

赛默飞世尔科技 环境检测专题

TSQ Quantum 液相色谱-串联质谱法测定十种全氟烷基化合物

刘飞王勇为刘婷

(赛默飞世尔科技(中国)有限公司色谱质谱部)

全氟烷基化合物(Perfluorinated alkyl substances, PFAS)是一类普遍存在的环境污染物,自 1951 年由 3M 公司研制成功以来,已有 50 多年的生产和使用历史,以其良好的表面活性被广泛应用于纺织、造纸、包装、皮革、装潢、表面活性剂等多个领域.由于 PFAS 具有难降解性、生物蓄积性、沿食物链在生物体内富集以及潜在的生物毒性,如其中的全氟辛烷磺酸(PFOS)具有很强持久性,在任何水解、光解和生物降解环境条件下都不降解,并且会远距离迁移,这类化合物受到了越来越多的关注,并成为国际上环境科学和毒理学研究的热点.

本文采用 HPLC-ESI-MS/MS 联用技术,建立了快速、准确、高灵敏度的同时测定 10 种 PFAS 的方法. 10 种全氟烷基化合物包括:全氟己酸(perfluorohexanoate, PFHxA)、全氟辛酸(perfluorooctanoate, PFOA)、全氟壬酸(perfluorononanoate, PFNA)、全氟癸酸(perfluorodecanoate, PFDA)、全氟十一酸(perfluoroundecanoate, PFDA)、全氟十二酸(perfluorodecanoate, PFDA)、全氟丁烷磺酸(perfluorobutanesulfonate, PFBS)、全氟己烷磺酸(perfluorohexanesulfonate, PFHxS)、全氟辛烷磺酸(perfluorooctanesulfonate, PFOS)、全氟癸烷磺酸(perfluorodecanesulfonate, PFDS).

1 实验部分

1.1 仪器与试剂

TSQ Quantum 串联质谱仪(赛默飞世尔科技公司),配置 Surveyor 液相色谱系统(ThermoFisher Scientific 公司). Thermo Hypersil Gold C18 柱(150×2.1 mm,5 μm).

标准品:PFHxA,PFOA,PFNA,PFDA,PFDA,PFDA,PFDA,PFBS,PFHxS,PFOS,PFDS 购自加拿大 WellingtonLaboratories, 纯度≥98%.准确称取适量以上标准品,用甲醇配制并稀释成浓度为 10 μg·L⁻¹的混合标准溶液.甲醇,乙酸铵(HPLC级,美国 Thermo Fisher 公司),水为二次蒸馏水.

1.2 色谱与质谱条件

色谱条件:Thermo Hypersil Gold C18 柱(150×2.1 mm,5 μm),柱温 30 ℃;流动相 A: 甲醇,流动相 B:5 mmol·L⁻¹乙酸铵水溶液,采用梯度洗脱(洗脱程序见表 1);流速:0.25 mL·min⁻¹;进样体积:10 μL.

时间/min	in min		时间/min	A 甲醇/%	B 5 mmol·L ⁻¹ 乙酸铵水溶液/%	
0	40	60	12	95	5	
1	40	60	12.1	40	60	
5	95	5	15	40	60	

表 1 梯度洗脱程序

质谱条件: ESI 负离子模式. 喷雾电压: 3.0 KV; 鞘气: 40 arb; 辅助气: 10 arb; 毛细管温度: 380 ℃; 碰撞气: 氩气 (1.5 mtorr). 采用选择反应监测(SRM)扫描模式, 10 种 PFAS 的 SRM 参数见表 2.

2 结果与讨论

2.1 LC-MS/MS 方法优化及灵敏度

经优化流动相和质谱参数,采用 ESI 负离子模式检测,10 种全氟烷基化合物均有很高的灵敏度. 在该实验条件下所得 LC/MS/MS 色谱图见图 $1(0.1~{\rm ng\cdot mL^{-1}})$.

2.2 方法的线性

将浓度为 10 ng·mL^{-1} 的混合标准溶液逐级稀释成 $4.0 \cdot 2.0 \cdot 1.0 \cdot 0.25 \cdot 0.1 \text{ } \mu\text{g·L}^{-1}$ 系列混合标准溶液,分别进样分析. 以各分析物定量子离子色谱峰面积对质量浓度作标准曲线,所得线性方程及线性系数见表 3.

化合物(分子式)	母离子	子离子	碰撞能量/V	化合物(分子式)	母离子	子离子	碰撞能量/V				
PFBS(C ₄ F ₉ SO ₃ NA)	298.9	80.3*	33	PFHxS(C ₆ F ₁₃ SO ₃ NA)	398.9	80.3*	40				
		99.3	42			99.1	35				
$PFDA(C_9F_{19}COOH)$	513	269.1	16	PFNA(C ₈ F ₁₇ COOH)	462.9	218.9*	16				
		468.9*	14			326.7	15				
PFDoA(C ₁₁ F ₂₃ COOH)	612.9	269	25	PFOA(C ₇ F ₁₅ COOH)	412.9	169	21				
11 DOA (C ₁₁ F ₂₃ COOII)		569.2*	15			369.1*	13				
PFDS(C ₁₀ F ₂₁ SO ₃ NA)	598.9	80.3	50	PFOS(C ₈ F ₁₇ SO ₃ NA)	498.9	80.2	55				
$FFDS(C_{10}F_{21}SO_3NA)$		99.1*	44			99.1*	36				
PFHxA(C ₅ F ₁₁ COOH)	312.9	119	18	PFUdA(C ₁₀ F ₂₁ COOH)	562.9	269.1	21				
		269 *	11			519.2*	13				

表 2 10 种 PFAS 的 SRM 参数

注:* 代表定量子离子

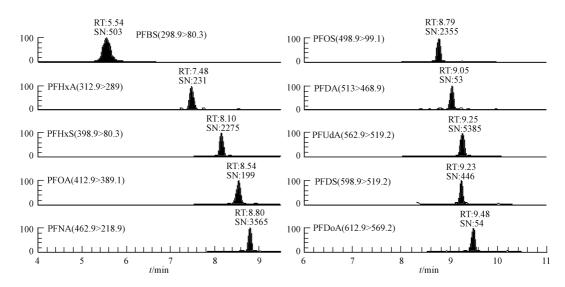


图 1 10 种全氟烷基化合物的 LC/MS/MS 色谱图

线性方程 线性系数 线性系数 线性方程 PFBS $R^2 = 0.9997$ Y = -1120.69 + 40192.6X**PFHxS** Y = -989.367 + 28052.7X $R^2 = 0.9993$ PFDA Y = 635.115 + 366255X $R^2 = 0.9993$ PFNA Y = 59.2668 + 32242.2X $R^2 = 0.9990$ PFDoA Y = 2466.29 + 143832X $R^2 = 0.9994$ PFOA Y = 80651.2 + 287806X $R^2 = 0.9992$ **PFDS** Y = -327.551 + 9750.57X $R^2 = 0.9991$ **PFOS** Y = -932.158 + 40992.2X $R^2 = 0.9991$ PFHxA Y = 1110.7 + 226175X $R^2 = 0.9994$ Y = 4247.35 + 223078X $R^2 = 0.9993$ PFUdA

表3 线性方程及线性系数

3 结论

本文建立的 10 种全氟烷基化合物的高效液相色谱-电喷雾串联质谱(LC-ESI-MS/MS)检测方法,灵敏度高、实用性强,特异性好、分析速度快等特点,完全符合我国法规及欧盟等关于 PFOA/PFOS 的检测,可广泛用于纺织品等消费品及环境样品中全氟烷基化合物的检测.