活性炭吸附对印染废水生化出水中不同种类有机物的去除效果*

李欣珏 钱飞跃 李 暮 李 新 刘勇弟** 孙贤波

(华东理工大学资源与环境工程学院,上海,200237)

染料废水是含有一定量有毒物质的有机废水,具有高 COD 和高色度. 传统的生化方法能够去除纺织印染废水中的大部分有机物,然而出水仍有相当大的色度,因此后续处理是必要的. 活性炭是使用最广泛和最有效的吸附剂,能很好地去除色度. 本文以印染废水生化出水中的溶解性有机物为研究对象,通过树脂分离技术将印染废水生化出水中的有机物分为 4 类,采用超滤法测定水样的分子量分布,研究了活性炭吸附对印染废水生化出水中 4 类有机物的去除效果及水样中不同分子量大小有机物的去除特性.

1 实验材料和方法

1.1 水样来源

实验水样取自昆山市某印染废水处理厂,以下将用 $0.45~\mu m$ 滤膜过滤后的印染废水生化出水简称为原水. 实验期间 其水质参数如下:原水初始 pH 值为 7.45-8.10; COD 为 $58-69~m g \cdot L^{-1}$; DOC 为 $20.80-22.28~m g \cdot L^{-1}$; UV₂₅₄ 为 $1.234-1.294~cm^{-1}$;原水的色度以 ADMI_{7.6} 表征时为 448-472,用稀释倍数法测定在 54-58 之间.

1.2 实验及分析方法

- (1) 有机物分离方法采用 XAD-8 和 XAD-4 吸附树脂联用技术将水中溶解性有机物分为疏水酸、非酸疏水物质、弱疏水物质及亲水物质 4 类有机物.
- (2) 色度:由于稀释倍数法有很大的人为误差,本实验选用能较精确测量色度的 ADMI_{7.6}来表征水样色度. ADMI_{7.6}:调节 pH 值为 7.6 ±0.1 用 5 cm 光程玻璃比色皿测定(哈希公司 DR/4000U 型可见光分光光度计).
- (3) 实验方法:本实验中所需活性炭均来自上海活性炭厂,实验采用粒径 < 180 目的活性炭. 在 (20 ± 0.5) ℃、180 $\mathbf{r} \cdot \mathbf{min}^{-1}$ 、吸附时间 7 h 的条件下进行吸附等温线实验. 实验结束后测定 0.45 $\mu \mathbf{m}$ 滤膜滤出液的各项指标.

2 结果与讨论

2.1 吸附等温线

3种炭型对原水的吸附等温方程见表 1.

表 1 Freundlich 等温方程拟合结果

炭型	指标	Freundlich 等温方程	R^2
	DOC	$\ln Q = 0.824 \ln C_e - 5.596$	0.989
煤质炭	COD	$\ln Q = 0.946 \ln C_e - 5.677$	0.966
	ADMI _{7.6}	$\ln Q = 0.341 \ln C_e - 2.557$	0.986
	UV_{254}	$\ln Q = 0.665 \ln C_e - 6.054$	0.980
	DOC	$\ln Q = 0.658 \ln C_e - 6.029$	0.965
椰壳炭	COD	$\ln Q = 1.339 \ln C_e - 7.961$	0.983
	ADMI _{7.6}	$\ln Q = 0.642 \ln C_e - 5.185$	0.981
	UV_{254}	$\ln Q = 0.484 \ln C_e - 7.024$	0.985
	DOC	$\ln Q = 0.796 \ln C_e - 6.531$	0.976
竹炭	COD	$\ln Q = 1.080 \ln C_e - 7.033$	0.980
	ADMI _{7.6}	$\ln Q = 0.376 \ln C_{\rm e} - 3.487$	0.980
	UV_{254}	$\ln Q = 0.592 \ln C_e - 7.122$	0.974

由表 1 可知,以 DOC 表征时,3 种活性炭对印染废水生化出水的吸附能力由大到小依次为:煤质炭、椰壳炭、竹炭;以

²⁰¹¹年9月10日收稿.

^{*}国家高技术研究发展计划(863)重点项目(2009AA063904)资助.

^{* *} 通讯联系人, Tel:021-64253389; E-mail:ydliu@ecust.edu.cn

ADMI_{7.6}表征时,吸附能力由大到小依次为:煤质炭、竹炭、椰壳炭;以 COD 表征时,吸附能力由大到小依次为:煤质炭、竹炭、椰壳炭;以 UV₂₅₄表征时,吸附能力由大到小依次为:煤质炭、椰壳炭、竹炭. 因此选用煤质炭处理后的印染废水生化出水来进行树脂分离.

2.2 煤质炭对不同种类有机物的去除效果

根据 Freundlich 吸附等温线方程计算,COD 和 ADMI_{7.6}达到项目要求处理效果(即 COD < 50 mg·L⁻¹,ADMI_{7.6} < 80) 时煤质炭的投加量分别为 0.373 g·L⁻¹、1.188 g·L⁻¹、对两种投加量处理后的水样及原水进行树脂分离,结果见表 2.

指标	活性炭投加量	去除率/%					
	/(g•L ⁻¹)	疏水酸	非酸疏水物质	弱疏水有机物	亲水性有机物		
UV_{254}	0.373	69	65	98	69		
	1.188	94	71	100	84		
ADMI _{7.6}	0.373	74	35	100	20		
	1.188	98	85	100	60		
DOC	0.373	54	38	70	22		
	1.188	74	100	87	60		

表 2 4 类有机物在煤质炭吸附处理中的去除率

由表 2 可知,以 UV₂₅₄表征时,煤质炭对弱疏水性有机物的去除效果最好;以 ADMI_{7.6}表征时,煤质炭对弱疏水有机物和疏水酸的去除效果最好;以 DOC 表征时,煤质炭对疏水性物质(即疏水酸,非酸疏水物质及弱疏水有机物)的去除效果优于亲水性物质.煤质炭对印染废水生化出水 UV₂₅₄和 ADMI_{7.6}去除率略高于 DOC 的去除率,这表明煤质炭吸附较易去除含不饱和键的有机物.

2.3 分子量分布

选用和2.2 相同的两种投加量处理后的水样及原水进行分子量分布的测定,结果见表3.

	DOC			UV_{254}		$\mathrm{ADMI}_{7.6}$			
分子量区间	原水	0.373 g·L ⁻¹	1.188 g•L ⁻¹	原水	0.373 g•L ⁻¹	1.188 g·L ⁻¹	原水	0.373 g·L ⁻¹	1.188 g·L ⁻¹
<1 k	39.48	36.55	42.06	23.3	21.82	17.14	16.67	13.62	3.45
1—4 k	18.39	14.91	12.98	21.8	21.56	22.45	34.42	27.23	36.21
4—10 k	10.41	11.29	14.77	18.04	18.7	17.96	32.03	34.27	34.48
10—50 k	9.17	11.64	12.75	19.69	20.52	19.18	11.26	17.37	13.79
>50 k	22.56	25.6	17.45	17.18	17.4	23.27	5.63	7.51	12.07

表3 分子量分布(%)

由表 3 可知,原水中,分子量 < 1 k 的有机物对 DOC 的贡献最为显著,ADMI_{7.6}值则主要受分子量为 1—10 k 的有机物的影响,各分子量分布区间对 UV₂₅₄的贡献大致相当. 对于煤质炭在两种投加量下处理后的水样,仍然是分子量 < 1 k 的有机物对 DOC 的贡献最为显著,分子量在 1—10 k 的有机物对 ADMI_{7.6}值的影响最大,各分子量分布区间对 UV 的贡献大致相当.

2.4 煤质炭吸附对生物毒性的去除

考察了煤质炭吸附对生物毒性的去除效果,原水、 $0.373~g \cdot L^{-1}$ 的投加量下及 $1.188~g \cdot L^{-1}$ 的投加量下的相对抑制率分别为 64%、30%、10%.由此可知,煤质炭能显著降低抑制率,从而去除生化出水的生物毒性,这与活性炭对 UV_{254} 的高去除率有关.

3 结论

- (1)3种活性炭对印染废水生化出水均有显著的处理效果,其中煤质炭的处理效果优于竹炭和椰壳炭.
- (2)以 UV_{254} 表征时,煤质炭对弱疏水性有机物的去除效果最好;以 $ADMI_{7.6}$ 表征时,煤质炭对疏水酸的去除效果最好;以 DOC 表征时,煤质炭对疏水性物质的去除效果优于亲水性物质.
 - (3)活性炭吸附能显著去除印染废水生化出水的生物毒性,但处理前后水样的分子量分布变化较小.

关键词:印染废水生化出水,活性炭吸附,吸附性能,分子量分布,生物毒性.