

DOI:10.7524/j.issn.0254-6108.2023021605

陈钰杭, 李鑫玮, 甘振东, 等. 中试紫外高级氧化耦合生物活性炭工艺去除典型嗅味物质[J]. 环境化学, 2023, 42(12): 4366-4374. CHEN Yuhang, LI Xinwei, GAN Zhendong, et al. Pilot test of removing typical odors by the coupled UV advanced oxidation and biological activated carbon processes[J]. Environmental Chemistry, 2023, 42 (12): 4366-4374.

中试紫外高级氧化耦合生物活性炭工艺去除典型嗅味物质*

陈钰杭^{1,2} 李鑫玮³ 甘振东³ 韩京龙^{1,4}** 关银燕¹ 梁吉艳¹ 郑 群⁵ 郝智能^{1,2}** 王爱杰⁴

(1.沈阳工业大学环境与化学工程学院,沈阳,110870;2.中国科学院生态环境研究中心,环境化学与生态毒理学国家重点实验室,北京,100085;3.北控水务(中国)投资有限公司,北京,100102;4.哈尔滨工业大学(深圳)土木与环境工程学院,深圳,518055;5.北京景盛达环保科技有限公司,北京,101199)

摘 要利用增设的紫外高级氧化中试装置,研究了紫外/过氧化氢(UV/H₂O₂)和紫外/过氧化氢/臭氧(UV/H₂O₂/O₃)与生物活性炭(BAC)耦合工艺对低温下大流量饮用水中较高含量土臭素(GSM)和 2-甲基异莰醇(2-MIB)的去除效果.重点考察了H₂O₂投加量、O₃投加量、紫外线剂量及BAC对嗅味 物质去除的影响,并分析了UV/H₂O₂过程中GSM和2-MIB的降解产物情况.结果显示,相比UV/H₂O₂-BAC耦合工艺,UV/H₂O₂/O₃-BAC耦合工艺对GSM(28.5—34.1 ng·L⁻¹)和2-MIB(83.2—94.1 ng·L⁻¹) 具有更显著的去除效果,去除率分别可达90.1%和86.0%.提高H₂O₂投加量、O₃投加量和紫外线剂量促 进了紫外高级氧化工艺段对GSM和2-MIB的去除,但H₂O₂投加量、O₃投加量和紫外线剂量促 拔了紫外高级氧化工艺段对GSM和2-MIB的去除,但H₂O₂投加量不可过高.通过对降解产物进行分 析,提出了UV/H₂O₂降解GSM和2-MIB的过程,其降解主要由羟基自由基引起,主要反应包括脱甲 基、脱水、加成、环开裂等方式.本研究可为发展绿色高效的嗅味物质去除技术提供技术指导和支撑. **关键词** 土臭素,2-甲基异莰醇,紫外/过氧化氢,紫外/过氧化氢/臭氧,生物活性炭.

Pilot test of removing typical odors by the coupled UV advanced oxidation and biological activated carbon processes

CHEN Yuhang^{1,2} LI Xinwei³ GAN Zhendong³ HAN Jinglong^{1,4 **} GUAN Yinyan¹ LIANG Jiyan¹ ZHENG Qun⁵ HAO Zhineng^{1,2 **} WANG Aijie⁴

(1. School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China; 2. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco Environmental Sciences, Beijing, 100085, China; 3. Beijing Enterprises Water Group (China) Investment Co., Ltd., Beijing, 100102, China; 4. School of Civil and Environmental Engineering, Harbin Institute of technology (Shenzhen), Shenzhen, 518055, China; 5. Beijing JENSEND Environmental Technology Co., Ltd., Beijing, 101199, China)

Abstract Using a pilot-scale UV advanced oxidation plant, this study aimed to investigate the efficacy of UV/H_2O_2 and $UV/H_2O_2/O_3$ coupled with biological activated carbon (BAC) processes in removing high levels of geosmin (GSM) and 2-methylisoborneol (2-MIB) from drinking water. The effects of H_2O_2 dosage, O_3 dosage, UV dose, and BAC on odour removal were investigated in detail, along with the degradation products of GSM and 2-MIB during the UV/H_2O_2 process. Results

²⁰²³ 年 2 月 16 日收稿(Received: February 16, 2023).

^{*} 国家自然科学基金 (22176199) 和山东省重点研发计划 (2020CXGC011202) 资助.

Supported by National Natural Science Foundation of China (22176199) and Shandong Province Key Research Progress (2020CXGC011202).

^{**} 通信联系人 Corresponding author, E-mail: znhao@rcees.ac.cn; hanjinglong@yeah.net

showed that the UV/H₂O₂/O₃-BAC coupling process exhibited higher removal rates on GSM $(28.5-34.1 \text{ ng} \cdot \text{L}^{-1})$ and 2-MIB $(83.2-94.1 \text{ ng} \cdot \text{L}^{-1})$, with removal rates up to 90.1% and 86.0%, respectively, compared to the UV/H₂O₂-BAC coupling process. Increasing the H₂O₂, O₃, and UV doses promoted the removal of GSM and 2-MIB in the UV advanced oxidation process unit; however, the H₂O₂ dosage should not be excessively high. Based on the degradation products, a proposed degradation process and mechanism of GSM and 2-MIB by UV/H₂O₂ suggested that hydroxyl radicals, including demethylation, dehydration, addition, and ring-opening, caused immediate reactions. This study provides fundamental data and technical support for developing green and efficient odour removal technologies.

Keywords GSM, 2-MIB, UV/H_2O_2 , $UV/H_2O_2/O_3$, BAC.

富营养化水体大量繁殖的藻类分泌的嗅味物质长期以来一直是饮用水行业关注的主要问题[1-2]. 水体中嗅味物质的浓度通常在 ng·L⁻¹范围内,但通常因其嗅味阈值极低,嗅味物质直接影响饮用水的感 官,以及公众对饮用水的信心和接受程度^[3-4]. 土臭素(geosmin, GSM)和 2-甲基异茨醇(2-methylisobornel, 2-MIB)是引发水体异嗅的主要物质,与大多数饮用水中土、霉味事件有关^[5-6]. 我国生活饮用水卫生标 准(GB 5749—2022)已经将 GSM 和 2-MIB 列入到出厂水和管网水需要检测的项目,并规定其含量不 能超过 10 ng·L^{-1[7]}.

目前传统处理工艺通常很难彻底去除在水体中赋存浓度极低的嗅味物质.虽然基于颗粒活性炭和 粉末活性炭等少数技术可以去除嗅味物质^[8-9],但面临嗅味物质浓度升高而引起的去除效率低、达标 困难和高成本等问题^[10].随着对优质饮用水需求的不断增加,越来越多研究致力于发展更有效的嗅味 物质替代处理工艺.近年来,基于羟基自由基(hydroxyl radicals, ·OH)的高级氧化技术(advanced oxidation processes, AOPs),因具有选择性低和反应速度快等优点^[11],成为了去除嗅味物质优先选择的 技术^[12].在众多 AOPs 中,紫外线(ultraviolet light, UV)和双氧水(H₂O₂)通过生成·OH 去除嗅味物质,且 具有工艺灵活便捷和无副产品等优势而受到广泛关注,但该方法也存在 H₂O₂ 利用率低和残留等问 题^[13].近来研究表明,向 UV/H₂O₂ 体系中加入低浓度 O₃ 可有效增加系统中的稳态自由基浓度,其与 O₃ 作用可促进水中有机物的降解^[14-16].同时, UV/H₂O₂ 与生物活性炭(biological activated carbon, BAC) 工艺联用(UV/H₂O₂-BAC)则可有效解决 H₂O₂ 残留问题^[17].目前基于 UV/H₂O₂-BAC 发展的嗅味物质去 除工艺主要基于实验室小试装置或现场小规模试验进行,尽管能取得满意的去除效果,但其应用于大 流量水的工艺条件少有优化,效果少有验证^[18].

针对当前 UV/H₂O₂-BAC 工艺去除嗅味物质存在的难点,本研究利用增设的 AOP 中试装置,探究 了 UV/H₂O₂-BAC 和 UV/H₂O₂/O₃-BAC 两种耦合工艺对山东省某饮用水处理厂的砂滤池出水中 GSM 和 2-MIB 的去除效果,并考察了 H₂O₂ 投加量、O₃ 投加量、紫外线剂量及 BAC 对降解效率的影 响,以期为发展绿色高效的嗅味物质去除技术提供数据和技术支撑.

1 材料与方法(Materials and methods)

1.1 中试装置介绍

自主研制的中试装置如图 1 所示,尺寸为 3.6 m×1.2 m×2.6 m. 紫外复合催化反应器是中试装置的 核心部件,其构型已从反应器内流态、光辐射和化学反应等方面实现优化,目的在于最大化利用紫外 光能并提升·OH 等活性物质的产率,从而促进嗅味物质的去除效率.中试装置共有 12 支 87 W 的 UV 灯管,UV 剂量通过控制 UV 灯开关调控,H₂O₂ 的投加量由蠕动泵控制,O₃ 通过 O₃ 发生器制取并 通过射流泵控制其投加量,同时分别在蠕动泵与射流泵前端配置监控流量计以确保 H₂O₂ 和 O₃ 在 AOPs 体系中的流量和浓度稳定.

图 1 中试装置示意图 Fig.1 Schematic diagram of pilot plant

1.2 UV/H₂O₂-BAC 和 UV/H₂O₂/O₃-BAC 中试工艺

Table 1

UV/H₂O₂-BAC和UV/H₂O₂/O₃-BAC中试工艺设置在山东省潍坊市某自来水厂,其流程如图 2 所示.该自来水水厂供水水源取自白浪河水库,水厂主体处理工艺为混凝-沉淀-砂滤-二氧化氯消毒.研究 增设 AOP 中试反应装置,其进水为自来水厂的砂滤池出水.中试期间进水水质参数如表 1 所示,GSM和 2-MIB的浓度分别在 28.5—34.1 ng·L⁻¹和 83.2—94.1 ng·L⁻¹之间.为考察中试装置和工艺对 大流量水的处理效果,进水流量设置为 10 m³·h⁻¹.进水先通入混合器与投加试剂充分混合,随后进入 AOP 反应器去除嗅味物质(紫外光照时间为 34 s),工艺末端为 BAC 罐,以去除反应器出水中残余的 H₂O₂、O₃和嗅味物质.H₂O₂和 O₃的投加量通过蠕动泵控制.

|--|

Table 1 The quarty and out is concentration of said inter endert						
	温度/℃	溶解氧/(mg·L ⁻¹)	TOC/	GSM浓度/(ng·L ⁻¹)	2-MIB浓度/(ng·L ⁻¹)	
рн	Temperature	Dissolved oxygen	$(mg \cdot L^{-1})$	GSM concentration	2-MIB concentration	
76-82	5 5-6 8	11 7-13 5	3 3-4 2	28 5-34 1	83 2-94 1	

The quality and odors concentration of sand filter effluent

1.3 样品采集

参数调整时,工艺稳定运行至少1h后再取样.水样采集点如图2所示,分别为中试进水,AOP反应器出水和BAC 罐出水.采集后的水样经过0.45 μm 滤膜过滤后储存于棕色玻璃采样瓶,并于4℃条件下运送至实验室分析.

1.4 工艺优化及条件设计

由于水源水中嗅味物质浓度较大波动,高浓度维持时间较短,中试工艺主要考察了 H_2O_2 投加量、 O₃ 投加量和 UV 剂量对 GSM 和 2-MIB 去除的影响.中试装置对不同试验条件的操作如下:反应前使 用滤池出水冲洗装置并排出,开启 UV 灯进行预热;分别调节 H_2O_2 和 O₃ 投加量与进水流量.通过控 制 UV 灯的开关、 H_2O_2 和 O₃ 的投加实现 UV/ H_2O_2 、UV/ H_2O_2/O_3 等多种 AOP 反应体系.具体条件如 下:首先在 UV 剂量为 800 mJ·cm⁻²条件下,探究了 H_2O_2 投加量(0、1、2、3、5、10、20 mg·L⁻¹),与 O₃ 投 加量(0、0.5、1、2、3、5 mg·L⁻¹)对 UV/ H_2O_2 和 UV/ H_2O_2/O_3 体系的影响.优化完成后,进一步探究了 UV 剂量(0、200、400、600、800 mJ·cm⁻²)对 AOP 反应体系的影响.

1.5 仪器和试剂

仪器: GSM 和 2-MIB 提取和测定采用磁力搅拌水浴加热锅(SHJ-A6 型, 金坛区白塔安瑞实验仪器

厂)和气相色谱-质谱联用仪(GC-MS, 6890N-5973C, Agilent).

试剂: GSM 和 2-MIB 的标准品购自美国 Sigma-Aldrich 公司. 内标物(1, 2-二氯苯-D4)购自美国 Accustandard 公司. 氯化钠(NaCl)购自中国阿拉丁公司,使用前经 450 ℃ 烘烤 2 h 然后保存于干燥器中 备用.

1.6 检测方法

GSM 和 2-MIB 的测定参照 GB/T 32470—2016《生活饮用水臭味物质 土臭素和 2-甲基异莰醇检验 方法》. GSM 和 2-MIB 的前处理采用固相微萃取法^[19]:在 50 mL 顶空瓶中加入 30 mL 水样、7.5 g 离子 强度调节剂 NaCl 和 15 µL 内标溶液 1, 2-二氯苯-D4(浓度为 20 µg·L⁻¹),然后将顶空瓶置于磁力加热搅 拌器搅拌加热(温度为 60 °C,搅拌速度为 800 r·min⁻¹),并采用萃取纤维(50/30 µm DVB/CAR/PDMS, Supelco)对水样中的嗅味物质进行萃取,萃取温度为 60 °C.萃取 30 min 后,将萃取纤维头插入气相色 谱进样口解吸 5 min 进行分析,解吸温度为 250 °C. GC-MS 分析条件和升温程序如下:气相色谱柱为 HP-5MS(30 m×0.25 mm×0.25 µm, Agilent),嗅味物质定量采用选择离子检测模式,进样口温度为 250 °C,离子源温度为 230 °C,压力为 56.5 kPa,初始温度为 60 °C 保持 2.5 min,以 8 °C·min⁻¹速率升至 250 °C 保持 5 min;质谱仪选用电子电离源,接口温度为 280 °C,离子化能量为 70 eV.降解产物分析采 用全扫描模式.

结果与讨论(Results and discussion)

2.1 UV/H₂O₂和UV/H₂O₂/O₃体系去除嗅味物质的优化

图 3(a, b)为 H₂O₂ 投加量对 UV/H₂O₂ 体系降解嗅味物质的影响.结果表明,当不投加 H₂O₂时, GSM 和 2-MIB 的去除率分别为 2.0% 和 1.2%,说明纯 UV 对嗅味物质去除效果有限.投加 H₂O₂ 后,嗅 味物质的去除率显著上升,当 H₂O₂ 浓度从 1.0 mg·L⁻¹增加至 5.0 mg·L⁻¹时,GSM 和 2-MIB 的去除率分 别从 23.8% 和 25.9% 显著提高至 41.6% 和 45.8%.在 10 mg·L⁻¹条件下进一步提高到 48.2% 和 52.3%, 表明 UV/H₂O₂ 中生成的·OH 在嗅味物质的去除中发挥了关键作用.

图 3 H_2O_2 投加量对 UV/ H_2O_2 (a, b)和 UV/ H_2O_2/O_3 (c, d)去除 GSM 和 2-MIB 的影响 Fig.3 The effect of H_2O_2 dosage on the removal of GSM and 2-MIB by UV/ H_2O_2 (a, b) and UV/ H_2O_2/O_3 (c, d)

当 H_2O_2 投加量达到 20 mg·L⁻¹ 时, GSM 和 2-MIB 的去除率相比 10 mg·L⁻¹ 发生了下降, 这说明投 加过高浓度的 H_2O_2 会抑制嗅味物质的去除. 当 H_2O_2 浓度低于 10 mg·L⁻¹ 时, 增加 H_2O_2 浓度可以增 加·OH 的生成量, 从而显著促进 GSM 和 2-MIB 的降解, 但当 H_2O_2 达到 20 mg·L⁻¹ 时, 过量的 H_2O_2 就

42卷

会消耗·OH从而不利于 GSM 和 2-MIB 的去除.相比实验室模拟条件,实际水体中嗅味物质在纯UV 和 UV/H₂O₂体系中的去除率有所降低^[20],这与实际水体中的组分(例如有机质, CO₃²⁻、HCO₃⁻)削减 UV 光强和消耗·OH 有关.

图 3(c, d)为 H₂O₂ 投加量对 UV/H₂O₂/O₃ 体系降解嗅味物质的影响.结果表明,纯O₃ 浓度投加为 3.0 mg·L⁻¹时,无UV 光照 GSM 和 2-MIB 的去除率分别为 21.0% 和 21.6%,该数据明显低于常温条件 下 O₃ 去除嗅味物质的效率^[15,21-22],说明低温下 O₃ 的反应效率低,与先前文献报道一致^[23],因此需引入 UV 和 H₂O₂ 以促进基于 O₃ 的 AOPs 体系对嗅味物质的去除;有 UV 光照 GSM 和 2-MIB 的去除率为 30.7% 和 30.1%,说明 UV/O₃ 能促进·OH 的生成和嗅味物质的去除.向 UV/H₂O₂ 体系中投加 O₃ 能略微 提升嗅味物质的去除率, H₂O₂ 投加浓度对 UV/H₂O₂/O₃ 体系去除嗅味物质的影响与 UV/H₂O₂ 体系相似.

图 4 为 H₂O₂ 投加量保持为 5.0 mg·L⁻¹时, O₃ 投加量对 UV/H₂O₂/O₃ 体系去除嗅味物质的影响. 结 果表明, 当 O₃ 投加量从 0.5 mg·L⁻¹ 逐渐升至 5.0 mg·L⁻¹时, UV/H₂O₂/O₃ 工艺对 GSM 和 2-MIB 的去除 率维持在 40%—50% 之间, 相较于 UV/H₂O₂(GSM: 41.6% 和 2-MIB: 45.8%) 促进效果并不明显. 投加 O₃ 浓度较低会导致嗅味物质去除率下降, 这可能与 O₃ 的反应特性相关, O₃ 会优先与有机质中的不饱 和结构发生反应并导致有机质分子解聚变成小分子, 从而竞争·OH 引起嗅味物质去除率的下降^[24]. 当 O₃ 投加到 3.0 mg·L⁻¹时, 才会有余量 O₃ 促进·OH 的产生和嗅味物质的降解. 在 UV/O₃ 体系中, GSM 和 2-MIB 的去除率分别在 19.7%—35.1% 和 25.4%—33.4% 之间, 说明 H₂O₂ 的存在能显著促 进·OH 的产生和嗅味物质的去除. 综合成本和嗅味物质去除效果, 确定 UV/H₂O₂ 和 UV/H₂O₂/O₃ 工艺 H₂O₂ 和 O₃ 的投加量分别为 5.0 mg·L⁻¹ 和 3.0 mg·L⁻¹.

图 5 为 UV 剂量对基于 UV 的 AOPs 工艺去除嗅味物质的影响.结果表明, UV、UV/H₂O₂、UV/H₂O₂/O₃工艺对 GSM 和 2-MIB 的去除率随 UV 剂量升高而增加.

当 UV 剂量从 200 mJ·cm⁻²提高至 800 mJ·cm⁻²时,对应工艺中 GSM 分别从 3.0%、19.8%、 23.4% 提高至 5.7%、40.1% 和 41.3%; 2-MIB 去除率分别从 2.4%、20.8%、21.6% 提高至 9.5%、43.6% 和 45.6%. 而无 UV 时,单独投加 H₂O₂对 GSM 和 2-MIB 的去除率仅有 3.4% 和 6.8%,投加 H₂O₂/O₃ 对 GSM 和 2-MIB 的去除率略微提高至 10.2% 和 7.5%,说明 UV 激发 H₂O₂ 和 O₃ 产生的·OH 对嗅味物质 的去除具有重要的作用.在相同的 UV 剂量下,UV/H₂O₂/O₃ 对 GSM 和 2-MIB 的去除高于 UV/H₂O₂,说 明 O₃ 的投加促进了·OH 的生成,并与 O₃ 联合作用去除水中的嗅味物质和其他有机物.

UV/H2O2和UV/H2O2/O3体系均存在H2O2、O3等残留问题,影响后续消毒等过程,需通过活性炭 进一步去除.同时与活性炭耦合后,也能有效发挥活性炭的吸附及生物降解作用,进一步提升嗅味物质 的去除效果.因此,工艺设计中将 AOP 与 BAC 耦合以去除残余 H₂O₂,并利用 BAC 的吸附和微生物作 用进一步去除嗅味物质.如图 6 所示,耦合 BAC 显著提升了 GSM 和 2-MIB 的去除率,UV、UV/O3、 UV/H2O2和 UV/H2O2/O3对 GSM 的去除率从 5.7%、30.7%、40.6%、45.8% 分别提高至 61.3%、70.8%、 71.9%、90.1%,对 2-MIB的去除率从 9.5%、30.7%、43.6%、47.7% 分别提高至 58.0%、71.5%、73.0%、 86.0%. BAC 去除嗅味物质主要基于吸附和微生物降解作用:首先 BAC 通过物理化学吸附作用将嗅味 物质吸附到活性炭表面和孔隙内,但吸附作用会在 BAC 吸附达到饱和后逐渐降低[25].随后,被吸附的 嗅味物质会被 BAC 上的微生物降解,在 BAC 吸附饱和后, BAC 对嗅味物质的吸附和降解引起的解吸 达到平衡^[26]. 尽管 UV/H₂O₂/O₃相比 UV/H₂O₂对 GSM 和 2-MIB 提升不大, 但经过 BAC 吸附降解处理 后,前者与 BAC 耦合对嗅味物质去除率(GSM: 90.1%, 2-MIB: 86.0%)显著高于后者与 BAC 耦合 (GSM: 71.9%, 2-MIB: 73.0%), 这说明水体经 UV/H₂O₂/O₃处理后, 嗅味物质在 BAC 上的吸附降解率高 于 UV/H₂O₂ 处理后的吸附量.其可能原因在于 UV/H₂O₂/O₃ 更有利于有机质转化为小分子和矿化,进 而更容易在 BAC 中被微生物降解,从而有更多的活性位点用于吸附并降解嗅味物质.为证实该推测, 对水样进行了 TOC 分析, 如表 2 所示, 发现 UV/H2O2/O3 处理出水的 TOC 明显低于其他工艺, 耦合 BAC 后 TOC 更是降低至 1.04 mg·L⁻¹, 远低于 UV/H₂O₂ 和 UV/O₃ 耦合 BAC 出水的 TOC 含量. BAC 出 水 TOC 与嗅味物质浓度的下降和显著下降,表明 BAC 通过吸附和微生物降解等作用进一步去除了有 机质、嗅味物质及其降解产物,这对于降低消毒副产物的生成和保障饮用水安全具有重要意义.

图 6 UV/H₂O₂和 UV/H₂O₂/O₃ 耦合 BAC 去除 GSM 和 2-MIB Fig.6 The removal of GSM and 2-MIB by UV/H₂O₂-BAC and UV/H₂O₂/O₃-BAC

	表 2 UV/H ₂ O ₂ -BAC 和 UV/H ₂ O ₂ /O ₃ -BAC 工艺的进出水 TOC 浓度
Table 2	TOC concentration of inlet and outlet water of UV/H ₂ O ₂ -BAC and UV/H ₂ O ₂ /O ₃ -BAC

中试工艺 Pilot test process	中试进水/(mg·L ⁻¹) Pilot test influent	AOP出水/(mg·L ⁻¹) AOP effluent	BAC出水/(mg·L ⁻¹) BAC effluent
UV+BAC	3.4±0.1	3.1±0.1	2.6±0.2
UV/H2O2+BAC	3.6±0.1	3.4±0.1	2.5±0.1
UV/O3+BAC	3.2±0.2	3.0±0.1	2.2±0.2
UV/H ₂ O ₂ /O ₃ +BAC	3.3±0.2	3.1±0.3	1.0±0.2

2.3 GSM 和 2-MIB 在 UV/H₂O₂ 工艺中可能的降解途径

为探究 GSM 和 2-MIB 在 UV/H₂O₂ 工艺中的降解途径和中间产物,利用气质联用仪对中试进水和 UV/H₂O₂ 出水进行了全扫描分析,工艺参数为 H₂O₂ 投加量 10 mg·L⁻¹,紫外线剂量 800 mJ·cm⁻²,取样后 加入 0.1 mol·L⁻¹ Na₂S₂O₃ 猝灭残余 H₂O₂. 检出的 GSM 和 2-MIB 降解产物如表 3 和表 4 所示,结合降解 产物和文献调研^[16,23-24],提出了 UV/H₂O₂ 中 GSM 和 2-MIB 的降解途径,其降解主要由·OH 引起,发生 的主要反应包括脱甲基、脱水、加成、环开裂等^[27-29].

Table 3 Retention time (t_R) and mass spectral characteristics $(M, m/z)$ of GMS degradation products in UV/H2O2					
检出物质 Detected substances	$t_{\rm R}/{\rm min}$	分子量/Da Molecular weight	定性离子(m/z) Qualitative ions	结构式 Structure	
GSM	14.37	182.30	112, 125	OH OH	
Trans-1,10-dimethyl-trans-9-decalinol	13.34	182.30	126, 112, 43	OH	
4a-Methyl-4,4a,5,6,7,8-hexahydro-2(3H)-naphthalenone	12.44	164.24	164, 122, 107		
2-Ethyl-2-hexenal	11.96	126.20	126, 97, 55	0 H H	
(1,2-Dimethylcyclopentyl)-methanol	11.83	128.21	97, 55	СОН	
Cyclohexanone	8.14	5.27	112, 98, 55		
Octanoic acid	7.98	144.21	101, 73, 60	HO	
Pentanal	7.48	86.13	58, 44, 29		

表 3 UV/H₂O₂ 降解 GSM 的中间产物及其保留时间和质谱特征

表 4 UV/H₂O₂ 降解 2-MIB 的产物及其保留时间和质谱特征

Table 4 Retention time (t_R) and mass spectral characteristics (M, m/z) of 2-MIB degradation products in UV/H₂O₂

检测物质	t _n /min	分子量/Da	定性离子(m/z)	结构式
Detection of substances	<i>t</i> R/IIIII	Molecular weight	Qualitative ions	Structure
2-MIB	10.38	168.28	135, 95, 107	И ОН
(2,2,3-Trimethyl-cyclopent-3-enyl)-acetaldehyde	11.34	152.23	108, 95, 93	
(4Z)-4-chloro-6-ethoxy-2,6-dimethylhepta-2,4-diene	10.81	202.72	124, 109	\sim
2,3,4,5-Tetramethyl-2-cyclopentenone	8.77	138.21	138, 123, 95	H, O
2,6-Dimethyl-2,4-heptadiene	8.09	124.22	112, 69, 55	
D-camphor	7.80	152.23	95, 81, 69	A CONTRACT OF CONTRACT.
Bornane-2,5-dione	7.48	166.22	108, 93	

GSM 的降解途径如下:首先, ·OH 攻击 GSM 侧链的羟基和甲基进行氧化脱氢和去甲基反应, 形成 具有环状结构和双键的初级降解产物. 然后, 初级降解产物与·OH 发生加成反应, 电子发生转移, 断裂 C—C 键并打开双环结构, 生成单环次级氧化降解产物. 最后, ·OH 与次级产物继续发生加成反应, 使 C—C 和 C=C 键断裂, 生成小分子醛酮等三级降解产物. 2-MIB 的降解途径如下:首先, ·OH 攻击 2-MIB 侧链的羟基和甲基发生脱水和脱甲基反应, 从而破坏2-MIB 结构形成含有酮基的初级产物, 樟 脑是主要初级降解产物, 这与先前文献报道一致^[30-31]. 然后, ·OH 通过加成反应断开桥环结构并形成次 级单环醛和酮基小分子. 随后, ·OH 与次级产物进行环加成反应并转移电子, 使环状结构的化学键断 裂, 生成三级小分子醛、酮、酸等降解产物.

3 结论(Conclusion)

(1)实际运行条件下 UV/H₂O₂和 UV/H₂O₂/O₃工艺对 GSM 和 2-MIB 均有良好的去除效果,其中后者的去除效果更好.提高 H₂O₂和 O₃ 投加量、以及紫外线剂量有利于 AOPs 工艺对 GSM 和 2-MIB 的去除,但过量 H₂O₂ 会抑制嗅味物质的去除;

(2) UV/H₂O₂ 和 UV/H₂O₂/O₃ 耦合 BAC 进一步提高了 GSM 和 2-MIB 的去除率,后者更有利于嗅 味物质和有机质的去除;

(3)利用 GC-MS 全扫描对 UV/H₂O₂ 体系中 GSM 和 2-MIB 的降解产物进行了分析, 其降解主要 由·OH 攻击侧链引起, 发生的反应包括脱甲基、脱水、加成、环开裂等.

参考文献 (References)

- [1] ZHU J, STUETZ R M, HAMILTON L, et al. Management of biogenic taste and odour: From source water, through treatment processes and distribution systems, to consumers [J]. Journal of Environmental Management, 2022, 323: 116225.
- [2] 吕成旭,石瑞洁,季铭,等.高外源性藻类输入的城市河道嗅味物质分布特征及影响因素 [J].环境化学,2022,41(5):1579-1590.

LV C X, SHI R J, JI M, et al. Distribution characteristics and influencing factors of odorants in urban rivers with high exogenous algae input [J]. Environmental Chemistry, 2022, 41(5): 1579-1590(in Chinese).

- [3] 李勇, 张晓健, 陈超. 我国饮用水中嗅味问题及其研究进展 [J]. 环境科学, 2009, 30(2): 583-588. LI Y, ZHANG X J, CHEN C. Review on the tastes and odors compounds in drinking water of China [J]. Environmental Science, 2009, 30(2): 583-588(in Chinese).
- [4] KEHOE M J, CHUN K P, BAULCH H M. Who smells? Forecasting taste and odor in a drinking water reservoir [J]. Environmental Science & Technology, 2015, 49(18): 10984-10992.
- [5] WANG C M, GALLAGHER D L, DIETRICH A M, et al. Data analytics determines co-occurrence of odorants in raw water and evaluates drinking water treatment removal strategies [J]. Environmental Science & Technology, 2021, 55(24): 16770-16782.
- [6] ABD EL-HACK M E, EL-SAADONY M T, ELBESTAWY A R, et al. Undesirable odour substances (geosmin and 2methylisoborneol) in water environment: Sources, impacts and removal strategies [J]. Marine Pollution Bulletin, 2022, 178: 113579.
- [7] 李勇,张晓健,陈超.水中嗅味评价与致嗅物质检测技术研究进展 [J].中国给水排水,2008,24(16):1-6.
 LI Y, ZHANG X J, CHEN C. Research progress in evaluation of tastes and odors compounds in water and their detection technology [J]. China Water & Wastewater, 2008, 24(16): 1-6(in Chinese).
- [8] 史嘉璐,龙超,李爱民.饮用水源水中致嗅物质去除技术研究进展[J].环境科学与技术, 2012, 35(3): 122-126.
 SHI J L, LONG C, LI A M. Progress in removal technology of taste and odor compounds-geosmin and 2-MIB in drinking water source [J]. Environmental Science & Technology, 2012, 35(3): 122-126(in Chinese).
- [9] JUNG S W, BAEK K H, YU M J. Treatment of taste and odor material by oxidation and adsorption [J]. Water Science and Technology, 2004, 49(9): 289-295.
- [10] BERTONE E, CHANG C, THIEL P, et al. Analysis and modelling of powdered activated carbon dosing for taste and odour removal [J]. Water Research, 2018, 139: 321-328.
- [11] LEE Y, GERRITY D, LEE M J, et al. Organic contaminant abatement in reclaimed water by UV/H₂O₂ and a combined process consisting of O3/H₂O₂ followed by UV/H₂O₂: Prediction of abatement efficiency, energy consumption, and byproduct formation [J]. Environmental Science & Technology, 2016, 50(7): 3809-3819.
- [12] HUANG X L, WANG S, WANG G X, et al. Kinetic and mechanistic investigation of geosmin and 2-methylisoborneol degradation

using UV-assisted photoelectrochemical [J]. Chemosphere, 2022, 290: 133325.

- [13] ZOSCHKE K, DIETRICH N, BÖRNICK H, et al. UV-based advanced oxidation processes for the treatment of odour compounds: Efficiency and by-product formation [J]. Water Research, 2012, 46(16): 5365-5373.
- [14] ARSLAN A, TOPKAYA E, ÖZBAY B, et al. Application of O₃/UV/H₂O₂ oxidation and process optimization for treatment of potato chips manufacturing wastewater [J]. Water and Environment Journal, 2017, 31(1): 64-71.
- [15] WANG X L, WANG X L, MI J R, et al. UV/H₂O₂/O₃ removal efficiency and characterization of algae-derived organic matter and odorous substances [J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109128.
- [16] 刘超,强志民,张涛,等. 臭氧和基于臭氧的高级氧化工艺降解农药的研究进展 [J]. 环境化学, 2011, 30(7): 1225-1235.
 LIU C, QIANG Z M, ZHANG T, et al. Research progress on degradation of pesticides by ozone and advanced oxidation process based on ozone [J]. Environmental Chemistry, 2011, 30(7): 1225-1235(in Chinese).
- [17] PRADHAN S, FAN L H, RODDICK F A. Removing organic and nitrogen content from a highly saline municipal wastewater reverse osmosis concentrate by UV/H₂O₂-BAC treatment [J]. Chemosphere, 2015, 136: 198-203.
- [18] 王永磊, 刘杰, 王猛, 等. 紫外高级氧化工艺降解土臭素(GSM)和2-甲基异莰醇(2-MIB)的对比 [J]. 环境化学, 2022, 41(9): 3083-3093.

WANG Y L, LIU J, WANG M, et al. Comparison of degradation of geosmin (GSM) and 2- methyl isoborneol (2-MIB) by ultraviolet advanced oxidation process [J]. Environmental Chemistry, 2022, 41(9): 3083-3093(in Chinese).

- [19] YOU YEAN-WOONG. 饮用水中2-甲基异莰醇(2-MIB)和土臭素的高灵敏检测 [J]. 环境化学, 2016, 35(8): 1733-1736.
 YOU Y W. Highly sensitive detection of 2- methyl isocamphene (2-MIB) and oxytocin in drinking water [J]. Environmental Chemistry, 2016, 35(8): 1733-1736(in Chinese).
- [20] MENG T, SU X, SUN P Z. Degradation of geosmin and 2-methylisoborneol in UV-based AOPs for photoreactors with reflective inner surfaces: Kinetics and transformation products [J]. Chemosphere, 2022, 306: 135611.
- [21] 米记茹. UV/H₂O₂/O₃高级氧化去除藻源嗅味和有机物的效果及机理研究[D]. 济南: 山东建筑大学, 2021.
 MI J R. Study on the effect and mechanism of UV/H₂O₂/O₃ advanced oxidation to remove odor and organic matter from algae[D]. Jinan: Shandong Jianzhu University, 2021 (in Chinese).
- [22] BENIWAL D, TAYLOR-EDMONDS L, ARMOUR J, et al. Ozone/peroxide advanced oxidation in combination with biofiltration for taste and odour control and organics removal [J]. Chemosphere, 2018, 212: 272-281.
- [23] PARK G, YU M, KOO J Y, et al. Oxidation of geosmin and MIB in water using O₃/H₂O₂: Kinetic evaluation [J]. Water Supply, 2006, 6(2): 63-69.
- [24] SUN B, WANG Y, XIANG Y Y, et al. Influence of pre-ozonation of DOM on micropollutant abatement by UV-based advanced oxidation processes [J]. Journal of Hazardous Materials, 2020, 391: 122201.
- [25] SCHOLZ M, MARTIN R J. Ecological equilibrium on biological activated carbon [J]. Water Research, 1997, 31(12): 2959-2968.
- [26] ABROMAITIS V, RACYS V, van der MAREL P, et al. Effect of shear stress and carbon surface roughness on bioregeneration and performance of suspended versus attached biomass in metoprolol-loaded biological activated carbon systems [J]. Chemical Engineering Journal, 2017, 317: 503-511.
- [27] ANTONOPOULOU M, EVGENIDOU E, LAMBROPOULOU D, et al. A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media [J]. Water Research, 2014, 53: 215-234.
- [28] JIANG Q Y, WANG Y L, TIAN L P, et al. Pilot-scale and mechanistic study of the degradation of typical odors and organic compounds in drinking water by a combined UV/H₂O₂-BAC process [J]. Chemosphere, 2022, 292: 133419.
- [29] YUAN R F, WANG S N, LIU D, et al. Effect of the wavelength on the pathways of 2-MIB and geosmin photocatalytic oxidation in the presence of Fe-N co-doped TiO₂ [J]. Chemical Engineering Journal, 2018, 353: 319-328.
- [30] KIM T K, MOON B R, KIM T, et al. Degradation mechanisms of geosmin and 2-MIB during UV photolysis and UV/chlorine reactions [J]. Chemosphere, 2016, 162: 157-164.
- [31] MA L F, WANG C Y, LI H P, et al. Degradation of geosmin and 2-methylisoborneol in water with UV/chlorine: Influencing factors, reactive species, and possible pathways [J]. Chemosphere, 2018, 211: 1166-1175.