DOI:10.7524/j.issn.0254-6108.2017.03.2016071806

周亚男,王芬,李亚静,等.饮用水中九种卤乙酰胺的高效液相色谱-三重四极杆质谱测定方法[J].环境化学,2017,36(3):614-620. ZHOU Yanan, WANG Fen, LI Yajing, et al. Determination of nine haloacetamides in drinking water using high performance liquid chromatography-triple quadropole mass spectrometry[J].Environmental Chemistry,2017,36(3):614-620.

饮用水中九种卤乙酰胺的高效液相色谱-三重四极杆质谱测定方法*

周亚男1 王 芬1 李亚静2 季 民1 翟洪艳1**

(1. 天津大学环境科学与工程学院, 天津, 300350; 2. 天津城建大学环境与市政工程学院, 天津, 300384)

摘 要本文应用固相萃取前处理方法和高效液相色谱-三重四极杆电喷雾质谱(HPLC-ESI/tqMS),优化并 建立了9种氯代和溴代乙酰胺的同时测定方法.结果显示,在流动相甲醇/水(5/95,V/V)、流速0.3 mL·min⁻¹、 正离子模式条件下,9种卤乙酰胺的线性范围是5—200 µg·L⁻¹或10—500 µg·L⁻¹(R^2 >0.99),9种卤乙酰胺检 出限为0.5—9.2 µg·L⁻¹.经过比较 HLB 是最优的固相萃取柱.在0.02、0.2、0.5 µg·L⁻¹的3个加标水平下,9种 卤乙酰胺的回收率分别为61%—84%、60%—93%和70%—104%,相对标准偏差为1.7%—4.4%、1.1%—4.1% 和0.8%—4.1%.

关键词 高效液相色谱-三重四极杆质谱, 卤乙酰胺, 消毒副产物, 前处理, 饮用水.

Determination of nine haloacetamides in drinking water using high performance liquid chromatography-triple quadropole mass spectrometry

ZHOU Yanan¹ WANG Fen¹ LI Yajing² JI Min¹ ZHAI Hongyan^{1**}

(1. School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China;

2. School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China)

Abstract: In this study, a new method for the simultaneous determination of nine chlorinated and brominated haloacetamides in drinking water was developed using solid phase extraction (SPE) and high performance liquid chromatography-triple quadropole mass spectrometry (HPLC-tqMS) with positive electron spray ionization. The optimized HPLC mobile phase was composed of methanol and water (5/95, V/V) with a flow rate of 0.3 mL·min⁻¹. The linear ranges of the HPLC-tqMS method were 5—200 µg·L⁻¹ or 10—500 µg·L⁻¹($R^2 > 0.99$) for the nine haloacetamides. The detection limits of the nine haloacetamides were 0.5—9.2 µg·L⁻¹. HLB column was found to be the optimal SPE column. With the spiked concentrations of 0.02, 0.2 and 0.5 µg·L⁻¹, the recovery rates of the nine haloacetamides were 61%—84%, 60%—93% and 70%—104%, respectively (relative standard deviations were 1.7%—4.4%, 1.1%—4.1% and 0.8%—4.1%, respectively).

Keywords: high performance liquid chromatography-triple quadropole mass spectrometry, haloacetamides, disinfection byproducts, pretreatment, drinking water.

饮用水消毒是保证饮用水安全必不可少的处理过程,然而消毒剂在消灭微生物活性的同时,还会生

* * 通讯联系人,Tel:13752141665,E-mail:zhaihy@tju.edu.cn

Corresponding author, Tel: 13752141665, E-mail: zhaihy@tju.edu.cn

²⁰¹⁶年7月18日收稿(Received: July 18, 2016).

^{*}国家自然科学基金(21207096)和天津大学自主创新基金(2013XQ-0048)资助.

Supported by the National Natural Science Foundation of China (21207096) and Seed Foundation of Tianjin University (2013XQ-0048).

成一系列对人体健康有害的消毒副产物.其中含氮有机消毒副产物由于比非含氮的有机消毒副产物具 有更强的细胞毒性和基因毒性^[1-2],受到人们的广泛关注.卤乙酰胺就是一种典型的、新型含氮消毒副产 物,在国内外很多饮用水和游泳池中都有检出^[3-7],浓度范围在 1.4—7.4 μg·L⁻¹.虽然卤乙酰胺浓度大约 只有卤乙酸(我国卤乙酸的限值为 60 μg·L⁻¹)的十分之一,但是其细胞毒性和基因毒性比卤乙酸分别高 142 倍和 12 倍^[8-9],因此潜在健康风险不容忽视.

卤乙酰胺的传统检测方法是液液萃取前处理,气相色谱或气相色谱-质谱进行分析测定^[3-7,10],该方 法样品回收率低、检测限较高.Chu等采用固相萃取前处理,大气压化学电离源(APCI)的液质联用技术 实现了13种卤乙酰胺的同时测定^[11],样品检测限达到十几个ng·L^{-1[12]},该液质技术大大提高了对卤乙 酰胺的分析能力.但是目前国内外采用液质检测的相关报道非常有限.卤乙酰胺是一种含有胺基的高极 性小分子化合物,在酸性溶液中其伯胺具有结合氢离子形成正离子胺盐的倾向,因此理论上可以采用电 喷雾电离进行离子化,而且电喷雾电离的离子化温度一般比 APCI低,可以降低乙酰胺分子的热分解几 率,但是目前缺乏相关报道.

为了进一步扩展卤乙酰胺的分析方法,非常有必要研究采用电喷雾电离的液质分析测定方法.本研 究优化并建立了固相萃取前处理方法和高效液相色谱-三重四极杆(电喷雾)质谱(HPLC-ESI/tqMS)检 测分析方法,实现对饮用水中常见的9种卤乙酰胺的同时测定.

1 实验部分(Experimental section)

1.1 仪器与试剂

9种卤乙酰胺标准样品:一氯乙酰胺(CAcAm)购自 AccuStandard 公司,二氯乙酰胺(DCAcAm)和三 氯乙酰胺(TCAcAm)购自 Chemservice 公司,一溴乙酰胺(BAcAm)购自 CNW 公司,一溴一氯乙酰胺 (BCAcAm)、二溴乙酰胺(DBAcAm)、一溴二氯乙酰胺(BDCAcAm)、二溴一氯乙酰胺(DBCAcAm)和三 溴乙酰胺(TBAcAm)购自加拿大的 CanSyn 公司,甲醇(色谱纯)购自 CNW 公司,实验中配制的水为超纯 水(优普 UPHW 纯水进水型超纯水机),固相萃取柱 LC-C18(3 mL/200 mg)、HC-C18(3 mL/200 mg)、 PSD(3 mL/250 mg)、HLB(6 mL/200 mg)和固相萃取装置(12 位)购自 CNW 公司.采用甲醇配置各种卤 乙酰胺的单标储备液(1000 mg·L⁻¹).

1.2 色谱分析

液相色谱:安捷伦 1200,色谱柱:安捷伦 Poroshell 120 EC C18(100 mm×2.1 mm i.d. 2.7 μm),柱温: 40 ℃,进样体积:5 μL,流速:0.3 mL·min⁻¹.流动相组成为A:甲醇,B:超纯水.色谱分离条件为等度洗脱, 等度洗脱条件为:A:5%,B:95%.

1.3 质谱分析

质谱仪:安捷伦 6410B 三重四极杆质谱,离子源:电喷雾电离源(ESI),正离子模式.将卤乙酰胺的单标储备液,用甲醇/水(V/V,5/95)稀释到 10 mg·L⁻¹,进行质谱参数优化,优化时质谱参数如下:雾化器 压力:35 psi,干燥气:氮气(N₂),干燥气温度:350 ℃,干燥气流速:10 L·min⁻¹,毛细管电压:4000 V,电子 倍增器值:200 V,扫描模式:多反应监测模式(MRM),驻留时间:200 ms,单标的卤乙酰胺的优化母离 子、解离电压、子离子和碰撞能量如表 1 所示.

1.4 前处理方法

采用固相萃取柱 HLB 对 500 mL 水样进行固相萃取.首先采用 5 mL 甲醇、5 mL 超纯水活化固相萃 取柱,在上样之前保证固相萃取柱的湿润;调节水样 pH 值为 5 左右,以保证卤乙酰胺不发生水解,用真 空泵将水样以每秒 1 滴的速度通过固相萃取柱;用 5 mL 的 5%甲醇/水溶液清洗固相萃取柱,抽真空 15 min,用 5 mL 甲醇进行洗脱,收集洗脱液,洗脱液在 40 ℃下氮吹浓缩至 0.5 mL,然后进行液质分析.

2 结果与讨论(Results and dissusion)

2.1 质谱条件优化

本文研究的9种卤乙酰胺(CAcAm、DCAcAm、TCAcAm、BAcAm、BCAcAm、DBAcAm、BDCAcAm、

DBCAcAm和TBAcAm)的液质正离子质谱图如图1所示,卤乙酰胺的分子离子的m/z都可以用 [M+H]⁺表示,氯元素和溴元素典型的同位素丰度使9种卤乙酰胺的分子离子峰较容易被认出.

图 1 全扫描下 9 种卤乙酰胺的质谱图 Fig.1 Full scan mass spectra of nine haloacetamides

需要优化的质谱关键控制参数包括解离电压、碰撞电压、子离子的选择.首先在选择离子检测模式(SIM)下优化解离电压,然后在子离子模式和多反应监测模式下选择子离子和碰撞电压,其中母离子选取理论丰度最大的分子离子峰的 m/z 值.9 种卤乙酰胺的质谱优化结果如表 1 所示.本文优化得到的母离子和子离子与 Chu 等^[11]的不尽相同,尤其是对于含有两个及以上溴元素的卤乙酰胺,表明不同离子源在质谱参数设置上的差异性.

2.2 液相色谱条件优化

本文的液相色谱流动相 A 为甲醇, B 为超纯水.本研究首先以文献中的梯度洗脱条件^[11]为基础尝试了不同梯度洗脱条件,但是梯度洗脱条件下部分溴代乙酰胺(例如 BDCAcAm、DBCAcAm、TBAcAm) 始终无法检出.在等度洗脱的条件下(A/B 5/95),9 种卤乙酰胺均能够被检出,由于采用 MRM 模式检 测,虽然 CAcAm、BAcAm、DCAcAm、BCAcAm、DBAcAm 没有完全分离,但是这并不影响定性定量分析.因 此最佳的色谱分离条件确定为流动相组成为 A/B 5/95 的等度洗脱,在此情况下 9 种卤乙酰胺的色谱图 如图 2 所示.

6 种卤乙酰胺(CAcAm、DCAcAm、TCAcAm、BAcAm、BCAcAm和DBAcAm)的线性范围是 5—200 μ g·L⁻¹,3 种三卤代的卤乙酰胺(BDCAcAm、DBCAcAm和TBAcAm)的线性范围是 10—500 μ g·L⁻¹ (表 2),相关系数都大于 0.99.本研究采用浓度为 5 μ g·L⁻¹或 10 μ g·L⁻¹的标准样品平行检测 7 次,然后 计算标准偏差得到方法检出限(检出限 = 3.14×标准偏差),9 种卤乙酰胺的检出限范围为 0.5—9.2 μ g·L⁻¹(表 2).

多反应监测模式下9种卤乙酰胺解离电压和碰撞电压优化结果

	Table I Fragmento	r and collision energy	optimization re	esults of nine haload	etamides in MRM	
卤乙酰胺 Haloacetamides	同位素峰 Isotopic peaks	同位素丰度比 Isotopic abundance ratio	母离子 Parent ion	解离电压 Fragmentor/V	子离子 Product ion	碰撞电压 Collision energy/V
CAcAm	94/96	3:1	94	50	58	10
DCAcAm	126/128/130	9:6:1	128	80	64	16
TCAcAm	162/164/166	3:3:1	162	60	98	10
BAcAm	138/140	1:1	138	100	59	18
BCAcAm	172/174/176	3:4:1	174	80	93	5
DBAcAm	216/218/220	1:2:1	218	90	178	5
BDCAcAm	206/208/210/212	9:15:7:1	208	90	127	15
DBCAcAm	250/252/254/256	3:7:5:1	252	90	174	15
TBAcAm	294/296/298/300	1:3:3:1	298	90	219	15

Fig.2 MRM Chromatograms of nine haloacetamides solutions

2.3 前处理方法的优化

已有的报道中比较了 5 种固相萃取柱(MCX、MAX、WCX、WAX 和 HLB)的萃取效果^[10],结果表明 反相固相萃取柱 HLB 的萃取效果最佳.在此基础上,本文进一步比较了 HLB 萃取柱、与 HLB 相似的 LC-C18、HC-C18,以及吸附类的 PSD、HLB 固相萃取柱的萃取效果.在加标浓度为 0.5 μg·L⁻¹条件下,不

表1

36 卷

同固相萃取柱的回收率不同.如图 3 所示, LC-C18 和 HC-C18 固相萃取柱对 9 种卤乙酰胺不能全部萃 取, PSD 固相萃取柱的回收率不高(30%—50%), HLB 固相萃取柱萃取效果最佳, 故采用 HLB 固相萃取 柱对卤乙酰胺样品进行萃取.

	Table 2 The rentention	ion time, regression	equation and detection l	imit of nine haloacetamides	1
卤乙酰胺 Haloacetamides	保留时间 RT/min	线性范围 Linear range/ (μg•L ⁻¹)	回归方程 Regression equation	相关系数 <i>R</i> ²	检出限 Detection limit∕ (µg•L ⁻¹)
CAcAm	1.73	5—200	y = 27.11x + 4.2331	0.9988	1.2
DCAcAm	3.00	5—200	y = 29.882x - 19.776	0.9989	0.8
TCAcAm	13.50	5—200	y = 27.815x + 18.171	0.9976	1.3
BAcAm	1.92	5—200	y = 43.902x + 0.8077	0.9994	0.5
BCAcAm	3.53	5—200	y = 6.9421x + 5.186	0.9978	4.3
DBAcAm	4.16	5—200	y = 7.703x - 16.664	0.9982	4.8
BDCAcAm	16.24	10—500	y = 6.9765x + 9.1523	0.9957	6.3
DBCAcAm	19.64	10—500	y = 4.2869x - 13.832	0.9974	8.7
TBAcAm	24.52	10—500	y = 3.371x - 22.047	0.9972	9.2

表2 9种卤乙酰胺的保留时间、回归方程及检出限

图 3 不同固相萃取柱的回收率 Fig.3 Recovery rates of different SPE columns(n=3)

在加标浓度为 0.5 μg·L⁻¹的情况下,对清洗液种类和洗脱体积进行了优化,根据图 4 所示的结果, 最佳的固相萃取条件为:清洗液 5 mL 的 5%甲醇水溶液,洗脱液为 5 mL 的甲醇,9 种卤乙酰胺的加标回 收率为 70%—104%.

在优化的固相萃取条件下,0.02、0.2、0.5 μg·L⁻¹的3个加标水平下9种卤乙酰胺的回收率分别为61%--84%、60%--93%和70%--104%,相对标准偏差为1.7%--4.4%、1.1%--4.1%和0.8%--4.1%(表3),与已有报道^[11]的研究结果相近.

本文检测的实际水体中最常见的9卤乙酰胺,其浓度范围为0.07—7.4 µg·L^{-1[3-7,11]}.本研究中卤乙 酰胺在 ESI 源中的检出限虽然比文献中 APCI 源^[11]的检出限高一个数量级或以上,但是结合优化的固 相萃取富集方法,本方法可以实现常见的微量卤乙酰胺的定性和定量分析.

2.4 实际样品测定

用优化建立的分析方法分析了实验室自来水中卤乙酰胺的浓度,自来水中检测出了常见的 DCAcAm、TCAcAm、BCAcAm和DBAcAm(表4).在自来水中的加标回收率为84%—101%(相对标准偏 差2.0%—4.9%)(表4),与纯水中的回收率相近,说明本方法可以用于实际水样中样品的测定.

图 4 卤乙酰胺的回收率情况:(a) 不同清洗液种类条件下,(b)不同洗脱液体积条件下(n=3) **Fig.4** Recovery rates of nine haloacetamides with (a) different washing solutions, (b) different eluent volumes

Table 3 Recovery results of nine haloacetamides under different spiking concentrations						
贞7 融辟	$0.02 \ \mu g \cdot L^{-1}$		0.2 μg·L ⁻¹		0.5 μg·L ⁻¹	
Haloacetamides	回收率 Recovery/%	相对标准偏差 RSD/% (n=3)	回收率 Recovery/%	相对标准偏差 RSD/%(n=3)	回收率 Recovery/%	相对标准偏差 RSD/%(n=3)
CAcAm	ND	_	60	3.1	77	2.3
DCAcAm	64	2.8	75	2.1	83	2.7
TCAcAm	84	4.4	93	2.3	104	2.5
BAcAm	ND	_	61	1.6	71	3.6
BCAcAm	65	3.2	70	2.3	73	4.1
DBAcAm	ND	—	69	2.1	70	3.2
BDCAcAm	61	2.1	79	1.1	83	3.7
DBCAcAm	63	1.7	69	1.6	77	1.0
TBAcAm	69	3.7	85	4.1	93	0.8

表 3	不同浓度下9种卤乙酰胺加标回收率结果	

注:ND,未检测出. ND, not detected.

表4 实际水样中9种卤乙酰胺的测定和加标回收率

Table 4 Determination of nine haloacetamides in real water samples						
卤乙酰胺 Haloacetamides	本底值 Background values/ (μg·L ⁻¹)	加标浓度 Additive values/ (μg·L ⁻¹)	加标测定值 Measured values∕ (μg·L ⁻¹)	回收率 Recovery/%	相对标准偏差 RSD/% (n=3)	
CAcAm	ND	0.5	0.45	86—94	4.4	
DCAcAm	0.11	0.5	0.57	90—97	3.5	
TCAcAm	0.13	0.5	0.61	92—101	4.9	
BAcAm	ND	0.5	0.43	84—88	2.3	
BCAcAm	0.04	0.5	0.49	87—94	4.1	
DBAcAm	0.07	0.5	0.51	88—91	2.0	
BDCAcAm	ND	0.5	0.51	98—106	3.9	
DBCAcAm	ND	0.5	0.47	92—96	2.1	
TBAcAm	ND	0.5	0.44	86—90	2.3	

注:ND,未检测出. ND, not detected.

3 结论(Conclusion)

本文优化建立了固相萃取前处理和 HPLC-ESI/tqMS 技术同时分析检测 9 种氯代和溴代乙酰胺的 方法,9 种卤乙酰胺在水中的检出浓度为 0.02—0.2 µg·L⁻¹.本方法进一步扩展了卤代乙酰胺的液质分析 方法,该方法具有操作简单,灵敏度高,同时测定等优点.本文的研究成果对其相关领域的科研人员开展 监测工作提供了重要的详细的参考信息.

参考文献(References)

- RICHARDSON S D, PLEWA M J, WAGNER E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research [J]. Mutation Research/Reviews in Mutation Research, 2007, 636(1-3): 178-242.
- [2] 赵玉丽,李杏放. 饮用水消毒副产物:化学特性与毒性[J]. 环境化学,2011,30(1):20-33.
 ZHAO Y L, LI X F. Disinfection by-products in drinking water: Chemical characteristics and toxicity[J]. Environmental Chemistry, 2011, 30(1): 20-33 (in Chinese).
- [3] TOM B, HUANG J, TEMPLETON M R, et al. Occurrence and control of nitrogenous disinfection by-product in drinking water: A review
 [J]. Water Research, 2011, 45: 4341-4354.
- [4] CHU W H, GAO N Y, YANG D, et al. Formation of nitrogenous disinfection by-products from pre-chloramination [J]. Chemosphere, 2011, 85(7): 1187-1191.
- [5] PRESSMAN J G, RICHARDSON S D, SPETH T F, et al. Concentration, chlorination, and chemical analysis of drinking water for disinfection byproduct mixture health effects research: U. S. EPA's four lab study[J]. Environmental Science & Technology, 2010, 44 (19): 7184-7192.
- [6] RICHARDSON S D, THRUSTON A D, KRASNER S W, et al. Integrated disinfection by-products mixtures research: Comprehensive characterization of water concentrates prepared from chlorinated and ozonated/postchlorinated drinking water[J]. Journal of Toxicology and Environmental Health, 2008, 71(17): 1165-1186.
- [7] RICHARDSON S D, DEMARINI D M, KOGEVINAS M, et al. What's in the pool? A comprehensive identification of disinfection byproducts and assessment of mutagenicity of chlorinated and brominated swwimming pool water [J]. Environmental Health Perspectives, 2010, 118: 1523-1530.
- [8] KRASNER S W, WEINBERG H S, RICHARDSON S D, et al. Occurrence of a new generation of disinfection byproducts [J]. Environmental Science & Technology, 2006, 40(23): 7175-7185.
- [9] PLEWA M J, MUELLNER M G, RICHARDSON S D, et al. Occurrence, synthesis, and mammalian cell cytotoxicity and genotoxicity of haloacetamides: An emerging class of nitrogenous drinking water disinfection byproducts[J]. Environmental Science & Technology, 2008, 42(3): 955-961.
- [10] 楚文海,高乃云. 气相色谱-质谱法检测饮用水新生含氮消毒副产物氯代乙胺[J]. 分析化学研究简报,2009,37(1): 103-106.
 CHU W H, GAO N Y. Determination of emerging nitrogenous disinfection byproducts chlorinated haloacetamides using gas chromatography mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2009, 37(1): 103-106(in Chinese).
- [11] CHU W H, GAO N Y, YIN D Q, et al. Trace detemination of 13 haloacetamides in drinking water using liquid chromatography triple quardrupole mass spectrometry with atmospheric pressure chemical ionization[J]. Journal of Chromatography A, 2012, 1235: 178-181.
- [12] CHU W H, GAO N Y, YIN D Q, et al. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination [J]. Journal of Hazardous Materials, 2013, 260: 806-812.