

DOI:10.7524/j.issn.0254-6108.2021030302

黄忠辉, 贺辉, 聂鹏, 等. 预浓缩-GC-MSD/ECD 测定环境空气中痕量卤代烃[J]. 环境化学, 2021, 40(9): 2755-2761. HUANG Zhonghui, HE Hui, NIE Peng, et al. Determination of controlled trace haloalkanes in ambient air with pre-concentration-GC-MSD/ECD[J]. Environmental Chemistry, 2021, 40 (9): 2755-2761.

预浓缩-GC-MSD/ECD 测定环境空气中痕量卤代烃*

黄忠辉¹ 贺 辉¹ 聂 鹏^{1**} 谢丹平¹ 黄钟坤¹ 刘 旺¹ 贾成俊² 刘丽君¹ 高 博¹ 张 洲³

(1.生态环境部华南环境科学研究所,广东省水与大气污染防治重点实验室,国家环境保护环境污染健康风险评价重点实验室,广州,510655;2.广东省广州生态环境监测中心站,广州,510006;3.中国科学院广州地球化学研究所长沙 矿产资源勘查中心,长沙,410013)

摘 要 作为消耗臭氧层物质的氟氯烃(CFCs)、氢氟氯烃(HCFCs)、氯代烃、溴代烃和作为温室气体的氢氟烃(HFCs)长期受到广泛关注,而同时准确测定多种受控痕量卤代烃是一项挑战性工作.本研究利用自主搭建的预浓缩-气相色谱-质谱检测器/电子捕获检测器系统(GC-MSD/ECD),建立了高效的痕量卤代烃检测方法,在单次少量进样后可同时测定环境空气中17种受控痕量卤代烃.实验结果表明,17种受控卤代烃分离效果好且峰型对称;标准曲线相关系数在0.996—1.000之间;方法检出限在2—21 pmol·mol⁻¹之间,均低于全球背景值;精密度在0.7%—5.3%之间;加标回收率在90.8%—110%之间,表明本方法适用于准确检测背景地区的受控痕量卤代烃.通过实际样品检测,发现近年来广州市区环境空气中CFCs浓度呈下降趋势,但仍是该区域主要的受控卤代烃物种;HFCs与HCFCs浓度明显高于大气背景值,表明该区域HFCs和HCFCs的使用与排放量较高;实际样品检测结果与我国履约减排措施和前期研究结果相符,证明本检测方法准确可靠.

关键词 消耗臭氧层物质,温室气体,卤代烃,气相色谱-质谱联用法,气相色谱-电子捕获检测法,环 境空气.

Determination of controlled trace haloalkanes in ambient air with pre-concentration-GC-MSD/ECD

HUANG Zhonghui1HE Hui1NIE Peng1***XIE Danping1HUANG Zhongkun1LIU Wang1JIA Chengjun2LIU Lijun1GAO Bo1ZHANG Zhou3

(1. Guangdong Key Laboratory of Water and Air Pollution Control, State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; 2. Guangzhou Ecological and Environmental Monitoring Center of Guangdong Province, Guangzhou, 510006, China; 3. Changsha Center for Mineral Resources Exploration, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Changsha, 410013, China)

* 国家重点研发计划项目(2018YFC1801602/2019YFC1803904),中央级公益性科研院所基本科研业务专项(PM-zx703-202011-317/PM-zx703-202004-148),湖南省重点研发计划项目(2018SK2039)和国家自然科学基金(41773127)资助. **Supported by** the National Key Research and Development Program (2018YFC1801602/2019YFC1803904), the Central Public-Interest Scientific Institution Basal Research Fund of South China Institute of Environmental Sciences, MEE (PM-zx703-202011-317/PM-zx703-202004-148), the Key Research and Development Program of Hunan Province (2018SK2039) and the National Natural Science Foundation of China (41773127).

** 通讯联系人 Corresponding author, Tel: 020-85550966, E-mail: niepeng@scies.org

²⁰²¹ 年 3 月 3 日收稿(Received: March 3, 2021).

Abstract Chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), chlorinated hydrocarbons and brominated hydrocarbons as ozone depleting substances and hydrofluorocarbons (HFCs) as greenhouse gases have attracted wide attention for a long time. However, it is a challenge to accurately determine a variety of controlled trace haloalkanes at the same time. In this study, a highly efficient method for the determination of trace haloalkanes in ambient air was developed by using a self-developed gas chromatography mass spectrometry detector/electron capture detector with preconcentration system (GC-MSD/ECD). The results of experiment showed that 17 controlled haloalkanes all had clear separations and symmetrical peak shapes; the correlation coefficients of calibration curves were between 0.996 and 1.000; the method detection limits ranged from 2 pmol·mol⁻¹ to 21 pmol·mol⁻¹, which were lower than the global background levels; their precisions were 0.7%—5.3%; and their spike recoveries were 90.8%—110%. It was indicated that this detection method is applicable for the accurate detection of controlled trace haloalkanes in the background areas. Based on the detection results of actual samples, it was found that the CFCs concentrations in the ambient air of urban Guangzhou showed a descend trend in recent years, but they were still the main controlled haloalkanes in this area; the concentrations of HFCs and HCFCs were significantly higher than the atmospheric background values, which implied that there were high usage and emissions of HFCs and HCFCs in urban Guangzhou. The detection results were consistent with the emission reduction measures of China and the previous research results, which proved that the detection method is accurate and reliable.

Keywords ozone depleting substances, greenhouse gases, haloalkanes, gas chromatographymass spectrometry, gas chromatography-electron capture detector, ambient air.

氟氯烃(chlorofluorocarbons, CFCs)、氢氟氯烃(hydrochlorofluorocarbons, HCFCs)、氯代烃和溴代烃 作为消耗臭氧层物质(ozone depleting substances, ODS)可以破坏平流层臭氧层,氢氟烃(hydrofluorocarbons, HFCs)作为温室气体(greenhouse gases, GHG)能够促进全球气候变暖,上述痕量卤代烃也成为《蒙特利 尔议定书》和《京都议定书》中受控物质^[1-3].

各缔约国政府和科研人员为评估履约减排成效, 陆续开展受控卤代烃的背景观测研究. 美国国家海洋与大气管理局(NOAA)和改进的全球大气实验网(AGAGE)是全球最早开展且持续时间最长的背景大气痕量卤代烃观测机构^[4-5]; 在我国, 背景大气痕量卤代烃的观测研究处于起步阶段, 前期仅上甸子背景站长期开展受控卤代烃本底监测^[6-8]. 上述国内外研究机构和观测站点应用的大气痕量卤代烃检测方法主要是气相色谱-质谱检测器(GC-MSD)或气相色谱-电子捕获检测器(GC-ECD)^[9-13]. MSD 作为广谱检测器, 虽然定性能力强, 但检测背景地区的痕量 CFCs、HCFCs、氯代烃和溴代烃可能检出限达不到要求^[14]; ECD 虽然对含卤素的高电负性物质具有高灵敏度, 但 HFCs 在 ECD 上无检出信号^[15]. 因此, 单一检测器无法满足同时准确检测 ODS 和 GHG 两类受控卤代烃的需求.

本研究使用自主搭建的预浓缩-气相色谱-质谱检测器/电子捕获检测器系统(GC-MSD/ECD),经过 参数优化建立了高效的痕量卤代烃检测方法.本方法仅需一次少量进样和单色谱柱分离,可有效降低 样品用量和检测成本;采用 MSD 检测 HFCs, ECD 检测 CFCs、HCFCs、氯代烃和溴代烃,实现同时测 定 CFCs、HCFCs、HFCs、氯代烃和溴代烃等 17 种受控痕量卤代烃.此外,通过开展性能表征实验评估 了本方法的谱图峰形与分离效果、标准曲线、方法检出限、方法精密度和方法准确度,并且应用本方 法检测了广州市区环境空气样品,验证了本方法的实用性.本研究建立的痕量卤代烃检测方法可为全 国开展背景地区 ODS 和 GHG 监测提供参考.

1 材料与方法(Materials and methods)

1.1 仪器与试剂

Agilent 8890/5977B GC/MS(配备分流平板,可实现单次进样,单色谱柱分离,双检测器检测);

Entech 7200 浓缩仪, 7016D 进样器, 4700 动态稀释仪, 3100D 自动清罐仪; 苏玛罐.

高纯氮(纯度>99.999%),高纯氦(纯度>99.999%),液氮,TO-15 混合标准气体(二氯二氟甲烷(CFC-12)、二氯四氟乙烷(CFC-114)、一溴甲烷(CH₃Br)、三氯一氟甲烷(CFC-11)、三氯三氟乙烷(CFC-113)、甲基氯仿(CH₃CCl₃)和四氯化碳(CCl₄),浓度 1.0 μmol·mol⁻¹),受控卤代烃标准气体(三氟甲烷(HFC-23)、二氟甲烷(HFC-32)、五氟乙烷(HFC-125)、三氟乙烷(HFC-143a)、一氯五氟乙烷(CFC-115)、四氟乙烷(HFC-134a)、二氟乙烷(HFC-152a)、一氯二氟甲烷(HCFC-22)、一氯二氟乙烷(HCFC-142b)和二氯一氟乙烷(HCFC-141b),浓度 1.0 μmol·mol⁻¹),内标气体(一溴一氯甲烷、1,2-二氟苯、氯 苯-d5、4-溴氟苯,浓度 1.0 μmol·mol⁻¹).

1.2 实验方法

苏玛罐清洗:在 60 ℃ 下,自动清罐仪用高纯氮对苏玛罐在进行加温清洗,清洗 5 个循环.清洗完毕 后,将苏玛罐抽至真空(<10 Pa).每清洗 20 个苏玛罐取一个注入高纯氮,按照实际样品的分析步骤进 行测定,各目标化合物的测定值应低于检出限,以确保苏玛罐清洁.

标准使用气体配制:用动态稀释仪,将1.0 μmol·mol⁻¹的TO-15和受控卤代烃标准气体用高纯氮混 合稀释至2.0 nmol·mol⁻¹,作为标准使用气体.将1.0 μmol·mol⁻¹的内标气用高纯氮稀释至10 nmol·mol⁻¹, 作为内标使用气体.

1.3 仪器条件

预浓缩条件: 一级冷阱: 捕集温度-40 ℃, 捕集流速 60 mL·min⁻¹, 解析温度 10 ℃, 解析时间 5 min; 二级冷阱: 捕集温度-60 ℃, 捕集流速 10 mL·min⁻¹, 捕集时间 5 min, 解析温度 220 ℃, 解析时间 2.5 min; 三级聚焦: 聚焦温度-185 ℃, 聚焦时间 2.5 min, 解析温度 80 ℃, 解析时间 1 min; 传输线温度 120 ℃.

GC 分析条件: 色谱柱选用 DB-1 毛细管柱(60 m×0.25 mm×1.0 µm); 升温程序: 柱箱采用液氮降温, 初始温度为-50 ℃, 保持 6 min, 以 15 ℃·min⁻¹ 升温至 10 ℃, 再以 4 ℃·min⁻¹ 升温至 150 ℃, 最后以 15 ℃·min⁻¹ 升温至 240 ℃; 载气流速为 2 mL·min⁻¹; 进样口温度为 180 ℃; 分流比为 5:1.

MSD 分析条件: EI 源; 接口温度为 250 ℃; 离子源温度为 230 ℃; 扫描范围 20—300 amu; 溶剂延迟时间 4 min.

ECD 分析条件: ECD 检测器温度为 300 ℃; 尾吹气为高纯氮, 流量为 30 mL·min⁻¹.

2 结果与讨论 (Results and discussion)

2.1 色谱图和总离子流图

如图 1 所示, 通过优化预浓缩仪、GC 和 ECD 的运行温度, 11 种受控卤代烃在 ECD 和 6 种受控卤 代烃在 MSD 上均出峰峰形良好, 分离清晰.

2.2 标准曲线与方法检出限

2.2.1 标准曲线的制作

按照表1进气量对应的标准点浓度绘制标准曲线,同时标准曲线每个点的内标浓度均为 1.25 nmol·mol⁻¹. MSD 检测的 6 种 HFCs 通过内标法定量; ECD 检测的 11 种受控卤代烃通过外标法定量. 如表 2 所示,在标准系列范围内,17 种受控卤代烃的标准曲线相关系数在 0.996—1.000 之间,可见标准曲线线性较好,本方法稳定可靠.

Table 1	The standard concentrations of different injection volumes				
序号	进样量/mL	标准点浓度/(nmol·mol ⁻¹)			
Numbers	Injection volumes	Standard concentrations			
1	20	0.10			
2	50	0.25			
3	100	0.50			
4	200	1.00			
5	400	2.00			

表1 标准系列进样量对应的浓度点

表 2 17 种受控卤代烃的标准曲线与方法检出限

序号 Numbers	化合物 Compounds	保留时间/min Retention times	标准曲线 Standard curves	相关系数 Correlation coefficients	方法检出限/ (pmol·mol⁻¹) Method detection limits	背景值/ (pmol·mol ⁻¹) Background levels	参考文献检出限 ^[16] / (pmol·mol ⁻¹) Method detection limits in references
1	HFC-23	5.351	<i>y</i> =0.0625 <i>x</i>	0.997	21	31	—
2	HFC-32	5.958	<i>y</i> =0.0392 <i>x</i>	0.997	13	21	—
3	HFC-125	6.129	<i>y</i> =0.2283 <i>x</i>	1.000	14	30	_
4	HFC-143a	6.149	<i>y</i> =0.3942 <i>x</i>	1.000	13	24	_
5	CFC-115	6.250	$y=1.541 \times 10^{8} x$	0.999	8	9	_
6	HFC-134a	7.369	<i>y</i> =0.1802 <i>x</i>	0.996	13	113	_
7	HFC-152a	8.116	<i>y</i> =0.1615 <i>x</i>	0.996	9	10	_

 Table 2
 Standard curves and method detection limits of 17 kinds of controlled haloalkanes

							续表 2
序号 Numbers	化合物 Compounds	保留时间/min Retention times	标准曲线 Standard curves	相关系数 Correlation coefficients	方法检出限/ (pmol·mol ⁻¹) Method detection limits	背景值/ (pmol·mol ⁻¹) Background levels	参考文献检出限 ^[16] / (pmol·mol ⁻¹) Method detection limits in references
8	HCFC-22	9.223	$y=1.277 \times 10^{6} x$	0.999	17	252	—
9	CFC-12	9.691	<i>y</i> =6.640×10 ⁹ <i>x</i>	0.999	5	501	30
10	HCFC-142b	11.106	<i>y</i> =6.118×10 ⁶ <i>x</i>	0.999	13	22	—
11	CFC-114	12.024	<i>y</i> =2.925×10 ⁹ <i>x</i>	0.998	7	16	10
12	CH ₃ Br	13.860	$y=3.661\times10^{8}x$	0.998	4	8	10
13	CFC-11	16.644	$y=7.037\times10^{10}x$	0.998	6	228	10
14	HCFC-141b	16.961	<i>y</i> =6.915×10 ⁸ <i>x</i>	0.999	14	25	_
15	CFC-113	18.957	$y=1.433 \times 10^{10} x$	0.999	6	70	10
16	CH ₃ CCl ₃	24.440	$y=2.127\times10^{10}x$	1.000	2	3	10
17	CCl_4	25.560	$y=7.321\times10^{10}x$	0.999	6	79	10

注:背景值数据为美国国家海洋与大气管理局(NOAA)负责的14个大气本底观测站点2019年平均浓度,下载地址:https://www.esrl.noaa.gov/gmd/dv/data.html.

Note: Background levels were average concentrations of 14 background stations managed by NOAA in 2019, download link: https://www.esrl.noaa.gov/gmd/dv/data.html.

2.2.2 方法检出限

连续分析 7 个浓度为 0.10 nmol·mol⁻¹ 的标准气体样品, 计算标准偏差 s. 通过方法检出限(MDL)计 算公式, MDL=t_(n-1,99)×s(t值取 3.143)计算方法检出限. 方法检出限计算结果见表 2, 17 种受控卤代烃 的 MDL 为 2—21 pmol·mol⁻¹. 目前国内研究主要关注对 TO-15 中 7 种受控卤代烃的检测, 吴晓妍 等^[16]研究报道, 使用配备 Dean-switch 的 GC-MSD/FID 检测系统, TO-15 中的 7 种受控卤代烃的方法检 出限在 10—30 pmol·mol⁻¹之间, 其中一溴甲烷和甲基氯仿的方法检出限均为 10 pmol·mol⁻¹, 高于 NOAA 发布的受控卤代烃全球背景值(一溴甲烷: 8 pmol·mol⁻¹, 甲基氯仿: 3 pmol·mol⁻¹). 而本方法检测 的 17 种受控卤代烃的方法检出限均低于全球背景值数据, 表明本方法适用于受控卤代烃的大气本底 值观测.

2.3 方法精密度

分别重复 7 次测定低浓度(0.10 nmol·mol⁻¹)和高浓度(2.00 nmol·mol⁻¹)的标准使用气体样品,计算 相对标准偏差(RSD)来评价方法精密度.如表 3 所示,低浓度的 17 种受控卤代烃 RSD 范围为 0.7% — 5.2%;高浓度的 17 种受控卤代烃 RSD 范围为 2.3% — 5.3%,表明本检测方法具有较好的精密度.

Table 3 Results of test for precision and accuracy									
	HFC-23	HFC-32	HFC-125	HFC-143a	CFC-115	HFC-134a	HFC-152a	HCFC-22	CFC-12
0.10 nmol·mol ⁻¹ RSD/%	5.2	4.0	4.1	3.9	2.2	3.9	2.6	4.9	1.5
$2.00 \text{ nmol} \cdot \text{mol}^{-1} \text{ RSD}/\%$	4.5	5.3	3.6	3.3	2.3	4.8	5.1	3.9	2.5
加标回收率/%	99.7—107	93.0—101	95.3—104	94.4—102	108—110	92.4—101	92.1—100	93.2—105	94.2—95.8
	HCFC-142b	CFC-114		CH ₃ Br	CFC-11	HCFC-141b	CFC-113	CH ₃ CCl ₃	CCl ₄
0.10 nmol·mol ⁻¹ RSD/%	3.7	2.3		1.3	1.8	4.3	2.0	0.7	2.2
$2.00 \text{ nmol} \cdot \text{mol}^{-1} \text{ RSD}/\%$	4.0	3.0		3.7	2.9	3.5	4.1	2.4	3.2
加标回收率/%	92.1—108	92.2—95.3		90.8—96.5	91.4—96.0	93.3—107	92.8—99.5	95.0—97.7	91.5—96.4

表3 精密度与回收率实验结果

2.4 方法准确度

空白样品加标 1.00 nmol·mol⁻¹标准气体后进行 7 次平行测定. 如表 3 所示, 17 种受控卤代烃的回 收率在 90.8% — 110% 之间, 表明本检测方法也具有较好的准确度.

2760

2.5 实际样品检测

本研究于 2020 年 11 月在广州市城区某高楼顶层, 连续 1 周采集 7 个 24 h 的环境空气样品, 按照 本文所述分析方法条件分析样品, 进样体积为 400 mL, 具体测定结果见图 2.

广州市区环境空气中未检出 HFC-23,其余受控卤代烃浓度范围在 3—466 pmol·mol⁻¹,可见本检测 方法可检出大部分目标卤代烃. CFC-12、HFC-134a 和 CFC-11 是含量最高的前三种卤代烃,浓度分别 为 466、274、261 pmol·mol⁻¹,其中广州市区环境空气中 HFC-32(221 pmol·mol⁻¹)、HFC-134a (274 pmol·mol⁻¹)、HCFC-142b(162 pmol·mol⁻¹)和 HCFC-141b(181 pmol·mol⁻¹)含量明显高于大气本底 值^[4];而相较于 2005 年广州市区观测数据^[17],广州市区环境空气的 CFC-11、CFC-12 和 CFC-113 分别下 降了 10.5、161、13.2 pmol·mol⁻¹. 结果表明,广州近年来对于第二代制冷剂 CFCs 的管控效果显著,而作 为 CFCs 的过渡产品 HCFCs 以及第三代制冷剂 HFCs 的使用与排放量明显增加.实际样品检测结果与 我国履约减排措施和 Fang 等^[18]研究结果相符,证明本检测方法准确可靠.

3 结论(Conclusion)

(1)利用自主搭建的预浓缩-气相色谱-质谱检测器/电子捕获检测器系统,建立了高效的痕量卤代 经检测方法.本检测方法在单次少量进样的基础上,利用 MSD 和 ECD 双检测器检测,实现同时测定 CFCs、HCFCs、HFCs、氯代烃和溴代烃等 17 种受控痕量卤代烃.

(2)方法性能表征实验结果显示,17种受控卤代烃出峰峰形良好,分离清晰;标准曲线相关系数在 0.996—1.000之间;方法检出限在 2—21 pmol·mol⁻¹之间,均低于全球背景值;精密度在 0.7%— 5.3%之间;加标回收率在 90.8%—110% 之间.因此,本检测方法可应用于准确检测背景地区的受控痕 量卤代烃.

(3)通过实际样品检测,发现近年来广州市区环境空气中 CFCs 浓度呈下降趋势,但仍是该区域主要的受控卤代烃物种; HFCs 与 HCFCs 浓度明显高于大气背景值,表明该区域 HFCs 和 HCFCs 的使用 与排放量较高;实际样品检测结果与我国履约减排措施和前期研究结果相符,证明本检测方法准确 可靠.

致谢: 感谢 NOAA 与 AGAGE 监测网络及成员单位提供 14 个大气本底检测站点浓度数据.

参考文献 (References)

- [1] MOLINA M J, ROWLAND F S. Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone [J]. Nature, 1974, 249(5460): 810-812.
- [2] ROWLAND F S. Chlorocarbon compounds and stratospheric ozone [J]. Journal of Photochemistry, 1976, 5(3): 180.
- [3] RAMANATHAN V. Greenhouse effect due to chlorofluorocarbons: Climatic implications [J]. Science, 1975, 190(4209): 50-52.
- [4] NOAA. NOAA data base[EB/OL]. [2020-12-30]. https://www.esrl.noaa.gov/gmd/dv/data.html.
- [5] AGAGE. AGAGE data base[EB/OL]. [2020-12-30]. https://agage2.eas.gatech.edu/data_archive/.
- [6] 郭立峰,姚波,周凌晞,等.GC-MS和GC-ECD同时在线观测本底大气中的HCFC-142b [J].环境科学, 2013, 34(5): 2025-2030.
 GUO L F, YAO B, ZHOU L X, et al. *In-situ* measurement of background atmospheric HCFC-142b using GC-MS and GC-ECD method [J]. Environmental Science, 2013, 34(5): 2025-2030(in Chinese).
- [7] 姚波,周凌晞,刘钊,等.北京上甸子区域大气本底站甲基氯仿在线观测研究 [J].环境科学, 2014, 35(7): 2449-2453. YAO B, ZHOU L X, LIU Z, et al. *In-situ* measurement of atmospheric methyl chloroform at the shangdianzi GAW regional background station [J]. Environmental Science, 2014, 35(7): 2449-2453(in Chinese).
- [8] 姚波,周凌晞,张芳,等. 气相色谱-电子捕获检测法在线观测12种卤代温室气体 [J]. 环境化学, 2010, 29(6): 1158-1162.
 YAO B, ZHOU L X, ZHANG F, et al. On-site measurement of atmospheric halogenated greenhouse gases using gc-ecd method [J]. Environmental Chemistry, 2010, 29(6): 1158-1162(in Chinese).
- [9] MILLER B R, WEISS R F, SALAMEH P K, et al. Medusa: A sample preconcentration and GC/MS detector system for *in situ* measurements of atmospheric trace halocarbons, hydrocarbons, and sulfur compounds [J]. Analytical Chemistry, 2008, 80(5): 1536-1545.
- [10] COLMAN J J, SWANSON A L, MEINARDI S, et al. Description of the analysis of a wide range of volatile organic compounds in whole air samples collected during PEM-tropics A and B [J]. Analytical Chemistry, 2001, 73(15): 3723-3731.
- [11] SCHOENENBERGER F, VOLLMER M K, RIGBY M, et al. First observations, trends, and emissions of HCFC-31 (CH₂ ClF) in the global atmosphere [J]. Geophysical Research Letters, 2015, 42(18): 7817-7824.
- [12] VOLLMER M K, YOUNG D, TRUDINGER C M, et al. Atmospheric histories and emissions of chlorofluorocarbons CFC-13 (CClF₃), £CFC-114 (C₂Cl₂F₄), and CFC-115 (C₂ClF₅) [J]. Atmospheric Chemistry and Physics, 2018, 18(2): 979-1002.
- [13] 陈立民,段杨,乐致威,等.大气中氯氟烃类物质浓度变化的研究 [J]. 环境科学, 1999, 20(1): 27-29.
 CHEN L M, DUAN Y, LE Z W, et al. Study on the trends of atmospheric CFCs [J]. Chinese Journal of Environmental Science, 1999, 20(1): 27-29(in Chinese).
- [14] 许百环.苏玛罐-冷阱富集-GC-MS同时测定环境空气中108种VOCs [J].广东化工, 2017, 44(18): 227-231.
 XU B H. Determination of 108 volatile organic compounds in ambient air by SUMMA canisters sampling and pre-concentrated system combined GC/MS [J]. Guangdong Chemical Industry, 2017, 44(18): 227-231(in Chinese).
- [15] PELLIZZARI E D. Electron capture detection in gas chromatography [J]. Journal of Chromatography A, 1974, 98(2): 323-361.
- [16] 吴晓妍,谭丽.利用苏玛罐-预冷冻浓缩-气相色谱/质谱法同时测定空气中的108种挥发性有机物 [J].分析科学学报,2020, 36(6):844-850.

WU X Y, TAN L. Simultaneous determination of 108 volatile organic compounds in ambient air by gas chromatography/mass spectrometry with SUMMA canister sampling and pre -concentrated system [J]. Journal of Analytical Science, 2020, 36(6): 844-850(in Chinese).

[17] 张芳,王新明,李龙凤,等.近年来珠三角地区大气中痕量氟氯烃(CFCs)的浓度水平与变化特征 [J].地球与环境,2006, 34(4):19-24.

ZHANG F, WANG X M, LI L F, et al. Recent levels and trends of trace chlorofluorocarbons(CFCs) in the Pearl River Delta region [J]. Earth and Environment, 2006, 34(4): 19-24(in Chinese).

[18] FANG X K, RAVISHANKARA A R, VELDERS G J M, et al. Changes in emissions of ozone-depleting substances from China due to implementation of the Montreal protocol [J]. Environmental Science & Technology, 2018, 52(19): 11359-11366.