DOI: 10.7524/j.issn.0254-6108.2017012007

徐志法,赵卫佳,张睿,等.太湖部分地区碘代三卤甲烷分布特征及其与藻类有机物的关系初探[J].环境化学,2017,36(12):2541-2549. XU Zhifa, ZHAO Weijia, ZHANG Rui, et al. Distribution of iodinated trihalomethanes in part of Taihu Lake and correlation analysis between iodinated trihalomethanes and algal organic matter[J].Environmental Chemistry,2017,36(12):2541-2549.

太湖部分地区碘代三卤甲烷分布特征及其与 藻类有机物的关系初探*

徐志法 赵卫佳 张 睿 赵彦凯 胡霞林** 尹大强

(同济大学环境科学与工程学院,污染控制与资源化研究国家重点实验室,上海,200092)

摘 要 藻类有机物(algal organic matter, AOM)被证实是碘代消毒副产物(iodinated disinfection by-products, I-DBPs)生成的前体有机物,然而真实环境中 I-DBPs 与 AOM 的关系还不明确.本文研究了太湖碘代三卤甲烷 (iodinated trihalomethanes, I-THMs)的分布特征,并初步分析了地表水中 I-THMs 与 AOM 的关系,I-THMs 在枯 水期与丰水期平均浓度分别是 655.9 ng·L⁻¹和 134.6 ng·L⁻¹.其中,CHBrI₂和 CHI₃为主要的污染物,而 CHCl₂I 检出相对较低.皮尔森相关性分析表明,CHCl₂I、CHClBrI、CHClI₂、CHI₃等 I-THMs 均与叶绿素 a 具有显著正相 关性,而 CHCl₂I、CHBrI₂、CHI₃与总磷 TP、CHCl₂I、CHBr₂I 与总氮 TN 均具有显著正相关性;CHCl₂I、CHClI₂与舟形藻(*Navicula* sp.)细胞浓度也具有显著正相关,但 CHBrI₂等与微囊藻(*Microcystis* sp.),栅藻 (*Scenedesmus* sp.)细胞浓度呈显著负相关(*P*<0.05).本研究间接表明,真实环境中 AOM 是 I-THMs 的一个重要 来源.

关键词 碘代三卤甲烷,分布特征,藻类有机物,太湖.

Distribution of iodinated trihalomethanes in part of Taihu Lake and correlation analysis between iodinated trihalomethanes and algal organic matter

XU Zhifa ZHAO Weijia ZHANG Rui ZHAO Yankai HU Xialin^{**} YIN Daqiang (State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China)

Abstract: Algal organic matter (AOM) has been confirmed to be a precursor of iodinated DBPs (I-DBPs). However, the relationship between AOM and I-DBPs in aquatic environment still remains unknown. This study investigated the distribution of I-THMs in Taihu, and analyted the correlation between I-THMs and AOM in surface water. The total mean I-THMs concentrations in the dry and wet season were 655.9 ng \cdot L⁻¹ and 134.6 ng \cdot L⁻¹, respectively. CHBrI₂ and CHI₃ were the predominant pollutants, while CHCl₂I was detected at the lowest frequency. Four I-THMs (CHCl₂I, CHBr₂I, CHBrI₂, CHI₃) correlated positively and significantly (*P*<0.05) with chlorophyll-a. Also, other four I-THMs (CHCl₂I, CHBr₂I, CHBr₂I, CHBr₂I, CHBr₂I, CHBr₂I, CHBr₂I, CHBr₂I, CHCl₂I, CHCl₂I, CHCl₂I, CHCl₂I, CHCl₂I, CHCl₂I, Showed positive correlation with total nitrogen (TN). Although two I-THMs (CHCl₂I, CHCl₂I, CHCl₂) showed positive correlation with cell

* * 通讯联系人, Tel:021-65981156, E-mail: xlhu@tongji.edu.cn

Corresponding author, Tel: 021-65981156, E-mail: xlhu@tongji.edu.cn

²⁰¹⁷年1月20日收稿(Received: January 20, 2017).

^{*}国家自然科学基金 (21277100, 21577103)资助.

Supported by the National Natural Science Foundation of China (21277100, 21577103).

concentration of *Navicula* sp., $CHBrI_2$ correlated negatively with cell concentration of *Microcystis* sp. and *Scenedesmus* sp. This investigation suggests that AOM is an important precursor of I-THMs formation in a real aquatic environment.

Keywords: iodinated trihalomethanes, distribution, algal organic matter, Taihu Lake.

饮用水消毒副产物(disinfection by-products, DBPs)因与人体健康息息相关而备受关注.目前有报道 的 DBPs 高达 600 种^[1],其中作为新兴的碘代消毒副产物(I-DBPs)因具有比氯代和溴代消毒副产物更 强的细胞毒性和基因毒性而备受关注^[24].此外,在海洋多毛动物沙蚕蠕虫(*Platynereis dumerilii*)的暴露 实验中表明,部分 I-DBPs 能够抑制发育,具有发育毒性^[5-6].I-THMs(碘代三氯甲烷)作为 I-DBPs 的典型 化合物之一,是目前学术界的研究重点. I-THMs 在饮用水厂、管网水中的分布特征得到了广泛的关注. 国外的研究表明,总 I-THMs(CHCl₂I和 CHBrClI)浓度在饮用水厂高达 3.7 μg·L⁻¹,而在管网水分布上则 达到 0.586 μg·L^{-1[7-8]},而国内的研究则表明饮用水厂 I-THMs 浓度为 5.58 μg·L⁻¹左右,在生成势方面, 高达 18.93 μg·L^{-1[9-10]}.虽然饮用水处理工艺得到很大改进,但有调查表明,各工艺中有机前体物(总有 机碳,叶绿素 a)并不能很好去除,有可能在消毒过程生成 I-THMs^[11];调查也表明,在饮用水原水及地表 水有 I-THMs 存在^[11-12].因此自然水环境是饮用水消毒副产物 I-THMs 可能的源和汇.

目前消毒过程研究比较多的有机前驱物主要是腐殖酸和富里酸,但是在一些富营养化地区,其主要 有机物在蓝藻爆发期可能是藻类的胞外物或者其它组份.与腐殖酸不同的是,藻类有机物(algal organic matter, AOM)主要以多糖类物质,蛋白类物质为主^[13-14].AOM 作为I-THMs 生成的有机前驱物的研究还 比较少,现有的少量研究表明,AOM 为有机前驱物情况下,也会生成I-THMs^[15].然而,现有的研究仅限 于实验室模拟研究或者饮用水水厂中的模拟研究,关于实际天然水环境中 AOM 与 I-THMs 分布特征之 间的关系还不清楚.揭示天然水环境中 I-THMs 分布与 AOM 的关系,将有利于研究 I-THMs 可能的天然 生成机制和控制 I-THMs 的最终生成.该地区受到了严重的污染,藻类爆发一直是太湖作为饮用水源的 严重威胁之一.

本文选择太湖为研究对象,探究地表水中1-THMs的分布特征以及I-THMs与AOM等天然有机物的 相关性.天然水体中AOM作为一类以来源定义的有机物,并不能通过定量手段直接测定.并且不同藻 类,不同生长阶段,产生的有机物都存在一定差异.因此,直接研究天然水环境中的AOM存在困难.但 是,由于天然水体中AOM由藻细胞产生,水体中一些无机盐类指标与蓝藻爆发,具有一定相关性^[16-17]. 因此,通过测定水环境中一些常见富营养化指标,可间接表征水体中的AOM.本文通过测定天然水环境 中的I-THMs以及间接反映AOM的指标,采用皮尔森相关系数分析,初步探讨了地表水中AOM与 I-THMs的关系.

1 实验部分(Experimental section)

1.1 研究区域概况

太湖位于长江三角洲,横跨江浙两省,北临无锡,东近苏州,面积2338 km²,是我国第三大淡水湖泊, 同时也是一个典型的浅水湖泊,平均水深仅1.9 m^[18].太湖除了渔业、农业、养殖业、航运,防洪以外,同 时也无锡、苏州的主要饮用水源地^[19].然而太湖蓝藻爆发问题所致的饮用水安全问题一直都是研究重 点.本研究选择了太湖北部的无锡竺山湾、梅粱湾和贡湖湾和苏州湖心区,胥湖及东太湖这些区域为对 象,采集表层水样.其中,文献报道无锡区域主要以藻类污染为主,苏州区域主要以大型水生植物污染为 主^[20-21],两者很好的代表了太湖的藻类与大型水生植物污染状况.

1.2 实验材料

无水硫酸钠、无水亚硫酸钠、过硫酸钾、磷酸二氢钾、氢氧化钠、硫酸、钼酸铵、酒石酸锑钾、抗坏血酸 均购自国药,纯度在分析纯或优级纯;二氯碘甲烷 CHCl₂I,一溴二碘甲烷 CHBrI₂,一氯二碘甲烷 CHCll₂, 一氯一溴一碘甲烷 CHBrClI 以及二溴碘甲烷 CHBr₂I,纯度均大于 95%,购于 CanSyn Chem. Corp. (Toronto, ON, Canada),碘仿(CHI₃,纯度 99%)和 Lugol 试剂购于 Sigma-Aldrich; 硝酸根标准品,亚硝酸 根标准品及 1,2-二溴丙烷均购于 o2si Smart Solutions (Charleston, South Carolina, USA).氮气(N_2 , 99.995%)购于春雨特种气体有限公司(上海,中国).甲基叔丁基醚(GC 级)购自默克.

1.3 样品采集

本文中所有样品均采自北太湖和东太湖区域(图1),采样时间在2015年12月(枯水期)和2016年7月(丰水期).水样在运输途中,采用低温避光处理.

图 1 太湖采样点分布 Fig.1 The distribution of sampling sites in Taihu Lake

1.4 样品前处理及分析方法

所有样品均用 0.7 μm Whatman 玻璃纤维膜(GF/F)过滤.水样中 L-THMs 的测定参考美国 EPA551.1 方法,用甲基叔丁基醚液液萃取,浓缩,然后用安捷伦 GC7890A 和 ECD 检测器测定.色谱柱为 HP-5 (30 m×320 μm×0.25 μm).其条件分别是:进样量 1 μL,进样口温度 200 ℃;不分流;程序升温为初始温 度35 ℃,保持 10 min,以 15 min 程序升温至 170 ℃,保持 8 min;检测器温度 290 ℃.I-THMs 的检测限在 0.5—1.0 ng·L⁻¹.

水样中的硝酸根采用戴安 ICS-1000 离子色谱测定.氨氮使用 HACH 的 PC II 氨氮仪测定.总磷采用 国标 GB11893-89 用过硫酸钾消解测定.总有机碳和总氮采用岛津 TOC V-CPN 测定.叶绿素 a 采用浮游 植物分类荧光仪 PHYTO-PAM 测定.用于藻种鉴定的水样,经 Lugol 试剂固定,浓缩,委托中国科学院水 生生物研究所进行藻种鉴定.

 UV_{254} 采用赛默飞 Evolution 201 紫外可见光谱测定,而 SUVA(specific ultraviolet absorbance₅₄与 TOC 的比值,主要用于衡量水体芳香族有机物含量^[22-23],Weishaar 等^[24]已经通过研究大量环境中分离有机物证明,SUVA 与芳香族有机物百分比呈很强的相关性;而现有研究也表明,SUVA 越高,越容易生成I-THMs^[23],

1.5 数据处理

本文相关性采用皮尔逊相关系数分析,采用 SPSS 19.0 处理.

2 结果与讨论(Results and discussion)

2.1 太湖富营养化情况

本文选取叶绿素 a、总有机碳 TOC、总磷 TP、总氮 TN、氨氮 NH₃-N、硝酸根 NO₃等富营养化参数衡 量太湖藻类有机物情况,这些指标在已有的相关文献报道中,均显示与藻类爆发有相关性^[16].此外,结合相关 I-THMs 生成的文献^[22-23],增加了 UV₂₅₄、SUVA 来表征芳香类有机物含量.最后考察了太湖藻类分 布情况,为后续实验进一步提供支持.

对于太湖富营养化指标的分布状况(图2),整体来看,北部竺山湾、梅粱湾、贡湖湾相对较高,东部 较低.从时空分布看,枯水期的富营养化指标显著高于丰水期.太湖地表水中,叶绿素主要来源于浮游植 物、藻类等,因此,在一定程度上可以间接说明藻类有机物的情况.太湖叶绿素分布,北部湖区要比东部 湖区高的多,尤其是在冬季枯水期,显著高于东部.而且受到水量的影响,枯水期叶绿素(平均值 40.5 μg·L⁻¹)要比丰水期(平均值 4.6 μg·L⁻¹)高得多.而 TOC 变化在丰水期(平均值 22.0 mg.L⁻¹)与枯 水期(平均值 24.1 mg·L⁻¹)并不显著,而且所选点变化趋势基本一致:北部无锡段 TOC 含量较高,而在 湖心区和东太湖则相对较低,这可能与所选地区水流较为丰富相关.

而总磷的变化,则是枯水期(平均值0.17 mg·L⁻¹)显著高于丰水期(平均值0.03 mg·L⁻¹),且都是北部梅粱湾、竺山湾、湖心区等地区较高,而在丰水期,除了梅粱湾和竺山湾,在东太湖附近的点也出现异

常高的点.总氮在枯水期的浓度(平均值 2.56 mg·L⁻¹)显著高于丰水期(平均值 1.03 mg·L⁻¹).而从分布 来看,北部梅粱湾、竺山湾显著高于东部地区,呈下降趋势.但是 S6 点,由于水流地理位置原因,显著高 于周边浓度(S5 和 S7).氨氮的分布与所选的位置关系较大,枯水期在湖湾一些水流停滞时间较长的点 浓度显著高于停止时间较短的点,而在丰水期也有类似的结果,主要表现在,贡湖湾与梅粱湾显著高于 其他点(枯水期部分点除外),而且有文献报道氨氮与蓝藻爆发具有显著正相关^[16].而硝酸根在枯水期 与丰水期变化趋势相反.枯水期,硝酸盐自北向东,大致呈递减趋势;而丰水期,则趋势相反(部分点除 外).UV₂₄与 SUVA 在太湖枯水期变化趋势;自北向东,大体递增趋势.

同时,考察了太湖藻类分布情况(图3).枯水期硅藻门,绿藻门为主要优势藻种,存在部分蓝藻门、 隐藻门、裸藻门;而在丰水期蓝藻门为优势藻种,此外还含有硅藻门、绿藻门、金藻门、甲藻门等.比较不 同时期藻类密度发现,丰水期蓝藻门增加显著(增加近1000倍),其次是绿藻门(3倍),也有所增加,硅 藻门有所降低.而从具体藻类看,(由于蓝藻门种类较多,不易鉴定,因此部分采样点只给出蓝藻门总的 结果.)枯水期和丰水期检出率最高的几种藻类包括直链藻、小环藻、针杆藻、栅藻、十字藻、卵囊藻.

Fig.3 Distribution of algal species in Taihu Lake during dry (a) and wet seasons (b)

2.2 太湖 I-THMs 分布特征

从 I-THMs 分布(图 4)来看,枯水期,水位较低,流速较慢,在城市周边(S1—S2,S7)I-THMs 显著高 于郊区(S4 和 S6),说明了地表水中 I-THMs 可能大部分源自一些污水厂排放为主;此外受到水流流向 等影响,湖心区域也相对较高(S5).而在丰水期,受到水位上升,水流加快的影响,整体浓度趋同,但是受 到地理位置影响,一些位置较偏水流较缓的水湾(S4 和 S6)浓度相对较高.此外,外源输入的 I-THMs 也 较高(S3).

比较丰水期和枯水期,发现枯水期的 I-THMs 浓度要比丰水期高得多.枯水期总的浓度范围在 323.3—883.9 ng·L⁻¹,而丰水期则71.2—230.8 ng·L⁻¹.可能是随着水位上升的稀释作用导致 I-THMs 下降,另一方面,丰水期温度较高,一些低沸点的 I-THMs 含量下降比较显著:低分子量的三卤甲烷占比较低,而以 CHI₃为代表的三卤甲烷比较多,在丰水期尤为明显,基本上检测不到 CHCl₂I,这可能一方面与 温度有关^[25],低分子量的 I-THMs 沸点较低,更容易因为高温而蒸发.此外,夏季较强的紫外线也在一定 程度上,去除了部分 I-THMs,有文献报道,碘代消毒副产物在自然光下,容易降解,而且碘原子个数越 高,越容易光降解^[26-28].目前文献报道的国内 I-THMs 种类分布主要以 CHCl,I 为主,而且 CHI,等含碘原 子个数较多的 I-THMs 检出率都较低^[9,29].因此可能存在其它途径的 I-THMs 来源.国外有文献报道了在 实验室模拟海洋溶解性有机物与溶解性碘离子,臭氧反应生成了 CHI,,CHCII2等碘甲烷的过程^[30],此外 关于其它碘甲烷的光催化、生物转化生成也可作为来源借鉴[31-32].

表1相关性分析表明,叶绿素 a 与 CHCl,I(r=0.594, P<0.05), CHBrClI(r=0.596, P<0.05), CHI, (r=0.606, P<0.05), CHCll, (r=0.729, P<0.01)具有显著正相关, TP 与 CHCl, I(r=0.96, P<0.01), CHBr, I(r=0.720, P<0.01), CHI, (r=0.635, P<0.05), CHBrI, (r=0.650, P<0.05)具有显著正相关, 而现 有研究发现,太湖水体磷酸盐含量升高可能部分源自藻细胞的破裂^[33].TN 与 CHCl₂I(r=0.882, P< 0.01), CHBr₂I(r=0.648, P<0.05) 具有显著正相关, 而 TOC 只与 CHCl₂I(r=0.537, P<0.05) 显著相关. 不难发现,CHCl,I与这些富营养化指标(TP,TN,TOC,叶绿素 a)均呈显著性正相关.但是由于 I-THMs 生 成受到温度,光照等的影响^[26,34],TP 及叶绿素浓度影响在不同的季节仅仅能反映相关性,但并不代表 夏天 TP、叶绿素浓度高则 I-THMs 浓度高,具体机制有待进一步探讨.

		Table 1 Correlation between I-THMs and eutrophication parameter in Taihu Lake								
		叶绿素 a Chlorophyll a	总碳 TOC	总磷 TP	总氮 TN	氨氮 NH ₃ -N	硝酸根 NO ₃	UV ₂₅₄	SUVA	
$\mathrm{CHCl}_{2}\mathrm{I}$	相关性	0.594 *	0.537 *	0.96 **	0.882 **	-0.244	0.385	0.070	-0.022	
	显著性	0.025	0.048	0.006	0.000	0.402	0.174	0.812	0.941	
	样品数	14	14	14	14	14	14	14	14	
CHClBrI	相关性	0.596 *	-0.070	0.224	-0.010	-0.336	-0.130	0.053	0.071	
	显著性	0.024	0.812	0.441	0.974	0.239	0.659	0.858	0.809	
	样品数	14	14	14	14	14	14	14	14	

表1 太湖 I-THMs 浓度与富营养化等指标相关性分析

								续表1		
		叶绿素 a Chlorophyll a	总碳 TOC	总磷 TP	总氮 TN	氨氮 NH ₃ -N	硝酸根 NO ₃	UV ₂₅₄	SUVA	
CHBr ₂ I	相关性	0.432	0.295	0.720 **	0.648 *	-0.333	0.145	0.023	0.005	
	显著性	0.123	0.305	0.004	0.012	0.245	0.620	0.937	0.987	
	样品数	14	14	14	14	14	14	14	14	
CHClI ₂	相关性	0.729 **	0.112	0.522	0.312	-0.230	0.034	0.417	0.390	
	显著性	0.003	0.703	0.055	0.278	0.430	0.907	0.138	0.167	
	样品数	14	14	14	14	14	14	14	14	
CHBrI ₂	相关性	0.432	-0.097	0.650 *	0.239	-0.515	-0.071	0.175	0.235	
	显著性	0.123	0.743	0.012	0.411	0.060	0.809	0.550	0.419	
	样品数	14	14	14	14	14	14	14	14	
CHI3	相关性	0.606 *	-0.026	0.635 *	0.186	-0.431	-0.185	0.087	0.096	
	显著性	0.022	0.929	0.015	0.523	0.124	0.526	0.768	0.745	
	样品数	14	14	14	14	14	14	14	14	

注: *P<0.05; **P<0.01

由于不同的藻类所产生的藻类有机物组分存在差异^[13,35],因而对 I-THMs 生成影响也不同.通过不同藻类的细胞浓度与 I-THMs 相关性分析(表 2),可以找出对 I-THMs 生成影响较大的藻类,为后续进一步消毒实验筛选藻类提供参考.研究表明,CHCl₂I、CHClI₂与舟形藻具有显著正相关(*r*=0.607, *P*<0.05; *r*=0.716, *P*<0.05),而 CHBrI₂与微囊藻(*r*=-0.576, *P*<0.01)、栅藻(*r*=-0.574, *P*<0.01)呈显著负相关, CHBr₂I 与栅藻也呈显著负相关(*r*=-0.572, *P*<0.01).因此,相关性分析表明,AOM 是 I-THMs 在自然界存在的来源之一.

		直链藻 <i>Melosira</i> sp.	微囊藻 <i>Microcystis</i> sp.	小环藻 <i>Cyclotella</i> sp.	针杆藻 Synedra sp.	舟形藻 Navicula sp.	十字藻 Crucigenia sp.	栅藻 Scenedesmus sp.	卵囊藻 <i>Oocystis</i> sp.	纤维藻 Ankistrodesmus sp	四星藻 D. Tetrastrum sp.
CHCl ₂ I	相关性	0.085	-0.294	0.096	-0.211	0.607 *	-0.196	-0.424	-0.435	0.198	-0.267
	显著性	0.774	0.307	0.743	0.559	0.048	0.503	0.149	0.158	0.560	0.377
	样品数	14	14	14	10	11	14	13	12	11	13
CHClBrI	相关性	0.121	-0.340	0.156	0.059	-0.093	-0.264	-0.188	-0.058	-0.020	-0.266
	显著性	0.681	0.234	0.593	0.871	0.787	0.362	0.539	0.859	0.954	0.380
	样品数	14	14	14	10	11	14	13	12	11	13
CHBr ₂ I	相关性	0.221	-0.392	0.045	-0.249	0.428	-0.273	-0.572 *	-0.546	-0.065	-0.323
	显著性	0.447	0.166	0.877	0.488	0.189	0.345	0.041	0.066	0.849	0.281
	样品数	14	14	14	10	11	14	13	12	11	13
CHClI_2	相关性	-0.008	-0.259	-0.231	0.502	0.716 *	-0.193	-0.172	-0.306	0.325	-0.299
	显著性	0.980	0.372	0.427	0.139	0.013	0.508	0.575	0.333	0.329	0.322
	样品数	14	14	14	10	11	14	13	12	11	13
CHBrI2	相关性	0.207	-0.576 *	-0.058	-0.062	0.183	-0.353	-0.574 *	-0.461	-0.087	-0.303
	显著性	0.479	0.031	0.845	0.865	0.590	0.216	0.040	0.131	0.800	0.314
	样品数	14	14	14	10	11	14	13	12	11	13
CHI3	相关性	0.414	-0.482	-0.067	-0.108	-0.241	-0.186	-0.380	-0.441	0.243	-0.281
	显著性	0.141	0.081	0.819	0.766	0.476	0.524	0.201	0.151	0.472	0.352
	样品数	14	14	14	10	11	14	13	12	11	13

表 2 太湖 I-THMs 浓度与不同藻类的细胞浓度相关性分析 **Table 2** Correlation between I-THMs and eutrophication parameter in Taihu Lake

* P<0.05; ** P<0.01

3 结论(Conclusion)

本文分析了太湖枯水期与丰水期地碘代三氯甲烷(I-THM)的分布特征,枯水期浓度显著高于丰水 期浓度.而且两个时期的空间分布存在一定差异,枯水期城镇附近 I-THMs 浓度显著高于周边地区,而丰 水期则更主要受到水流影响,整体分布较为均匀,但是在一些流水较为缓慢的浅湾则浓度相对较高.这 些时空的分布特征说明太湖-THMs 主要来源于污水排放.但是从 I-THMs 种类分布上看,要污染物为见 光易分解的多碘 I-THMs,表明可能存在其他途径的 I-THMs 生成机制——天然转化机制.而相关性分析 表明,部分 I-THMs 与一些富营养化指标叶绿素 a,TP,TN,TOC 具有显著正相关,而舟形藻也具有正相 关性,间接表明了 AOM 是 I-THMs 生成前体之一.然 I-THM 然转化证据和机制以及 I-THMs 与藻类有机 物的关系尚待进一步研究.

参考文献(References)

- [1] RICHARDSON S D, PLEWA M J, WAGNER E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research[J]. Mutat Research, 2007, 636(1/3):178-242.
- [2] RICHARDSON S D, FASANO F, ELLINGTON J J, et al. Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water[J]. Environmental Science and Technology, 2008, 42(22):8330-8338.
- [3] PLEWA M J, SIMMONS J E, RICHARDSON S D, et al. Mammalian cell cytotoxicity and genotoxicity of the haloacetic acids, a major class of drinking water disinfection by-products [J]. Environmental and Molecular Mutagenesis, 2010, 51(8-9):871-878.
- [4] JEONG C H, POSTIGO C, RICHARDSON S D, et al. Occurrence and comparative toxicity of haloacetaldehyde disinfection byproducts in drinking water[J]. Environmental Science and Technology, 2015, 49(23):13749-13759.
- [5] LIU J Q, ZHANG X R. Comparative toxicity of new halophenolic DBPs in chlorinated saline wastewater effluents against a marine alga: Halophenolic DBPs are generally more toxic than haloaliphatic ones [J]. Water Research, 2014, 65:64-72.
- [6] YANG M T, ZHANG X R. Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete platynereis dumerilii [J]. Environmental Science and Technology, 2013, 47(19):10868-10876.
- [7] GOSLAN E H, KRASNER S W, BOWER M, et al. A comparison of disinfection by-products found in chlorinated and chloraminated drinking waters in Scotland[J]. Water Research, 2009, 43(18):4698-4706.
- [8] IOANNOU P, CHARISIADIS P, ANDRA S S, et al. Occurrence and variability of iodinated trihalomethanes concentrations within two drinking-water distribution networks[J]. Science of the Total Environment, 2016, 543:505-513.
- [9] DING H H, MENG L P, ZHANG H F, et al. Occurrence, profiling and prioritization of halogenated disinfection by-products in drinking water of China[J]. Environmental Science-Processes and Impacts, 2013, 15(7):1424-1429.
- [10] 王娟. 碘代类消毒副产物生成特性研究[D]. 西安:长安大学, 2014.
 WANG J, Study on Formation characteristics of Iodinated Disinfection By-products [D]. Xi'an: Chang'an University, 2014(in Chinese).
- [11] 徐志法,赵卫佳,张睿,等. 饮用水厂消毒副产物有机前驱物及碘代三卤甲烷分布调查[J]. 广东化工,2017,44(4):7-9,11.
 XU Z F, ZHAO W J, ZHANG R, et al. the Distribution of disinfection by-products organic precursors and iodinated trihalomethanes in drinking water treatment plant [J]. Guangdong Chemical Industry, 2017, 44(4):7-9, 11(in Chinese).
- [12] XU Z F, LI X, HU X L, et al. Distribution and relevance of iodinated X-ray contrast media and iodinated trihalomethanes in an aquatic environment[J]. Chemosphere, 2017, 184:253-260.
- [13] HENDERSON R K, BAKER A, PARSONS S A, et al. Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms[J]. Water Research, 2008, 42(13):3435-3445.
- [14] ZHOU S Q, ZHU S M, SHAO Y S, et al. Characteristics of C-, N-DBPs formation from algal organic matter: Role of molecular weight fractions and impacts of pre-ozonation [J]. Water Research, 2015, 72:381-390.
- [15] ZHEN W, XU B, LIN Y L, et al. A comparison of iodinated trihalomethane formation from iodide and iopamidol in the presence of organic precursors during monochloramination[J]. Chemical Engineering Journal, 2014, 257:292-298.
- [16] 刘霞. 太湖蓝藻水华中长期动态及其与相关环境因子的研究[D]. 武汉:华中科技大学, 2012.
 LIU X. Long-term dynamics of cyanobacteria related to environment factors in Taihu Lake [D]. Wuhan: Huazhong University of Science & Technology, 2012(in Chinese).
- [17] 张强. 太湖饮用水源地水质调查与评价[D]. 无锡: 江南大学, 2013.
 ZHANG Q. Assessment and investigation of water quality in the drinking water-source region of Taihu Lake [D]. Wuxi: Jiangnan University, 2013(in Chinese).
- [18] ZHANG Y, SHI G L, GUO C S, et al. Seasonal variations of concentrations, profiles and possible sources of polycyclic aromatic

hydrocarbons in sediments from Taihu Lake, China[J]. Journal of Soils and Sediments, 2012, 12(6):933-941.

- [19] ZHAI, S J, HU W P, ZHU Z C. Ecological impacts of water transfers on Lake Taihu from the Yangtze River, China [J]. Ecological Engineering, 2010, 36(4):406-420.
- [20] 张路,范成新,王建军,等. 太湖草藻型湖区间隙水理化特性比较[J]. 中国环境科学,2004,24(5):45-49.
 ZHANG L, FAN C X, WANG J J, et al. Comparison of physicochemical characters of pore water in grass/algae type zone in Lake Taihu
 [J]. China Environmental Science, 2004,24(5):45-49(in Chinese).
- [21] 袁信芳,施华宏,王晓蓉太湖着生藻类的时空分布特征[J]. 农业环境科学学报,2006, 25(4):1035-1040. YUAN X F, SHI H H, WANG X R, et al. Temporal and spatial distributions of periphytic algae in Taihu Lake [J]. Journal of Agro-Environment Science, 2006, 25(4): 1035-1040(in Chinese).
- [22] BAHR C, SCHUMACHER J, ERNST M, et al. SUVA as control parameter for the effective ozonation of organic pollutants in secondary effluent[J]. Water Science and Technology, 2007, 55(12):267-274.
- [23] HUA G H, RECKHOW D A, ABUSALLOUT I. correlation between SUVA and DBP formation during chlorination and chloramination of NOM fractions from different sources[J]. Chemosphere, 2015, 130:82-89.
- [24] WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science and Technology, 2003, 37(20):4702-4708.
- [25] MA S C, GAN Y Q, CHAN B Y, et al. Understanding and exploring the potentials of household water treatment methods for volatile disinfection by-products control: Kinetics, mechanisms, and influencing factors[J]. Journal of Hazardous Materials, 2017, 321:509-516.
- [26] ABUSALLOUT I, HUA G H. Photolytic dehalogenation of disinfection byproducts in water by natural sunlight irradiation [J]. Chemosphere, 2016, 159:184-192.
- [27] ABUSALLOUT I, HUA G H. Natural solar photolysis of total organic chlorine, bromine and iodine in water [J]. Water Research, 2016, 92:69-77.
- [28] JONES C E, and CARPENTER L J. Carpenter Solar photolysis of CH₂I₂, CH₂ICI, and CH₂IBr in water, saltwater, and seawater[J]. Environmental Science and Technology, 2005, 39(16):6130-6137.
- [29] LUO Q, CHEN X C, WEI Z, et al. Simultaneous and high-throughput analysis of iodo-trihalomethanes, haloacetonitriles, and halonitromethanes in drinking water using solid-phase microextraction/gas chromatography-mass spectrometry: An optimization of sample preparation[J]. Journal of Chromatography A,2014, 1365:45-53.
- [30] MARTION M, MILLS G P, WOELTJEN J, et al. A new source of volatile organoiodine compounds in surface seawater [J]. Geophysical Research Letters, 2009, 36(1): 329-342.
- [31] MANLEY S L, CUESTA J L. Methyl iodide production from marine phytoplankton cultures [J]. Limnology and Oceanography, 1997, 42 (1):142-147.
- [32] RICHTER U, WALLACE W R. Production of methyl iodide in the tropical Atlantic Ocean [J]. Geophysical Research Letters, 2004, 31 (23):203-218.
- [33] 叶琳琳,史小丽,吴晓东,等. 西太湖秋季蓝藻水华过后细胞裂解对溶解性有机碳影响[J]. 中国环境科学,2011,31(1):131-136.
 YE L L, SHI X L, WU X D, et al. The effect of cyanobacteria on dissolved organic carbon post the bloom in autumn in Western Lake Taihu
 [J]. China Environmental Science, 2011, 31(1): 131-136(in Chinese).
- [34] GUO W H, SHAN Y C, YANG X. Factors affecting the formation of iodo-trihalomethanes during oxidation with chlorine dioxide [J]. Journal of Hazardous Materials, 2014, 264:91-97.
- [35] PIVOKONSKY M, SAFARIKOVA J, BARESOVA M, et al. A comparison of the character of algal extracellular versus cellular organic matter produced by cyanobacterium, diatom and green alga[J]. Water Research, 2014, 51:37-46.