第 37 卷	第11期	环境化学	Vol. 37, No. 11
2018年	11 月	ENVIRONMENTAL CHEMISTRY	November 2018

DOI:10.7524/j.issn.0254-6108.2018010801

王润华,何俊萍,高丽荣,等.北京市售黄油中短链及中链氯化石蜡的污染特征[J].环境化学,2018,37(11):2473-2480. WANG Runhua, HE Junping, GAO Lirong, et al. Characterization of short- and medium-chain chlorinated paraffins in butter in Beijing[J]. Environmental Chemistry,2018,37(11):2473-2480.

北京市售黄油中短链及中链氯化石蜡的污染特征*

王润华^{1,2} 何俊萍^{1**} 高丽荣^{2**} 徐 驰² 乔 林² 崔莉莉²

(1.河北农业大学食品科技学院,保定,071000;2.中国科学院生态环境研究中心,环境化学与生态毒理学国家重点实验室,北京,100085)

摘 要 食品是氯化石蜡最重要的暴露途径,而黄油脂肪含量高,可能引起人体高含量的氯化石蜡的暴露. 本实验采集了 12 个北京市售黄油,利用全二维气相色谱电子捕获负化学源质谱技术,分析了短链和中链氯化 石蜡在黄油中的污染水平及同类物分布情况.结果表明,短链氯化石蜡在所有黄油样品中均有检出,浓度为 134—1.11×10⁶ ng·g⁻¹,中链氯化石蜡部分检出,浓度为 ND—5.08×10⁶ ng·g⁻¹.黄油中短链和中链氯化石蜡的含 量与其它食物相比处于较高水平.短链氯化石蜡的主要同类物为 C_{10—11} Cl_{7—8},中链氯化石蜡的主要同类物为 C_{15—16} Cl_{5—6}.黄油中短链氯化石蜡的来源可能与商业产品 CP-42 的生产和使用有关. **关键词** 短链氯化石蜡,中链氯化石蜡,黄油,同类物分布,北京.

Characterization of short- and medium-chain chlorinated paraffins in butter in Beijing

WANG Runhua^{1,2} HE Junping^{1**} GAO Lirong^{2**} XU Chi² QIAO Lin² CUI Lili²
(1. Food Science and Technology Institute, Agriculture University of Hebei, Baoding, 071000, China;
2. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China)

Abstract: In this study, 12 butter samples were collected in Beijing, and they were analyzed by two-dimensional gas chromatography coupled with electron-capture negative-ionization mass spectrometry. The concentrations of short- and medium-chain chlorinated paraffins were 134.12— $1.11 \times 10^{6} \text{ ng} \cdot \text{g}^{-1}$ and ND— $5.08 \times 10^{6} \text{ ng} \cdot \text{g}^{-1}$, respectively. The concentrations were much higher than those found in other foods. The dominant short- and medium-chain chlorinated paraffins congener groups were $C_{10-11} Cl_{7-8}$ and $C_{15-16} Cl_{5-6}$, respectively. And the congener group profiles were similar to the commercial product CP-42, so the source of chlorinated paraffins in butter may be related to CP-42.

Keywords: short-chain chlorinated paraffins, medium-chain chlorinated paraffins, butter, congener group profiles, Beijing.

氯化石蜡(chlorinated paraffins, CPs)是一系列氯代烷烃的混合物,包括成千上万种同系物及同分异

²⁰¹⁸年1月8日收稿(Received: January 8, 2018).

^{*}国家自然科学基金(21377140,21537001),973项目(2015CB453100)和中国科学院战略性先导科技专项(XDB14010100, XDB14020102)资助.

Supported by the National Natural Science Foundation of China (21377140, 21537001), National Basic Research Program of China (2015CB453100) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB14010100, XDB14020102).

^{* *} 通讯联系人,Tel:13831234536, E-mail:hejunping4671@sina.com;Tel:+86-10-6284-9356, E-mail:gaolr@rcees.ac.cn Corresponding author, Tel:13831234536, E-mail:hejunping4671@sina.com;Tel:+86-10-6284-9356, E-mail:gaolr@rcees.ac.cn

37 卷

构体^[1].常被用于润滑油添加剂、金属切削液、密封剂,以及塑料中的阻燃剂中^[2].根据其碳链长度的不同可以分为 C_{10} — C_{13} 的短链氯化石蜡(short-chain chlorinated paraffins, SCCPs), C_{14} — C_{17} 的中链氯化石 蜡(medium-chain chlorinated paraffins, MCCPs), 以及 C_{517} 的长链氯化石 蜡(long-chain chlorinated paraffins, LCCPs)^[3].短链氯化石蜡具有持久性、毒性、生物累积性以及长距离迁移能力.因此,在 2017 年 5 月召开的斯德哥尔摩公约缔约国大会上,短链氯化石蜡被正式列入到斯德哥尔摩公约的附录 A 中^[4].关于 MCCPs 的报道相对较少,但是已有文献表明 MCCPs 与 SCCPs 有相似的性质,所以 MCCPs 也应该 引起重视^[5].我国是一个氯化石蜡生产大国,到了 2010 年,产量达到了 800 kt^[6].已有报道估计 2007 年 到 2013 年间全球 CPs 总产量的 20%—30%是由中国生产^[7].氯化石蜡在其生产、运输、使用过程中不可 避免的排放到环境中.目前,CPs 已在各种各样的环境介质中检测出,包括空气、水、沉积物、土壤、排油 烟机以及各种各样生物体中^[8].由于氯化石蜡具有生物蓄积性,在一些生物中检测出了较高含量的氯化 石蜡,比如,江豚、驼背海豚、淡水鱼等^[9-11].它们的目标器官包括甲状腺、肝脏和肾脏等,长期暴露可能 会导致这些器官的致癌性,并扰乱内分泌功能,所以食物中 CPs 对人类引起的健康风险应该引起 重视^[5].

黄油是从稀奶油中进一步分离出来的乳脂肪,是一种常见的乳制品.其营养丰富,可以直接食用,又可以作为糖果、饼干、糕点等产品的配料,黄油的味道独特,含有蛋白质、核黄素等营养物质,以及钙、磷、钾、钠、镁、铁、锌、硒、铜、锰等矿物元素,可以在一定程度上改善贫血症状^[12].已有文献指出黄油中含有 多氯联苯、有机氯农药等持久性有机污染物,而关于我国市售黄油中的氯化石蜡还未见报道^[13-14].有报 道已指出氯化石蜡在环境介质中的浓度与其脂肪含量有关,而黄油中脂肪含量很高,所以黄油中有可能 含有高浓度的氯化石蜡^[6].

本实验中,样品取自北京某大型超市.共包含国产、进口各品牌共 12 种黄油.使用全二维气相色谱电子捕获负化学源低分辨质谱(GC×GC-ECNI-LRMS)对短链和中链氯化石蜡进行了检测.这是首次对于北京地区市售黄油进行 SCCPs 和 MCCPs 检测.目的在于了解北京市售黄油中 SCCPs 和 MCCPs 的污染特征.

1 材料与方法(Materials and methods)

1.1 样品采集

本实验样品取自北京某大型超市,含国产进口各品牌共12种,样品信息如表1所示.

Table 1 Sample information										
样品 Samples	原产地 Country of origin	生产时间 Production time	脂肪含量 Lipid content							
GM	荷兰	2017.5.12	83%							
DMX-1	荷兰	2017.5.19	82%							
ZT	法国	2017.3.6	82%							
JKL	爱尔兰	2017.1.4	82%							
BJF	法国	2017.4.5	82%							
ALW	法国	2017.2.21	82%							
AJ	新西兰	2017.1.22	81.4%							
KNL	加拿大	2017.5.18	80%							
DMX-2	阿根廷	2016.11.11	82.9%							
DMX-3	荷兰	2017.3.15	82%							
DMX-4	比利时	2017.4.3	82.1%							
TMHR	中国	2017.5.26	99.8%							

表1 样品信息

1.2 材料与试剂

将氯含量分别为 51.5%、55.5%、63%,浓度为 100 ng·µL⁻¹的 SCCPs 标准品 (Dr. Ehrenstorfer,

Augsburg, Germany) 配制成氯含量为 53.5%、59.2%的氯化石蜡标准溶液,这 5 种氯含量的 SCCP 标准溶液建立 SCCP 标准曲线.同理,将氯含量分别为 42%、52%、57%,浓度为 100 ng· μ L⁻¹的 MCCPs 标准品(Dr. Ehrenstorfer, Augsburg, Germany) 配制成氯含量为 47%、54.5%的氯化石蜡标准溶液,5 种氯含量的 MCCP 标准溶液建立 MCCP 标准曲线.100 ng· μ L⁻¹的¹³C₁₀-*trans*-chlordane 标准品(Cambridge Isotope Laboratories, Tewksbury, MA, USA) 稀释成 500 pg· μ L⁻¹用作净化标.10 ng· μ L⁻¹的 ε -hexachlorocyclohexane 标准品(Dr. Ehrenstorfer, Augsburg, Germany) 稀释成 500 pg· μ L⁻¹用作净化标.10 ng· μ L⁻¹的 ε -hexachlorocyclohexane 标准品(Dr. Ehrenstorfer, Augsburg, Germany) 稀释成 500 pg· μ L⁻¹用作进样标.硅胶(63—100 μ m)使用前在 55 0℃ 条件下活化 6.5 h,弗罗里土(60—100 mesh)使用前在 550 ℃条件下活化 12 h,无水硫酸钠使用前在 660 ℃条件下活化 6.5 h.100 g 活化硅胶与 43 mL 98%的浓硫酸制成质量浓度 44%的酸性硅胶,并用摇床振荡均匀.

1.3 样品提取与净化

大约2g黄油样品加入5 μL¹³C₁₀-trans-chlordane 净化标.然后用正己烷与二氯甲烷(1:1, V/V)混合 溶液以1:40 的比例超声波辅助提取30 min.提取后的溶液旋蒸后经过凝胶渗透色谱柱(GPC),用1:1 的 正己烷与二氯甲烷溶液冲洗,前70 mL洗脱液舍去,后130 mL接收.溶液再次旋蒸后通过复合色谱柱, 从下到上依次是3g活化弗罗里土,2g活化硅胶,5g酸性硅胶,4g无水硫酸钠.复合色谱柱先用50 mL 正己烷预淋洗,上样后,用40 mL 正己烷冲洗并舍弃,再用100 mL1:1 的正己烷与二氯甲烷混合溶液冲 洗并接收.溶剂经旋蒸浓缩后进行溶剂置换,加入5 μL ε-hexachlorocyclohexane 进样标并用环己烷定容 至 50 μL.

1.4 仪器分析

采用全二维气相色谱(Agilent Technologies, Santa Clara, CA, USA)-电子捕获负化学源低分辨质谱 (Agilent Technologies, Santa Clara, CA, USA)配有 ZX2004 环形调制器(Zoex corporation, Houston, TX, USA)进行检测.对之前报道的仪器参数条件进行改善⁽¹⁵⁾.主要参数如下,起始温度100℃.保持1 min,以 10℃.min⁻¹的速率升至140℃,再以1.5℃.min⁻¹的速率升至310℃,维持5 min.热喷口和传输线温度皆为310℃,采取不分流模式进样,进样口温度280℃,调制周期7 s,柱子流速0.8 mL·min⁻¹.质谱采用SIM 模式,离子源温度200℃,溶剂延迟7 min.

对 24 种 SCCP 同类物(C₁₀₋₁₃Cl₅₋₁₀)、24 种 MCCP 同类物(C₁₄₋₁₇Cl₅₋₁₀)进行了分析.碳原子与氯原 子数之和相同的氯化石蜡同类物(例如, C₁₀H₁₄Cl₈、C₁₁H₁₇Cl₇、C₁₂H₂₀Cl₆和 C₁₃H₂₃Cl₅)聚集在同一色谱峰 区域中.丰度最高的离子为定量离子,丰度第二高的离子为定性离子.定性及定量离子如表 2 所示.根据 标准品得到的总响应因子与实际氯含量的标准曲线用来对目标物进行定量,标准曲线如图 1 所示.数据 通过 GC Image[®] R2.1 Software (GC Image, Lincoln, NE, USA)进行分析.

Table 2 Quantitation ion and qualification ion of short- and medium-chain chlorinated paraffins									
同类物 Isomer formula/(n,z)	定量离子 Quantitation ion	离子式 Ion formation	定性离子 Qualification ion	离子式 Ion formation					
10,5	279.00	$C_{10}H_{17}^{\ \ 35}Cl_3^{\ \ 37}Cl$	277.00	$C_{10}H_{17}^{\ 35}Cl_4$					
10,6	312.95	$C_{10}H_{16}^{\ \ 35}Cl_4^{\ \ 37}Cl$	314.95	$\rm C_{10} H_{16} {}^{35} Cl_3 {}^{37} Cl_2$					
10,7	346.95	$C_{10}H_{15}^{\ 35}Cl_5^{\ 37}Cl$	348.90	$\rm C_{10} H_{15} {}^{35} Cl_4 {}^{37} Cl_2$					
10,8	380.90	$C_{10}H_{14}^{\ \ 35}Cl_6^{\ \ 37}Cl$	382.90	$C_{10}H_{14}^{\ \ 35}Cl_5^{\ \ 37}Cl_2$					
10,9	416.85	$\rm C_{10} H_{13}{}^{35} Cl_6{}^{37} Cl_2$	414.85	$C_{10}H_{13}^{\ \ 35}Cl_7^{\ \ 37}Cl$					
10,10	450.80	$\rm C_{10} H_{12}{}^{35} Cl_7{}^{37} Cl_2$	448.80	$C_{10}H_{12}^{\ \ 35}Cl_8^{\ \ 37}Cl$					
11,5	293.00	$C_{11}H_{19}^{\ \ 35}Cl_3^{\ \ 37}Cl$	291.00	$C_{11}H_{19}^{\ \ 35}Cl_4$					
11,6	327.00	$C_{11}H_{18}^{\ \ 35}Cl_4^{\ \ 37}Cl$	329.00	$\rm C_{11} H_{18}{}^{35} Cl_{3}{}^{37} Cl_{2}$					
11,7	360.95	$C_{11}H_{17}^{\ 35}Cl_5^{\ 37}Cl$	362.95	$\rm C_{11} H_{17} {}^{35} Cl_4 {}^{37} Cl_2$					
11,8	394.90	$C_{11}H_{16}^{\ 35}Cl_{6}^{\ 37}Cl$	396.90	$\rm C_{11} H_{16}{}^{35} Cl_{5}{}^{37} Cl_{2}$					
11,9	430.85	$\rm C_{11} H_{15}{}^{35} Cl_6{}^{37} Cl_2$	428.85	$C_{11}H_{15}^{\ \ 35}Cl_7^{\ \ 37}Cl$					
11,10	464.80	$C_{11}H_{14}^{\ 35}Cl_7^{\ 37}Cl_2$	462.85	$C_{11}H_{14}^{\ \ 35}Cl_8^{\ \ 37}Cl$					
12,5	307.05	$C_{12}H_{21}^{\ \ 35}Cl_3^{\ \ 37}Cl$	305.05	$C_{12}H_{21}^{\ \ 35}Cl_4$					

表 2 短链和中链氯化石蜡的定性定量离子

				续表2
同类物	定量离子	离子式	定性离子	离子式
Isomer formula/(n,z)	Quantitation ion	Ion formation	Qualification ion	Ion formation
12,6	341.00	$C_{12}H_{20}^{\ \ 35}Cl_4^{\ \ 37}Cl$	343.00	$C_{12}H_{20}^{35}Cl_3^{37}Cl$
12,7	374.95	$C_{12}H_{19}^{\ \ 35}Cl_5^{\ \ 37}Cl$	376.95	$C_{12}H_{19}^{35}Cl_4^{37}Cl$
12,8	408.90	$C_{12}H_{18}^{\ \ 35}Cl_6^{\ \ 37}Cl$	410.90	$C_{12}H_{18}^{35}Cl_5^{37}C$
12,9	444.90	$C_{12}H_{17}^{\ \ 35}Cl_6^{\ \ 37}Cl_2$	442.90	$C_{12}H_{17}^{35}Cl_7^{37}Cl$
12,10	478.85	$C_{12}H_{16}^{35}Cl_7^{37}Cl_2$	476.85	$C_{12}H_{16}^{35}Cl_8^{37}Cl$
13,5	321.05	$C_{13}H_{23}^{\ \ 35}Cl_3^{\ \ 37}Cl$	319.05	$C_{13}H_{23}^{\ \ 35}Cl_4$
13,6	355.00	$C_{13}H_{22}^{\ \ 35}Cl_4^{\ \ 37}Cl$	357.00	$C_{13}H_{22}^{35}Cl_3^{37}C$
13,7	388.95	$C_{13}H_{21}^{\ \ 35}Cl_5^{\ \ 37}Cl$	390.95	$C_{13}H_{21}^{35}Cl_4^{37}C$
13,8	422.95	$C_{13}H_{20}^{\ \ 35}Cl_6^{\ \ 37}Cl$	424.95	$C_{13}H_{20}^{35}Cl_5^{37}C$
13,9	458.90	$C_{13}H_{19}^{35}Cl_6^{37}Cl_2$	456.90	$C_{13}H_{19}^{35}Cl_7^{37}Cl$
13,10	492.85	$C_{13}H_{18}^{\ \ 35}Cl_7^{\ \ 37}Cl_2$	490.85	$C_{13}H_{18}^{35}Cl_8^{37}Cl$
14,5	335.05	$C_{14}H_{25}^{\ \ 35}Cl_3^{\ \ 37}Cl$	333.05	C ₁₄ H ₂₅ ³⁵ Cl ₄
14,6	369.05	$C_{14}H_{24}^{\ \ 35}Cl_4^{\ \ 37}Cl$	371.05	C ₁₄ H ₂₄ ³⁵ Cl ₃ ³⁷ C
14,7	403.00	$C_{14}H_{23}^{\ \ 35}Cl_5^{\ \ 37}Cl$	405.00	C ₁₄ H ₂₃ ³⁵ Cl ₄ ³⁷ C
14,8	436.95	$C_{14}H_{22}^{\ 35}Cl_6^{\ 37}Cl$	438.95	C ₁₄ H ₂₂ ³⁵ Cl ₅ ³⁷ C
14,9	472.90	$C_{14}H_{21}^{35}Cl_6^{37}Cl_2$	470.90	$C_{14}H_{21}^{35}Cl_7^{37}Cl_7^{37}$
14,10	506.85	$C_{14}H_{20}^{35}Cl_7^{37}Cl_2$	504.85	$C_{14}H_{20}^{35}Cl_8^{37}Cl_8^{37}$
15,5	349.10	C ₁₅ H ₂₇ ³⁵ Cl ₃ ³⁷ Cl	347.10	$C_{15}H_{27}^{35}Cl_4$
15,6	383.05	$C_{15}H_{26}^{35}Cl_4^{37}Cl_4$	385.05	C ₁₅ H ₂₆ ³⁵ Cl ₃ ³⁷ C
15,7	417.00	C ₁₅ H ₂₅ ³⁵ Cl ₅ ³⁷ Cl	419.00	C ₁₅ H ₂₅ ³⁵ Cl ₄ ³⁷ C
15,8	450.95	C ₁₅ H ₂₄ ³⁵ Cl ₆ ³⁷ Cl	452.95	C ₁₅ H ₂₄ ³⁵ Cl ₅ ³⁷ C
15,9	486.90	$C_{15}H_{23}^{35}Cl_6^{37}Cl_2$	484.95	$C_{15}H_{23}^{35}Cl_7^{37}Cl_7^{37}$
15,10	520.90	$C_{15}H_{22}^{35}Cl_7^{37}Cl_2$	518.90	$C_{15}H_{22}^{35}Cl_8^{37}Cl$
16,5	363.10	$C_{16}H_{29}^{35}Cl_3^{37}Cl$	361.10	$C_{16}H_{29}^{35}Cl_4$
16,6	397.05	$C_{16}H_{28}^{35}Cl_4^{37}Cl_4$	399.05	$C_{16}H_{28}^{35}Cl_3^{37}Cl$
16,7	431.00	$C_{16}H_{27}^{35}Cl_5^{37}Cl$	433.00	C ₁₆ H ₂₇ ³⁵ Cl ₄ ³⁷ C
16,8	465.00	$C_{16}H_{26}^{35}Cl_{6}^{37}Cl$	467.00	C ₁₆ H ₂₆ ³⁵ Cl ₅ ³⁷ C
16,9	500.95	$C_{16}H_{25}^{35}Cl_6^{37}Cl_2$	498.95	$C_{16}H_{25}^{35}Cl_7^{37}Cl$
16,10	534.90	C ₁₆ H ₂₄ ³⁵ Cl ₇ ³⁷ Cl ₂	532.90	$C_{16}H_{24}^{35}Cl_8^{37}Cl_8^{37}$
17,5	377.10	C ₁₇ H ₃₁ ³⁵ Cl ₃ ³⁷ Cl	375.10	$C_{17}H_{31}^{35}Cl_4$
17,6	411.10	$C_{17}H_{30}^{35}Cl_4^{37}Cl$	413.05	$C_{17}H_{30}^{35}Cl_3^{37}C$
17,7	445.05	$C_{17}H_{29}^{35}Cl_5^{37}Cl$	447.05	$C_{17}H_{29}^{35}Cl_4^{37}C$
17,8	479.00	C ₁₇ H ₂₈ ³⁵ Cl ₆ ³⁷ Cl	481.00	$C_{17}H_{28}^{35}Cl_5^{37}C$
17,9	514.95	$C_{17}H_{27}^{35}Cl_6^{37}Cl_2$	512.95	$C_{17}H_{27}^{35}Cl_7^{37}Cl$
17,10	548.90	$C_{17}H_{26}^{35}Cl_7^{37}Cl_2$	546.90	$C_{17}H_{26}^{35}Cl_8^{37}Cl_8^{37}$
注:N为碳(C)原子数,z	为氯(Cl)原子数.			
$\frac{1.0}{0.9}$ (A)	y=16.1605x-9.6712	0.08	<i>y</i> =1.8824 <i>x</i> -0.	9917
5 0.8	R ² =0.9764	ًةِ ^{0.07}	$R^2 = 0.9899$	
0.7				*******
<u>s</u> 0.4				
L 0.3			a second second	
$0.2 \downarrow$	-	0.01		
	1 1 1		■ 	
0.58 0.59 (0.60 0.61 0.62 0.4	63 0.64 0.525 0.530	0.535 0.540 0.545 0.550 0.55	5 0.560 0.565 0.570

1.5 质量控制

实验中所用的每一个玻璃仪器都分别用甲醇、丙酮、二氯甲烷洗3次.每4个样品设置1个过程空白.空白与样品的前处理与检测方法相同.12个样品中随机选择3个进行平行试验.其结果的相对标准偏

差<15%.空白的含量比样品的含量<10%,所以样品并没有进行空白校正.计算浓度以湿重(ww)表示.方法检出限定义为空白样品中 CPs 浓度的平均值加上 3 倍的标准偏差.短链氯化石蜡方法检出限为 6.1 ng·g⁻¹,中链氯化石蜡的方法检出限为 2.3 ng·g⁻¹.仪器检出限(LOD)计算方法为配制接近 LOD 的标准样品溶液,重复进样 7 次,由几次测定结果标准偏差的 3 倍计算得出 LOD.该仪器的 LOD 为 1—5 ng·mL⁻¹.该方法回收率在 80%—120%之间.

1.6 统计分析

本文使用 Origin 9.1 软件(OriginLab, USA)进行数据分析,采用 IBM SPSS Statistics 22.0(IBM Corp., USA)进行统计分析.P< 0.05,认为统计学上的关系是显著的.

2 结果与讨论(Results and discussion)

2.1 SCCPs 和 MCCPs 在黄油中的含量

SCCPs 在 12 个样品中均有检出, MCCPs 在 6 个样品中有检出.如表 3 所示, SCCP+MCCP 含量为 134—6.19×10⁶ ng·g⁻¹, 高于文献中有机氯农药(410—250000 pg·g⁻¹脂重)和多氯联苯(230—14100 pg·g⁻¹ 脂重)在黄油中的含量^[13-14]. SCCPs 含量为 134—1.11×10⁶ ng·g⁻¹, 平均值为 1.64× 10⁵ ng·g⁻¹, 氯含量为 60.9%—65.7%.最高的为 DMX-1, 原产地为荷兰, 最低的为 DMX-4, 原产地为比利 时.本研究中 MCCPs 含量为 ND.—5.08×10⁶ ng·g⁻¹, 平均值为 5.17×10⁵ ng·g⁻¹, 氯含量为 ND—55.6%.最高的同样是 DMX-1, 有 6 个样品未检出.本实验中 SCCPs 含量略高于 SCCPs 在北京食用油中的含量 (<9—7500 ng·g⁻¹)^[16].而且其含量显著高于日本黄油类制品(140 ng·g⁻¹; P<0.05)^[17].可见我国黄油制品中 SCCPs 含量应该引起关注.本研究中 MCCPs 不同样品间差异较大.目前关于 MCCPs 在食物尤其是黄油中的报道较少.与已有报道相比, MCCPs 在黄油中(GM, DMX-1, JKL, AJ, DMX-3, TMHR)的含量要显著高于我国肉类食物(5.7±0.59 ng·g⁻¹)和水产类食物中(80.5 ng·g⁻¹)的含量(P<0.05).我国居民通过使用黄油而暴露于 MCCPs 的途径应该引起警惕.

不同产地的样品中 SCCPs 和 MCCPs 的含量分布呈现一定特点.原产地为荷兰的黄油样品(GM, DMX-1, DMX-3)中 SCCPs 平均含量为 6.52×10⁵ ng·g⁻¹是其它产地的 2—3 倍.而这些黄油样品中都检测 出了 MCCPs,平均含量为 2.02×10⁶ ng·g⁻¹,同样显著高于其它产地(*P*<0.05).这可能是由于 SCCPs 和 MCCPs 在当地的不当生产和使用导致的.本实验各样品中 SCCPs 和 MCCPs 含量差异很大,可见不同国 家对于 CPs 相关产品的生产使用差异很大.

在已有的关于食物中 SCCPs 和 MCCPs 的浓度报道中,SCCPs 含量均高于 MCCPs,例如 Huang 等^[18] 对于我国居民膳食肉制品的研究,以及 Xia 等^[19-20]对于我国城市及农村母乳的研究.然而本研究中 GM、DMX-1、JKL、AJ、DMX-3、TMHR 的 MCCPs 含量高于 SCCPs.

2.2 SCCPs 和 MCCPs 在黄油中的同类物分布特征

黄油中 SCCPs 和 MCCPs 的同类物分布特征如图 2 所示.就 SCCPs 而言, C₁₀的含量最高,占比达到 39.6%,其次是 C₁₁,占比达到 29.1%.Cl₇的含量占比最高达到 43.9%,其次为 Cl₈占比达到 27.6%.就 MCCPs 而言, C₁₅+C₁₆含量占比达到了 75.6%, Cl₅的含量最高达到 54.4%,其次是 Cl₆为 32.1%.不同产地 的黄油中 CPs 同类物分布不尽相同,从总体上看与我国肉制品以及母乳中的同类物分布(SCCPs 主要为 Cl₆和 Cl₇, MCCPs 主要为 C₁₄, C₁₅和 Cl₇, Cl₈)不同,而且与英国母乳中的同类物分布也不同^[21].这可能与 每个国家氯化石蜡的产品同类物分布不同相关.

实验所测定的 SCCPs 中碳同类物的平均丰度顺序为 $C_{10}>C_{11}>C_{12}\approx C_{13}$,氯同类物的平均丰度顺序 为 $Cl_7>Cl_8>Cl_6>Cl_5\approx Cl_{10}$,这与主要产品 CP-42 的分布相似^[22].说明黄油中 SCCPs 的主要来源可能是 CP-42 产品的生产和使用.各个样品中 SCCPs 的同类物分布相似,但是 MCCPs 的分布差异很大,原产地 为荷兰的 GM,DMX-1 主要同类物是 $C_{15-16}Cl_{5-6}$ 占比达到了 80%,而原产地为新西兰的 AJ 主要同类物是 $C_{14-15}Cl_{6-7}$,原产地为爱尔兰的 JKL 主要同类物为 $C_{17}Cl_{10}$.这可能是与各个国家主要生产和使用的产品 以及产品中 MCCPs 的同类物分布都不同有关.

	中链氯化 石蜡的含量 ΣMCCPs/ (ng·g ⁻¹)	9.58×10 ⁵	5.08×10^{6}	ND.	3.16×10^{4}	ND.	ND.	5.77×10^{3}	ND.	ND.	1.69×10^{4}	ND.	1.21×10^{5}	
	C ₁₇ 的含量 ΣC/ (ng·g ⁻¹)	2.15×10^{5}	9.75×10^{5}	ND.	2.08×10^{4}	ND.	ND.	370	ND.	ND.	4.09×10^{3}	ND.	2.78×10^{4}	
表 3 黄油中短链和中链氯化石蜡含量 Table 3 Concentrations of short- and medium-chain chlorinated paraffins in butter	C ₁₆ 的含量 ΣC/ (ng·g ⁻¹)	3.38×10^{5}	1.94×10^{6}	ND.	4.03×10^{3}	ND.	ND.	568	ND.	ND.	4.28×10^{3}	ND.	3.04×10^{4}	
	C ₁₅ 的含量 Σ <i>C/</i> (ng・g ⁻¹)	3.67×10^{5}	1.96×10^{6}	ND.	5.74×10^{3}	ND.	ND.	2.04×10^{3}	ND.	ND.	4.22×10^{3}	ND.	3.24×10^{4}	S.
	C ₁₄ 的含量 ΣC/ (ng•g ⁻¹)	3.78×10^{4}	1.97×10^{5}	ND.	1.01×10^{3}	ND.	ND.	2.79×10^{3}	ND.	ND.	4.27×10^{3}	ND.	3.02×10^{4}	•
	中链氯化石 蜡的氯含量 CI%— MCCPs/%	48.0	48.0	ND.	55.6	ND.	ND.	54.8	ND.	ND.	53.1	ND.	52.8	
	短链氯化 石蜡含量 ΣSCCPs/ (ng・g ⁻¹)	8.45×10 ⁵	1.11×10 ⁶	454	3.84×10 ³	359	2.49×10^{3}	449	508	392	302	134	427	
	C ₁₃ 的含量 ∑C/ (ng・g ⁻¹)	1.49×10^{5}	1.63×10^{5}	108	588	51.0	355	55.9	114	95.9	74.5	30.6	83.2	
	C ₁₂ 的含量 ΣC/ (ng・g ⁻¹)	1.44×10^{5}	1.56×10^{5}	89.5	653	67.2	547	59.8	102	87.3	81.3	26.8	93.0	
	C ₁₁ 的含量 と <i>C</i> (ng・g ⁻¹)	2.50×10^{5}	3.19×10^{5}	109	1.02×10^{3}	123	742	81.4	128	93.4	78.9	28.3	113	含量(ww).
	C ₁₀ 的含量 ΣC/ (ng·g ⁻¹)	3.02×10^{5}	4.74×10 ⁵	148	1.58×10^{3}	118	843	252	163	115	67.5	48.4	139	度皆为以湿重计
	短链氯化石 蜡的氯含量 CI%—SCCPs/%	62.9	63.0	62.9	62.2	64.4	60.9	65.7	62.7	62.0	63.9	63.8	62.1	未检出,所有浓
	样品 Samples	GM	DMX-1	ZT	JKL	BJF	ALW	AJ	KNL	DMX-2	DMX-3	DMX-4	TMHR	注: ND.,

2478

3 结论(Conclusion)

本实验利用全二维气相色谱-电子捕获负化学源低分辨质谱方法测定了北京地区市售黄油中短链和中链氯化石蜡的污染水平,并分析了其同类物分布特征.结果发现,短链和中链氯化石蜡在黄油中的浓度较高且显著高于肉类,水产类等其他食物.而且不同产地黄油中短链和中链氯化石蜡含量水平差异很大,同类物分布特征也不尽相同,表明不同国家氯化石蜡生产和使用状况不同.氯化石蜡的生产在我国还没有受到管控,其引起的环境和健康风险应该引起进一步关注.

参考文献(References)

- [1] PELLIZZATO F, RICCI M, HELD A, et al. Analysis of short-chain chlorinated paraffins: A discussion paper [J]. Journal of Environmental Monitoring, 2007, 9(9):924-930.
- [2] BAYEN S, OBBARD J P, THOMAS G O. Chlorinated paraffins: A review of analysis and environmental occurrence [J]. Environment International, 2006, 32(7):915-929.
- [3] POPRC. Report of the persistent organic pollutants review committee on the work of its twelfth meeting [R]. Geneva, Switzerland: UNEP, 2016.
- [4] POPRC. The 16 New POPs[R]. Geneva, Switzerland: UNEP, 2017.
- [5] POPRC. Report of the persistent organic pollutants review committee on the work of its eleventh meeting-Addendum: risk profile on shortchained chlorinated paraffins[R]. Geneva, Switzerland: UNEP, 2015.

- [6] WEIGL, LIANGXL, LIDQ, et al. Occurrence, fate and ecological risk of chlorinated paraffins in Asia: A review [J]. Environment International, 2016, 92-93;373-387.
- [7] JIANG W Y H, HUANG T, MAO X X, et al. Gridded emission inventory of short-chain chlorinated paraffins and its validation in China [J]. Environmental Pollution, 2017, 220:132-141.
- [8] VAN MOURIK L M, GAUS C, LEONARDS P E G, et al. Chlorinated paraffins in the environment: A review on their production, fate, levels and trends between 2010 and 2015[J]. Chemosphere, 2016, 155:415-428.
- [9] ZENG L X, LAM J C W, WANG Y W, et al. Temporal trends and pattern changes of short- and medium-chain chlorinated paraffins in marine mammals from the South China Sea over the past decade [J]. Environmental Science & Technology, 2015, 49(19):11348-11355.
- [10] BASCONCILLO L S, BACKUS S M, MCGOLDRICK D J, et al. Current status of short- and medium chain polychlorinated n-alkanes in top predatory fish across Canada[J]. Chemosphere, 2015, 127:93-100.
- [11] BRANDSMA S H, VAN MOURIK L, O'BRIEN J W, et al. Medium-chain chlorinated paraffins (CPs) dominate in australian sewage sludge[J]. Environmental Science & Technology, 2017, 51(6):3364-3372.
- [12] 孙剑锋,王颉.黄油的加工方法及其物理性质和营养成分[J].中国食物与营养,2011,17(11):33-35.
 SUN J F, WANG J. Processing methods and physical properties of butter and its nutrient analysis[J]. Food and Nutrition in China, 2011, 17(11):33-35(in Chinese).
- [13] WEISS J, MUELLER A, VIVES I, et al. Spatial gradients of OCPs in European butter-integrating environmental and exposure information
 [J]. Environmental Science and Pollution Research, 2013, 20(5):2948-2962.
- [14] KALANTZI O I, ALCOCK R E, JOHNSTON P A, et al. The global distribution of PCBs and organochlorine pesticides in butter [J]. Environmental Science & Technology, 2001, 35(6):1013-1018.
- [15] XIA D, GAO L R, ZHU S, et al. Separation and screening of short-chain chlorinated paraffins in environmental samples using comprehensive two-dimensional gas chromatography with micro electron capture detection [J]. Analytical and Bioanalytical Chemistry, 2014, 406(29):7561-7570.
- [16] CAO Y, HARADA K H, LIU W Y, et al. Short-chain chlorinated paraffins in cooking oil and related products from China [J]. Chemosphere, 2015, 138:104-111.
- [17] IINO F, TAKASUGA T, SENTHILKUMAR K, et al. Risk assessment of short-chain chlorinated paraffins in Japan based on the first market basket study and species sensitivity distributions[J]. Environmental Science & Technology, 2005, 39(3):859-866.
- [18] HUANG H T, GAO L R, ZHENG M H, et al. Dietary exposure to short- and medium-chain chlorinated paraffins in meat and meat products from 20 provinces of China[J]. Environmental Pollution, 2017, 233:439-445.
- [19] XIA D, GAO L R, ZHENG M H, et al. Health risks posed to infants in rural China by exposure to short- and medium-chain chlorinated paraffins in breast milk[J]. Environment International, 2017, 103:1-7.
- [20] XIA D, GAO L R, ZHENG M H, et al. Human exposure to short- and medium-chain chlorinated paraffins via mothers' milk in Chinese urban population [J]. Environmental Science & Technology, 2017, 51(1):608-615.
- [21] THOMAS G O, FARRAR D, BRAEKEVELT E, et al. Short and medium chain length chlorinated paraffins in UK human milk fat[J]. Environment International, 2006, 32(1):34-40.
- [22] MA X D, CHEN C, ZHANG H J, et al. Congener-specific distribution and bioaccumulation of short-chain chlorinated paraffins in sediments and bivalves of the Bohai Sea, China[J]. Marine Pollution Bulletin, 2014, 79(1-2):299-304.