.59、16.78、1.44、5.15、 34.12 ng•kg⁻¹ ,对应的 I-TEQ 浓度为 0.26、1.04、0.10、0.31、1.49 ng•kg⁻¹. OCDD 对浓度贡献最大 ,所占百分 比值分别为 28.20%、21.82%、44.73%、64.09%、52.28%;对总毒性当量浓度贡献最大的为 2.3 A,7 &-PeCDF ,所占百分比值分别为 44.62%、37.50%、44.00%、51.61%、40.94%.5 种生物质二噁英含量分别为 5.01、21.28、3.55、9.10、81.32 ng•kg⁻¹ ,比对应生物质燃烧的二噁英排放因子大; I-TEQ 含量分别为 0.014、 0.62、0.013、0.13、1.29 ng•kg⁻¹ ,比对应生物质燃烧的二噁英总毒性当量小.生物质燃烧排放的二噁英一方面 来源于原材料释放 ,尤其是 OCDD; 另一方面来源于二噁英合成 ,尤其是低氯代二噁英(P_{4-5} CDD/Fs).2.3 A, 7 &-PeCDF 与二噁英总浓度及总毒性当量浓度具有较好线性相关性 $R^2 > 0.91、P < 0.011$. 关键词 生物质 ,燃烧 ,二噁英 ,排放特性.

二噁英是一类剧毒的持久性有机污染物,对人类及动植物危害极大^[1-3]. 二噁英主要来源于人类的 生产活动^[4-5],燃烧是形成二噁英的主要途径,含 C、H、O、Cl 的物质在合适条件下便可生成二噁英. 实验 证明 500 ℃—800 ℃是生成二噁英的最佳温度^[6],某些催化剂如铜元素会加速二噁英生成^[7-8]. 生物质 燃烧是二噁英的重要来源之一,在我国尤其如此,如秸秆还田、家用炊事可造成潜在二噁英污染. 人类利 用生物质能历史悠久,但对生物质燃烧排放二噁英的认识不多,联合国环保署二噁英排放评估工具包中 虽然有生物质燃烧的二噁英排放因子,但众所周知,二噁英排放因子影响因素众多,生物质来源不同、燃 烧的环境因素不同,都可引起二噁英排放因子的差别,不同地方排放因子的实测,对正确评估二噁英排 放,仍然十分必要. 况且,过去的二噁英排放研究,多以实用为目的,有关其来源进行的探讨,如是来源于 合成,还是来源于燃烧物质本身等还很不够.

本论文通过室内模拟生物质燃烧,采集燃烧后混匀的气体作为样品,然后分析生物质和燃烧产物的 二噁英含量,获得生物质燃烧的二噁英排放因子,进而研究二噁英排放的源谱特性.

1 材料与方法

1.1 实验材料

选择中国广大农村普遍使用的生物质──玉米秸秆、稻草、松树、桉树、松针作为研究材料.这些生物质均取自珠江三角洲农村,自然风干后备用.研究材料预处理如下:将采集到的材料用清水洗净,自然晾干 密封置于干燥器保存.使用前在 60 ℃下干燥 24 h,保证所有实验材料含湿量大致相同,称取适量样品用于实验.

1.2 实验模型

1.2.1 模型介绍

在密闭空间(体积为47.2 m³,示意图见图1)内,由于内部压力变化较小,气体扩散较慢,燃烧排放的气体混匀后在短时间内浓度不变.使用 TSP 大功率采样器(青岛崂山 KC-1000)短时间内所采集气体的二噁英初始浓度大体一致.

²⁰¹⁰年8月15日收稿.

^{*} 国家自然科学基金委重点基金(40830745,40803028)资助.

^{**}通讯联系人, E-mail: pinganp@gig.ac.cn

燃烧足量生物质,排放到空气中的二噁英量是空气中原始含量的若干倍,保证混匀气体中的二噁英 绝大部分来源于生物质燃烧.扣除空气的二噁英原始含量后,得到生物质燃烧排放的二噁英量,进而得 到生物质燃烧的二噁英排放因子——燃烧单位质量生物质排放的二噁英量.

1.2.2 模型验证

选取烟草燃烧和松针燃烧检验模型可行性.不同采样时间(20、30、40min)获得的烟草燃烧二噁英

图1 密闭空间示意图

Fig. 1 Schematic diagram of the close system

排放因子分别为1.10、1.25、1.06 pg TEQ•根⁻¹,平均 为1.14 pg TEQ•根⁻¹,RSD = 8.81%,此结果与文献 中香烟燃烧排放因子(0.43—2.9 pg•根⁻¹)^[9]吻合. 固定采样时间(30min)对松针燃烧多次采样结果显 示,平行样的17种23,78-二噁英同系物浓度 RSD <20%,与空气中二噁英原始含量之比为2—20倍不 等,平均为14.93倍,表明二噁英主要来源于松针燃 烧.因此本研究采用的模型可用于实际排放因子 测定.

1.3 燃烧条件

K型热电偶温度计测定生物质燃烧时火焰中心 温度,记录测到的最高温度.青岛崂应 3012H 型烟气 采样器观测生物质燃烧时室内氧含量变化.

1.4 样品采集

将样品置于柴炉(普通柴炉)中,采用底部点燃的方式燃烧,驱动风扇搅拌,使室内气体混合.待样品燃尽后,继续用风扇搅拌,直至15 min 后(从样品点燃开始计时)开始采样,采样前2 min 停止风扇搅拌,让室内气体自由平衡.采样30 min,采样结束后打开门窗,使室内与室外气体交换充分,同时尽快收集烟气样品(气相样品用 PUF 收集、颗粒相用石英膜收集)和底灰样品,均用铝箔密封,冷冻保存(-10 ℃).每次采样都必须采集室内空气空白和采样空白.每种生物质平行燃烧采样2次,取平均值.

样品分析依据 EPA1613B 方法. 所有样品均加入已知量的¹³C 标记内标化合物,然后用甲苯索氏抽提 24 h 将提取液浓缩后经酸性硅胶床、多段硅胶柱、氧化铝柱净化,氮吹浓缩待仪器分析^[10].

分析时采用 HRGC-HRMS(MAT95XP 高分辨气相色谱-质谱) 联用技术 ,其中 HRGC 使用 DB-5 二氧 化硅毛细管柱(60 m × 0.25 mm, I. D. 0.25μm),无分流进样,载气为氦气.升温程序:120 ℃以 40 ℃•min⁻¹的速率升到 160 ℃;再以 7.5 ℃•min⁻¹的速率升到 220 ℃,保持 16 min; 以 5 ℃•min⁻¹的速率 升到 235 ℃,保持 7 min; 以 5 ℃•min⁻¹的速率升到 320 ℃,保持 8 min. HRMS 采用 EI⁺SIM 模式,质量分 辨率≥10000,离子源温度:250 ℃,电子发射能量 55 eV,灯丝电流 0.8 mA.

PCDD/Fs 的毒性当量浓度由 I-TEQ = $\sum (X_i \times I_i)$ 计算 其中 I-TEQ 为国际毒性当量 X 为 PCDD/Fs 同系物的浓度 / 为对应 PCDD/Fs 的国际毒性当量因子.

1.6 QA/QC

1.6.1 检出限

取 CS 1 标准溶液进样 1 μL 测试, 平行测定 6 次, 其测定值标准偏差的 3.6 倍为仪器检出限. 以此 计算 检出限 2 3 7 β-TCDF 为 0.1 pg•μL⁻¹ 2 3 7 β-TCDD 为 0.2 pg•μL⁻¹, OCDD 为 0.8 pg•μL⁻¹. 1.6.2 实验空白

方法空白 方法空白用以监控样品实验室分析过程是否存在污染. 每 10 个样品为一个批次,其中 包含一个方法空白. 操作过程与样品同步进行,同时分析. 方法空白低于评价浓度的 1/10.

采样空白 采样空白反映采样环境及运输过程中样品是否受到污染. 每个种类生物质样品有一个 采样空白. 采样空白所有分析过程同样品分析. 采样空白较小,可以忽略,若较大,应扣除采样空白. 将 300mL 正己烷置于敞口瓶中,与 PUF、石英膜放置一起,待实验结束,将样品与正己烷一起运输至实验室 保存. 分析结果显示,采样空白很小,可以忽略.

1.6.3 样品回收率

所有样品的 PCDD/Fs 同系物回收率在 70% —110% 之间,满足 EPA1613 方法对回收率的要求,平 行样间回收率 RSD < 10%.

2 结果与讨论

2.1 燃烧条件

实验在开放式燃烧条件下进行,对燃烧过程的温度,室内氧含量进行测定,以此反映燃烧状况.生物 质燃烧火焰中心最高温度和室内氧含量变化情况见表 1.

Table 1 The conditions of biomass burning										
	玉米	:秸秆	稻	章		桉树		松针		
温度/℃	6.	30	6	621 720		20	785		652	
室内氧含量/%	起始	结束	起始	结束	起始	结束	起始	结束	起始	结束
	21	20.9	21	20.5	21	20.7	21	20.7	21	20.8

表1 生物质燃烧条件

2.2 生物质燃烧的二噁英排放因子

表2列出了生物质燃烧的二噁英排放因子及其对应 I-TEQ 浓度.5种生物质的排放因子分别为 2.59(秸秆)、16.78(稻草)、1.44(松树)、5.15(桉树)、34.12(松针) ng•kg⁻¹ 其中松针燃烧的二噁英排 放因子最大 稻草次之 松树最小. PCDFs/PCDDs 比值分别为 1.81、1.21、0.82、0.49、0.54 ,表明秸秆、稻 草燃烧排放的 PCDFs > PCDDs ,而松树、松针、桉树燃烧排放的 PCDDs > PCDFs. I-TEQ 总浓度分别为 0.26(秸秆),1.04(稻草),0.10(松树),0.31(桉树),1.49(松针) ng•kg⁻¹ 其中松针燃烧排放的二噁英 毒性当量浓度最大,稻草次之,松树最小. PCDFs/PCDDs 比值分别为 3.76、3.09、4.18、4.85、4.11 ,表明 生物质燃烧排放的二噁英毒性分布 PCDFs > PCDDs.

1 401	Table 2 Emissions concentration in thorm of biomass burning (units. ing kg)									
	玉米秸秆		稻草		松树		桉树		松针	
	浓度	I-TEQ	浓度	I-TEQ	浓度	I-TEQ	浓度	I-TEQ	浓度	I-TEQ
2 3 7 8-TCDF	0.16	0.016	0.46	0.046	0.079	0.0079	0.23	0.023	0.91	0.091
1 2 3 7 8-PeCDF	0.22	0.012	0.57	0.028	0.088	0.0044	0.22	0.011	1.18	0.059
2 3 4 7 8-PeCDF	0.22	0.12	0.78	0.39	0.087	0.044	0.32	0.16	1.21	0.61
1 2 3 4 7 8-HxCDF	0.25	0.025	0.87	0.087	0.098	0.0098	0.21	0.021	1.34	0.13
1 2 3 6 7 8-HxCDF	0.18	0.018	0.87	0.087	0.073	0.0073	0.20	0.020	1.24	0.12
2 3 4 6 7 8-HxCDF	0.16	0.016	1.02	0.10	0.048	0.0048	0.15	0.015	1.33	0.13
1 2 3 7 8 9-HxCDF	0.060	0.0061	0.15	0.015	0.013	0.0013	0.090	0.0093	0.20	0.020
1 2 3 4 6 7 8-HpCDF	N. D. ^a	N. D.	3.03	0.030	0.080	0.00080	0.040	0.00040	3.22	0.032
1 2 3 4 7 8 9 – HpCDF	0.050	0.00051	0.24	0.0024	0.006	0.00010	0.030	0.00030	0.29	0.0029
OCDF	0.36	0.00036	1.22	0.0012	0.072	0.00010	0.19	0.0002	1.05	0.0011
2 3 7 8-TCDD	0.010	0.0081	0.050	0.047	N. D.	N. D.	0.010	0.0071	0.04	0.035
1 2 3 7 8-PeCDD	0.070	0.036	0.10	0.051	0.024	0.012	0.070	0.035	0.17	0.087
1 2 3 4 7 8-HxCDD	0.040	0.0038	0.46	0.046	0.026	0.0026	0.020	0.0021	0.42	0.042
1 2 3 6 7 8-HxCDD	0.050	0.0046	0.49	0.049	0.022	0.0022	0.030	0.0034	0.46	0.046
1 2 3 7 8 9-HxCDD	0.030	0.0026	0.33	0.033	0.012	0.0012	0.030	0.0027	0.34	0.034
1 2 3 4 6 7 8-HpCDD	N. D.	N. D.	2.48	0.025	0.064	0.00060	N. D.	N. D.	2.88	0.029
OCDD	0.73	0.00073	3.66	0.0037	0.64	0.00064	3.30	0.0033	17.84	0.018
Total-PCDD/Fs	2.59	0.26	16.78	1.04	1.44	0.10	5.15	0.31	34.12	1.49

表 2 生物质燃烧的二噁英排放因子(单位: ng•kg⁻¹) Table 2 Emissions concentration in diaria of biomass huming (units: ng•kg⁻¹)

续表2

	玉米秸秆		稻草		松树		桉树		松针	
	浓度	I-TEQ	浓度	I-TEQ	浓度	I-TEQ	浓度	I-TEQ	浓度	I-TEQ
$T_4 CDF$	0.16	0.016	0.46	0.046	0.079	0.0079	0.23	0.023	0.91	0.091
P ₅ CDFs	0.45	0.13	1.34	0.42	0.18	0.048	0.53	0.17	2.39	0.67
H ₆ CDFs	0.65	0.065	2.90	0.29	0.23	0.023	0.66	0.065	4.11	0.40
H ₇ CDFs	0.050	0.00051	3.27	0.032	0.09	0.00090	0.080	0.00070	3.51	0.035
$O_8 CDF$	0.36	0.00036	1.22	0.0012	0.072	0.00010	0.19	0.00020	1.05	0.0011
Total-PCDFs	1.67	0.21	9.20	0.79	0.65	0.081	1.69	0.26	11.97	1.20
T_4 CDD	0.010	0.0081	0.050	0.047	N. D.	N. D.	0.010	0.0071	0.04	0.035
P ₅ CDD	0.070	0.036	0.10	0.051	0.024	0.012	0.070	0.035	0.17	0.087
H ₆ CDDs	0.12	0.011	1.28	0.13	0.06	0.0060	0.080	0.0082	1.22	0.12
$H_7 CDD$	N. D.	N. D.	2.48	0.025	0.064	0.00060	N. D.	N. D.	2.88	0.029
O_8 CDD	0.73	0.00073	3.66	0.0037	0.642	0.00064	3.30	0.0033	17.84	0.018
Total-PCDDs	0.92	0.056	7.58	0.25	0.79	0.019	3.46	0.054	22.14	0.29
PCDFs/ PCDDs	1.81	3.76	1.21	3.09	0.82	4.18	0.49	4.85	0.54	4.11

a. N. D. 表示未检出 全文同.

据文献报道木材燃烧的二噁英排放因子为 0.2—1.06 ng I-TEQ•kg^{-1[9]},如枫树和云杉燃烧的二噁 英排放因子为 0.30 和 0.22 ngI-TEQ•kg^{-1[9]};生物质燃烧的二噁英排放浓度为 52—891 pgTEQ•Nm^{-3[11]}, 估算的排放因子为 0.63—10.25 ngI-TEQ•kg⁻¹.可见实验结果与文献报道处在同一数量级,但相对偏 低 这与实验材料 燃烧条件和实验模型等有关.

2.3 生物质燃烧的二噁英排放特性

生物质燃烧排放量在前 5 位的同系物如表 3 所示. 生物质燃烧的二噁英同系物及同族体的浓度和 毒性当量浓度百分含量见图 2. 由此可知,生物质燃烧排放的 OCDD 最多,但毒性当量贡献最大的为 2 3 4 7 8-PeCDF 接近 50%,而 PCDDs 中为 1 2 3 7 8-PeCDD.

	Table 3 The main composition of dioxins in biomass burning (congeners ,%)										
	秸秆	稻草	松树	桉树	松针						
	OCDD	OCDD	OCDD	OCDD	OCDD						
	(28. 20)	(21.82)	(44. 73)	(64. 09)	(52. 28)						
	OCDF	1 2 3 4 6 7 8-HpCDF	1 2 3 4 7 8-HxCDF	2 3 4 7 8-PeCDF	1 2 3 4 6 7 8-HpCDF						
	(13.92)	(18.07)	(6.81)	(6.16)	(9.44)						
浓度	1 2 3 4 7 8-HxCDF (9.64)	1 2 3 4 6 7 8-HpCDD (14.81)	1 2 3 7 8-PeCDF (6.12)	2 3 7 8-TCDF (4.54)	1 2 3 4 7 8-HxCDF (3.94)						
	1 2 3 7 8-PeCDF (8.63)	OCDF (7.29)	2 3 4 7 8-PeCDF (6.08)	1 2 3 7 8-PeCDF (4.21)	2 3 4 6 7 8-HxCDF (3.91)						
	2 3 4 7 8-PeCDF (8.61)	2 3 4 6 7 8-HxCDF (6.06)	1 2 3 4 6 7 8-HpCDF (5.58)	1 2 3 4 7 8-HxCDF (4.14)	1 2 3 6 7 8-HxCDF (3.61)						
	2 3 4 7 8-PeCDF	2 3 4 7 8-PeCDF	2 3 4 7 8-PeCDF	2 3 4 7 8-PeCDF	2 3 4 7 8-PeCDF						
	(44.62)	(37.50)	(44.00)	(51.61)	(40.94)						
	1 2 3 7 8-PeCDD	2 3 4 6 7 8-HxCDF	1 2 3 7 8-PeCDD	1 2 3 7 8-PeCDD	1 2 3 4 7 8-HxCDF						
	(13.85)	(9.62)	(12.00)	(11.29)	(8.72)						
I-TEQ	1 2 3 4 7 8-HxCDF	1 2 3 6 7 8-HxCDF	1 2 3 4 7 8-HxCDF	2 3 7 8-TCDF	2 3 4 6 7 8-HxCDF						
浓度	(9.62)	(8.37)	(9.80)	(7.42)	(8.72)						
	1 2 3 6 7 8-HxCDF	1 2 3 4 7 8-HxCDF	2 3 7 8-TCDF	1 2 3 4 7 8-HxCDF	1 2 3 6 7 8-HxCDF						
	(6.92)	(8.37)	(7.90)	(6.77)	(8.05)						
	2 3 4 6 7 8-HxCDF	1 2 3 7 8-PeCDD	1 2 3 6 7 8-HxCDF	1 2 3 6 7 8-HxCDF	1 2 3 7 8-PeCDD						
	(6.15)	(4.90)	(7.30)	(6.45)	(5.84)						

表3 生物质燃烧排放二噁英的主要组成(同系物,%)

生物质燃烧排放量在前3位的同族体如表4所示.由此可知,生物质燃烧倾向排放高氯代化合物, 而对总毒性当量贡献最大的为 P₅CDFs. 生物质燃烧同族体的毒性分布大致相同.

	衣 * 主初原燃烧排放_磁央的主要组成(间族体)											
		Table 4	The main composition of dioxins in biomass burning (homologue)									
		同族体	含量/%	同族体	含量/%	同族体	含量/%					
	玉米秸秆	O8 CDD	28.20	${ m H_6CDFs}$	25.16	$P_5 CDFs$	17.24					
	稻草	O_8 CDD	21.82	$\rm H_7 CDFs$	19.51	${ m H_6CDFs}$	17.29					
浓度	松树	O_8 CDD	44.73	${ m H_6CDFs}$	16.21	$P_5 CDFs$	12.19					
	桉树	O_8 CDD	64.09	${ m H_6CDFs}$	12.84	$P_5 CDFs$	10.37					
	松针	O_8 CDD	52.28	${ m H_6CDFs}$	12.05	$\rm H_7 CDFs$	10.29					
	玉米秸秆	$P_5 CDFs$	49.23	${ m H_6CDFs}$	25.04	P ₅ CDD	13.85					
	稻草	$P_5 CDFs$	40.19	${ m H_6CDFs}$	27.79	${ m H_6CDDs}$	12.31					
I-TEQ 浓度	松树	$\rm P_5 CDFs$	48.40	${ m H_6CDFs}$	23.20	P_5 CDD	12.00					
	桉树	$P_5 CDFs$	55.16	${ m H_6CDFs}$	21.06	P_5 CDDs	11.29					
	松针	$P_5 CDFs$	44.90	${ m H_6CDFs}$	26.85	${ m H_6CDDs}$	8.19					

- 喷苦的土黄组式(同族体) WW5.+++++h

2.4 生物质及其燃烧排放二噁英的相关性

生物质的二噁英含量及 I-TEQ 含量见表 5 ,生物质中二噁英同系物及同族体分布见图 3.

表 5 生物质中二噁英的含量(ng•kg⁻¹)

Table 5 The concentrations of dioxins in biomass ($ng \cdot kg^{-1}$)

	玉米秸秆		稻草		松树		桉树		松针	
	浓度	I-TEQ								
2 3 7 8-TCDF	N. D.	N. D.	0.65	0.065	0.067	0.0067	0.14	0.014	0.72	0.072
1 2 3 7 8-PeCDF	N. D.	N. D.	0.15	0.0077	N. D.	N. D.	N. D.	N. D.	1.11	0.056
2 3 4 7 8-PeCDF	N. D.	N. D.	0.41	0.2	N. D.	N. D.	N. D.	N. D.	0.8	0.4
1 2 3 4 7 8-HxCDF	N. D.	N. D.	0.46	0.046	N. D.	N. D.	0.14	0.014	0.93	0.093
1 2 3 6 7 8-HxCDF	N. D.	N. D.	0.69	0.069	N. D.	N. D.	0.14	0.014	1.05	0.1
2 3 4 6 7 8-HxCDF	N. D.	N. D.	0.38	0.038	N. D.	N. D.	0.25	0.025	0.34	0.034
1 2 3 7 8 9-HxCDF	N. D.	N. D.	0.16	0.016						
1 2 3 4 6 7 8-HpCDF	0.43	0.0043	0.76	0.0076	N. D.	N. D.	0.3	0.0022	5.84	0.058
1 2 3 4 7 8 9 – HpCDF	N. D.	N. D.	0.51	0.0051						
OCDF	N. D.	N. D.	0.7	0.0007	0.3	0.0003	N. D.	N. D.	2.33	0.0023
2 3 7 8-TCDD	N. D.	N. D.	0.05	0.046						
1 2 3 7 8-PeCDD	N. D.	N. D.	0.23	0.11	N. D.	N. D.	N. D.	N. D.	0.25	0.13
1 2 3 4 7 8-HxCDD	N. D.	N. D.	0.16	0.016	N. D.	N. D.	0.19	0.019	0.44	0.044
1 2 3 6 7 8-HxCDD	N. D.	N. D.	0.19	0.019	N. D.	N. D.	0.16	0.016	0.62	0.062
1 2 3 7 8 9-HxCDD	N. D.	N. D.	N. D.	N. D.	N. D.	N. D.	0.15	0.015	0.53	0.053
1 2 3 4 6 7 8-HpCDD	0.57	0.0057	2.65	0.026	0.3	0.003	N. D.	N. D.	5.26	0.053
OCDD	4.01	0.004	13.85	0.014	2.88	0.0029	7.63	0.0076	60.38	0.06
Total-PCDD/Fs	5.01	0.014	21.28	0.62	3.55	0.013	9.10	0.13	81.32	1.28
$T_4 CDF$	N. D.	N. D.	0.65	0.065	0.067	0.0067	0.14	0.014	0.72	0.072
P ₅ CDFs	N. D.	N. D.	0.56	0.21	N. D.	N. D.	N. D.	N. D.	1.91	0.46
H ₆ CDFs	N. D.	N. D.	1.53	0.15	N. D.	N. D.	0.53	0.053	2.48	0.25
$H_7 CDFs$	0.43	0.0043	0.76	0.0076	N. D.	N. D.	0.3	0.003	6.35	0.063
$O_8 CDF$	N. D.	N. D.	0.7	0.0007	0.3	0.0003	N. D.	N. D.	2.33	0.0023
Total-PCDFs	0.43	0.0043	4.2	0.44	0.37	0.007	0.97	0.07	13.79	0.84
T_4 CDD	N. D.	N. D.	0.046	0.046						
P ₅ CDD	N. D.	N. D.	0.23	0.11	N. D.	N. D.	N. D.	N. D.	0.25	0.13
H ₆ CDDs	N. D.	N. D.	0.35	0.035	N. D.	N. D.	0.5	0.05	1.59	0.16
H ₇ CDD	0.57	0.0057	2.65	0.026	0.3	0.003	N. D.	N. D.	5.26	0.053
O ₈ CDD	4.01	0.004	13.85	0.014	2.88	0.0029	7.63	0.0076	60.38	0.06
Total-PCDDs	4.58	0.0097	17.08	0.19	3.18	0.0059	8.13	0.058	67.52	0.44
PCDFs/PCDDs	0.094	0.44	0.25	2.36	0.12	1.19	0.12	1.22	0.20	1.91

由表 5 可知,生物质中二噁英含量分别为 5.01(玉米秸秆)、21.28(稻草)、3.55(松树)、9.10(桉树)、81.32(松针) ng•kg⁻¹,这比对应生物质燃烧排放的二噁英浓度大,说明生物质燃烧排放的二噁英浓度小于自身二噁英含量.生物质中二噁英总毒性当量含量分别为 0.014(玉米秸秆)、0.62(稻草)、0.013(松树)、0.13(桉树)、1.28(松针) ng•kg⁻¹,这比对应生物质燃烧排放的二噁英总毒性当量浓度小,说明生物质燃烧后排放的二噁英毒性当量变大;生物质中二噁英含量的 PCDFs/PCDDs 分别为 0.094、0.25、0.12、0.20,说明 PCDDs 贡献较 PCDFs 大;燃烧后排放的二噁英浓度 PCDFs/PCDDs 分别为 1.81、1.21、0.82、0.49、0.54,说明燃烧后 PCDFs 大;燃烧后排放的二噁英浓度 PCDFs/PCDDs 分别为 1.81、1.21、0.82、0.49、0.54,说明燃烧后 PCDFs 贡献增大,尤其是玉米秸秆和稻草燃烧后 PCDFs 的贡献大于 PCDDs.生物质中二噁英毒性当量的 PCDFs/PCDDs 分别为 0.44、2.36、1.19、1.22、1.91,说明 PCDFs 对毒性当量的贡献较 PCDDs 大(除玉米秸秆外);燃烧后排放的二噁英毒性当量浓度 PCDFs/PCDDs 分别为 3.76、3.09、4.18、4.85、4.11,说明燃烧后 PCDFs 对毒性当量浓度贡献增大(除松树外).原材料中低氯代二噁英(P₄₋₅CDD/Fs)含量分别为 N.D、1.44、0.067、0.14、2.93 ng•kg⁻¹,高氯 代二噁英(P₆₋₈CDD/Fs)含量分别为 5.01、19.84、3.48、8.96、78.38 ng•kg⁻¹; 而燃烧排放的低氯代二噁 英浓度分别为 0.68、1.96、0.28、0.85、3.51 ng•kg⁻¹

30. 61 ng•kg⁻¹,说明燃烧排放的低氯代二噁英浓度增大,而高氯代二噁英浓度减小;原材料中低氯代二噁 英(P_{4-5} CDD/Fs)的毒性当量分别为 N. D. $\langle 0.38 \langle 0.0067 \langle 0.014 \langle 0.70 ngI-TEQ•kg^{-1}, naghtering (P_{6-8})$ CDD/Fs)毒性当量分别为 0.014 $\langle 0.24 \langle 0.0062 \langle 0.11 \langle 0.59 ngI-TEQ•kg^{-1}; 燃烧排放的低氯代二噁英毒$ $性当量浓度分别为 0.19<math>\langle 0.56 \langle 0.07 \langle 0.24 \langle 0.88 ngI-TEQ•kg^{-1}, naghtering nghtering ng$

2.5 Cl/S/Cu 对生物质燃烧生成二噁英的影响

Cl 是构成二噁英不可或缺的元素, Cl 含量越大越有机会与 C、H、O 结合生成二噁英. Cu 的存在会促进二噁英生成^[8],然而 S 的存在会抑制二噁英的生成^[12].用氧瓶燃烧法制备样品,然后用离子色谱(戴安 ICS900)测定样品中 Cl、S 含量,用原子吸收(美国 PE-3100)测定 Cu 含量,所得结果见表 6.

由表 6 可知 稻草 Cl 含量最大,其次为松针,其它大致相同;松针 S 含量最大,其次为稻草,松树、桉树接近;松针 Cu 含量最大,其次为玉米秸秆,松树最小.若 Cl 为二噁英合成主要因素,则稻草生成的二噁英最多;若 S 为二噁英合成主要抑制因素,则桉树、松树燃烧合成二噁英受到的抑制作用最小,松针燃烧合成二噁英受到的抑制作用最大;若 Cu 为二噁英合成的主要因素,则松针燃烧合成二噁英受到的催化作用最大,其次为玉米秸秆燃烧,最后是松树燃烧.研究认为在生物质燃烧过程中 Cl 起到主要作用, 首先 Cu 含量较低;其次在开放式燃烧过程中 S 的抑制作用可能不明显;第三,在开放式燃烧过程中,反应处于富氧环境,有利于 Cl 与 C、H、O 合成二噁英.结合 2.4 节,便可解释生物质燃烧的二噁英排放因子依次为松针、稻草、桉树、玉米秸秆、松树.

30 卷

	Table 6The content of Cl S ,	Cu in biomass (mg•g ⁻¹)	
	Cl	S	Cu
	0.57	0.62	1.20×10^{-5}
稻草	1.44	0.83	5.90×10^{-6}
松树	0.50	0.12	2.70×10^{-7}
桉树	0.51	0.08	1.51×10^{-6}
松针	0.78	0.92	1.37×10^{-5}

表 6 生物质中 Cl S ,Cu 的含量(mg•g⁻¹)

2.6 2 3 4 7 8-PeCDF 与二噁英的相关性

以 2 3 4 7 8-PeCDF 为横坐标, PCDD/Fs、PCDFs 及 PCDDs 的浓度或 I-TEQ 浓度为纵坐标作图,用 一元线性方程拟合,结果见图 4. 拟合方程分别为,浓度: $Y_{PCDD/Fs} = 29.35X_1 - 3.34$, $Y_{PCDFs} = 10.97X_1 - 0.70$, $Y_{PCDDs} = 18.37X_1 - 2.64$; I-TEQ 浓度: $Y_{PCDD/Fs} = 2.56X_2 - 0.038$, $Y_{PCDFs} = 2.03X_2 - 0.029$, $Y_{PCDDs} = 0.53X_2 - 0.0056$. 各拟合曲线的 R^2 值为: $0.98 \times 0.97 \times 0.91 \times 0.99 \times 0.99 \times 0.94$. 又用数据统计软件 SPSS 对 方程进行显著性分析,各方程的 P 值分别为 $0.000 \times 0.003 \times 0.011 \times 0.000 \times 0.006$ (P < 0.05),表明 所有方程都存在显著相关性. 对常数项进行显著性检验 P 值分别为 $0.150 \times 0.436 \times 0.310 \times 0.462 \times 0.259 \times 0.843$ (P > 0.05) 表明常数项不显著. 因此 2 3 4 7 8-PeCDF 与 PCDD/Fs \PCDFs 及 PCDDs 间存在显 著一元线性关系,可以用 2 3 4 7 8-PeCDF 的浓度及 I-TEQ 浓度.

3 结论

(1) 玉米秸秆、稻草、松树、桉树、松针燃烧的二噁英排放因子为 2.59、16.78、1.44、5.15、34.12 ng•kg⁻¹; 对应的 I-TEQ 浓度为 0.26 1.04 0.10 0.31 1.49 ng•kg⁻¹.

(2) 生物质燃烧后秸秆、稻草排放的 PCDFs > PCDDs(浓度) 松树、松针、桉树燃烧排放的 PCDDs > PCDFs; 二噁英毒性当量贡献 PCDFs > PCDDs.

(3) OCDD 对总浓度贡献最大,对总毒性当量浓度贡献最大的为234,78-PeCDF; 生物质燃烧排 放高氯代二噁英最多,低氯代二噁英对毒性当量贡献最大; 生物质燃烧排放二噁英同族体的毒性分布大 致相同.

(4) 玉米秸秆、稻草、松树、桉树、松针的二噁英含量为 5.01、21.28、3.55、9.10、81.32 ng•kg⁻¹,对应的 I-TEQ 含量为 0.014、0.62、0.013、0.13、1.28 ng•kg⁻¹.

(5) 燃烧前生物质中 PCDFs/PCDDs <1, PCDDs 贡献较 PCDFs 大; 二噁英毒性当量 PCDFs/PCDDs > 1, PCDFs 贡献较 PCDDs 大(除玉米秸秆外).

(6) 生物质燃烧排放的二噁英一方面来源于原材料释放,尤其是 OCDD; 另一方面来源于二噁英合

成,尤其是低氯代二噁英.

(7) 2 3 4 7 8-PeCDF 与 PCDD/Fs、PCDFs 及 PCDDs 间存在显著一元线性关系,可以用 2 3 4 7 8-PeCDF 的浓度及 I-TEQ 浓度反映 PCDD/Fs 的浓度及 I-TEQ 浓度.

参考文献

- [1] 彭亚拉,靳敏,杨昌举.二噁英对环境的污染及对人类的危害[J].环境与健康,2000,(1):42-44
- [2] 栾金水,陈颖,王琳. 二噁英污染及其对人体危害[J]. 粮食与油脂,2001,(4):32-33
- [3] José G Dórea. Persistent, bioaccumulative and toxic substances in fish: Human health considerations [J]. Science of the Total Environment, 2008 400: 93-114
- [4] 蒋李萍,林鹿,邱玉桂.环境中二噁英类物质的来源与降解途径[J].环境科学与技术 2004 27(1):94-96
- [5] Prashant S Kulkarni, João G. Crespo, Carlos A M Afonso. Dioxins sources and current remediation technologies A review [J]. Environment International, 2008, 34: 139–153
- [6] 李蕾,潘秀艳,胡文清.垃圾焚烧过程中二恶英的生成与减量化[J].北方环境,2004,29(4):24-26
- [7] Ryu Jae-Yong, Mulholland James A, Chu Byoung. Chlorination of dibenzofuran and dibenzo-p-dioxin vapor by copper (II) chloride. Chemosphere 2003, 51: 1031-1039
- [8] Thomasa Valerie M, McCreight Colin M. Relation of chlorine, copper and sulphur to dioxin emission factors [J]. Journal of Hazardous Materials 2008, 151: 164–170
- [9] US EPA, An inventory of sources and environmental releases of dioxin-like compounds in the United States for the years 1987, 1995, and 2000 [R]. National Centre for Environmental Assessment, Washington, DC
- [10] 任曼,彭平安,张素坤,等. 高分辨气相色谱/高分辨质谱联用测定大气降尘中的二噁英[J]. 分析化学,2006,34(1):16-20
- [11] Launhardt T, Thoma H. Investigation on organic pollutants from a domestic heating system using various solid biofuels [J]. Chemosphere, 2000, 40: 1149–1157
- [12] Chang Moo Been , Cheng Yao Chiang , Chi Kai Hsien. Reducing PCDD/F formation by adding sulfur as inhibitor in waste incineration processes [J]. Science of the Total Environment , 2006 , 366: 456-465

THE EMISSION CHARACTERISTICS OF DIOXINS IN BIOMASS BURNING

CHEN Deyi^{1 2} PENG Ping an¹ HU Jianfang¹ REN Man¹ CHEN Pei^{1 2}

 State Key Laboratory of Organic Geochemistry , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou , 510640 , China;
 Graduate School of Chinese Academy of Sciences , Beijing , 100049 , China)

ABSTRACT

In this paper , open fire buring of five kinds of biomass were simulated indoor. Their smokes were collected as samples , and the level of dioxins in biomass and combustion products was analyzed. The emission factors of corn stalks , straw , pine , eucalyptus , pine needle are 2.59 , 16.78 , 1.44 , 5.15 , 34.12 ng•kg⁻¹ , their corresponding I-TEQ concentration are 0.26 , 1.04 , 0.10 , 0.31 , 1.49 ng • kg⁻¹. The largest contribution to the concentration is OCDD , the percentage is 28.20% , 21.82% , 44.73% , 64.09% , 52.28%; the largest contribution to the total toxic equivalent concentration is 2 , 3 , 4 , 7 , 8-PeCDF , the percentage is 44.62% , 37.50% , 44.00% , 51.61% , 40.94%. The contents of dioxins in the five biomass are 5.01 , 21.28 , 3.55 , 9.10 , 81.32 ng•kg⁻¹ , which are large when compared with the emission factor of dioxins in biomass burning. I-TEQ contents are 0.014 ρ .62 ρ .013 ρ .13 , 1.29 ng•kg⁻¹ , which are small when compared with the emission factor of dioxins total toxic equivalent in biomass burning. The dioxins in biomass burning came from the raw materials , particular OCDD , as well as from the formation , especially the low-chlorinated dioxins (P₄₋₅CDD/Fs) . The 2 3 A , 7 B-PeCDF has a good linear relationship with the total concentration or the total toxic equivalent concentration $R^2 > 0.91$, P < 0.011.

Keywords: biomass, combustion dioxin, emission characteristic.