

DOI:10.7524/j.issn.0254-6108.2022091405

罗镇南,秦瑞欣,张释义,等. 头发中多种新型有机污染物检测方法的建立[J]. 环境化学, 2023, 42(5): 1509-1523. LUO Zhennan, QIN Ruixin, ZHANG Shiyi, et al. The establishment of a new method for the detection of emerging organic contaminants in hair[J]. Environmental Chemistry, 2023, 42 (5): 1509-1523.

头发中多种新型有机污染物检测方法的建立*

罗镇南^{1,2} 秦瑞欣^{2,3,4} 张释义² 莫 凌⁵ 李 红^{1,2} 唐 斌² 李 敏² 蔡凤珊^{2,3,4} 王俊丽¹ 郑 晶^{1,2 **}

(1.贵州医科大学公共卫生与健康学院,环境污染与疾病监控教育部重点实验室,贵阳,550025;2.生态环境部华南环境科学研究所,新污染物研究团队国家环境保护环境污染健康风险评价重点实验室,广州,510655;3.中国科学院广州地球化学研究所,有机地球化学国家重点实验室,广州,510640;4.中国科学院大学,北京,100049;

5. 海南省环境科学研究院,海口,571126)

摘 要 本研究基于超声提取-分散固相萃取技术,建立了同时分析头发中多溴联苯醚(PBDEs)、有机 磷系阻燃剂(OPFRs)、全氟及多氟烷基化合物(PFASs)、邻苯二甲酸酯(PAEs)及其代谢物(mPAEs)等5类有机污染物的前处理方法.头发样品(0.1g)研磨成粉/絮状后经4mL正己烷:丙酮:乙酸乙酯:乙腈(1:1:1:1,*VWVW*)混合溶液提取3次,加入20mg无水硫酸钠(Na₂SO₄)和100mg十八烷基硅烷键合硅胶(C18)净化除杂,氮吹浓缩后分别采用GC-MS、GC-MS/MS和LC-MS/MS进行分析.实验采用内标法定量,所有目标化合物在其相应的质量浓度范围内线性关系良好,相关性系数大于0.995;5类化合物检出限介于0.042—364.7 ng·g⁻¹,加标回收率在53.6%—138%之间,相对标准差及日内/间精密度均小于20%.采用该方法对广州市10例男性头发进行了检测,所有样品均检出全氟辛烷磺酸(PFOS)、邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二二氧丁酯(DIBP)、邻苯二甲酸二丁酯(DNBP)、邻苯二甲酸二(2-乙基)己酯(DEHP)、邻苯二甲酸单异丁酯(miBP)、邻苯二甲酸单(2-乙基己基)酯(mEHP)、磷酸三苯酯(TPHP)、磷酸三(2-乙基己基)酯(TCEP)、磷酸三(2-氯丙基)酯(TCIPP)及十溴联苯醚(BDE 209),检出浓度介于1.09—4951 ng·g⁻¹之间.该方法简单安全,有较高灵敏度和精确度,仅用少量样品和有机溶剂即可同步分析头发多种痕量新型有机污染物、可为人体多种有机污染物长期暴露研究提供技术参考.

关键词 超声提取,分散固相萃取,头发,新型有机污染物.

The establishment of a new method for the detection of emerging organic contaminants in hair

LUO Zhennan^{1,2} QIN Ruixin^{2,3,4} ZHANG Shiyi² MO Ling⁵ LI Hong^{1,2} TANG Bin² LI Min² CAI Fengshan^{2,3,4} WANG Junli¹ ZHENG Jing^{1,2 **}

(1. School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; 2. State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of

** 通信联系人 Corresponding author, Tel: 020-85559609, E-mail: zhengjing@scies.org

²⁰²² 年 9 月 14 日收稿(Received: September 14, 2022).

^{*} 国家自然科学基金(42077404),国家自然科学基金-优秀青年科学基金(42222007)和海南省科协青年科技英才学术创新计划项目(QCXM201914)资助.

Supported by the National Natural Science Foundation of China (42077404), the National Natural Science Foundation of China - Outstanding Youth Science Foundation (42222007) and the Program of Hainan Association for Science and Technology Plans to Youth R & D Innovation (QCXM201914).

Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; 3. State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; 4. University of Chinese Academy of Sciences, Beijing, 100049, China; 5. Hainan Research Academy of Environmental Sciences, Haikou,

571126, China)

Abstract In this study, a pretreatment method was established for the simultaneous analysis of polybrominated diphenyl ethers (PBDEs), organophosphorus flame retardants (OPFRs), perfluorinated and polyfluorinated alkyl compounds (PFASs), phthalate esters (PAEs) and their metabolites (mPAEs) in human hair based on ultrasonic extraction-dispersed solid phase extraction. Hair sample (0.1 g) was ground into powder/flocculent and then extracted with 4 mL hexane: acetone: ethyl acetate: acetonitrile (1:1:1:1, V/V/V/V) for three times, and 20 mg anhydrous sodium sulfate (Na_2SO_4) and 100 mg octadecyl bonded silica (C18) were added to purify and remove impurities. The extract was concentrated and reconstituted, and the target chemicals were analyzed by using GC-MS, GC-MS/MS and LC-MS/MS, respectively. The linearity of individual target chemicals was good in the corresponding concentration range, with correlation coefficient higher than 0.995. The detection limits of the target chemicals were $0.042 - 364.7 \text{ ng} \cdot \text{g}^{-1}$, the recoveries were 53.6%—138%, and the relative standard deviation and the intraday and interday precision were less than 20%. The developed method was applied to analyze target chemicals in 10 male hair samples. Perfluorooctane sulfonic acid (PFOS), dimethyl phthalate (DMP), diethyl phthalate (DEP), di-iso-butyl phthalate (DIBP), di-N-butyl phthalate (DNBP), dis(2-ethyl)hexyl phthalate (DEHP), mono-isobutyl phthalate (miBP), mono-(2-ethylhexyl) phthalate (mEHP), triphenyl phosphate (TPHP), tri2-ethylhexyl phosphate (TEHP), 2-ethylhexyl diphenyl phosphate (EHDPP), tri (2chloroethyl) phosphate (TCEP), tri (2-chloropropyl) phosphate (TCIPP) and decabromodiphenyl ether (BDE 209) were detected in all samples, with concentrations as 1.09 - 4951 ng·g⁻¹. Only a small amount of hair sample and low volume of organic solvents were needed to simultaneously analyze a variety of trace emerging organic contaminants in hair, which can provide technical support for the study of long-term exposure to a variety of organic pollutants in human body.

Keywords ultrasonic extraction, dispersed solid phase extraction, human hair, emerging organic contaminants.

新型有机污染物(emerging organic contaminants, EOCs)指环境中新出现或最近引起关注,可能对生 态系统和人体健康产生风险,管理措施不足或尚未纳入管理的有机污染物[1-4].主要包括药品和个人护 理品(pharmaceuticals and personal care products, PPCP)、阻燃剂(flame retardant)、塑化剂(plasticizers)、 杀虫剂,激素、表面活性剂等^[3,5].这些 EOCs 在日常生活和工业生产中被频繁使用并广泛存在,如多溴 联苯醚(polybrominated diphenyl ethers, PBDEs)是一种典型的溴代阻燃剂,具有阻燃效果好、生产成本 低等特点,曾是应用最广泛的阻燃剂。近些年研究发现其具有环境持久性、生物累积性和生物毒性, 目前已在全球范围内被禁用,并逐渐被有机磷酸酯阻燃剂(organophosphate flame retardants, OPFRs)取 代16-7]. 邻苯二甲酸酯(phthalic acid esters, PAEs)具有可塑性、耐久性,能够提高材料强度和透明度等优 点[7-8],是一种常用的塑料添加剂,进入人体后经代谢转化可形成单酯或单酯的氧化产物即邻苯二甲酸 酯代谢物(phthalate metabolites,mPAEs). 全氟及多氟烷基化合物(per-fluorinatedand polyfluoroalkyl compounds, PFASs)具有化学及热稳定性¹⁰¹、高表面活性及疏水疏油性¹¹⁰¹等特点,结构中含有极其稳定 的 C—F 键, 不易发生热解、光解、水解和生物降解, 具有较强的生物蓄积性^[11]. 上述化合物常以非化学 键或直接添加的形式在塑料、建材、食品包装材料、电子设备、玩具、化妆品、农药、纸张、地毯、纺织 品、家具等产品中被广泛使用[9,12-15],因而容易在产品生产、使用及回收处理过程经磨损、挥发等途径 释放到环境中[16]. 目前已在土壤[17]、水体[18]、室内灰尘[19] 等环境介质以及鱼[20]、蛋[21] 等日常食品中被广 泛检出,并可通过食物摄入、呼吸吸入和皮肤接触等途径进入人体,如血液、尿液、母乳、指甲等人体 样品中已有关于 PBDEs、PFASs、OPFRs、PAEs 以及 mPAEs 检出的报道^[22-26].同时研究发现这些 EOCs 能够导致人体内分泌紊乱,具有神经毒性、生殖毒性、内分泌毒性和致癌性等^[27-28].

相较于血液、尿液、母乳等传统生物基质,头发具有采集方便、易储存、非侵入性采样、易被采集 对象接纳等优点,常做为生物监测材料用于法医、毒品、重金属及有机污染物等研究,反映人体长期暴 露情况.尽管目前已有多篇文献报道了关于头发中 EOCs 检测方法^[11, 29–31],但能够同时分析头发中多 种 EOCs 的研究较为缺乏.现有文献多采用硝酸消解的方法检测头发中的 PBDEs、OPFRs 和 PAEs 等 污染物^[6, 32–34], PFASs 则多使用碱消解^[35].两种消解方式存在费时、耗费溶剂、缺乏安全性等缺点.此外 有研究显示,酸/碱消解破坏头发结构的同时释放的一些内源性物质可能会影响头发中目标污染物如 PFASs^[11]的检测,具有一定局限性;相比之下,头发研磨后经有机溶剂萃取,能够更准确的反映头发中 PFASs 的污染水平^[11, 36–37],然而该方法是否同样适用于其他种类的 EOCs 目前还缺少相关的文献报道.

因此,本研究在以往研究的基础上,通过优化有机萃取溶剂和分散固相萃取剂种类,建立了仅用少量头发样品(0.1g)和有机溶剂即可同时检测头发中15种 PAEs、12种 PFASs、11种 OPFRs、8种 mPAEs及8种 PBDEs共5大类54种 EOCs的前处理方法,该方法节约溶剂且更为安全快速,同时采用本研究建立的前处理方法,分析了广州市10例普通男性头发中5类有机污染物的浓度水平.

1 材料与方法(Materials and methods)

1.1 材料、试剂与仪器

材料与试剂:离心管(目盛付,日本),色谱级乙酸铵(CH₃COONH₄)、甲酸(HCOOH)、乙腈 (ACN)、乙酸乙酯(EtAC)、甲基叔丁基醚(MTBE)、异辛烷(ISO)、正己烷(HEX)、二氯甲烷(DCM)和 丙酮(ACE),无水硫酸镁(MgSO₄)、无水硫酸钠(Na₂SO₄)、N-丙基乙二胺(PSA)、十八烷基硅烷键合硅 胶(C18)和石墨化炭黑(GCB)(上海安谱实验科技股份有限公司,中国),甲醇(MEOH)(默克,德国).

仪器: AB SCIEX API 4000 三重四极杆质谱仪(AB SCIEX,美国); Agilent 7890B 气相色谱仪、 Agilent 1260 液相色谱仪、Agilent 5977A 质谱仪、Agilent 5975C 质谱仪、DB-5HT 毛细管柱(15 m× 0.25 mm i.d., 0.10 μm)、DB-5MS 毛细管柱(30 m×0.25 mm i.d., 0.25 μm)、Poroshell 120EC-C18(2.1 mm× 100 mm, 2.7 μm)(安捷伦,美国); Kinetex EVO-C18100 A 色谱柱(2.1 mm×100 mm, 5 μm), Kinetex× 2.6 μm Bipheny 100 A(2.1 mm×100 mm)(Phenomenex,美国).分析天平(上海安亭电子仪器厂,中国),氮 吹仪(柏林河西路,美国), Milli-Q 超纯水系统(默克,德国), 涡旋振荡器(特朗纳,美国), 冷冻干燥机 (SP Scientific,美国), Eppendorf 5810 低速冷冻离心机(Eppendorf,比利时). KQ-500DE 型数控超声波清 洗器(昆山市超声仪器有限公司,中国), 行星式球磨仪(弗卡斯实验仪器有限公司,中国).

1.2 标准品

PBDEs、PAEs、mPAEs 化合物标准品(AccuStandard, 美国), PFASs 化合物标准品(wellington, 加拿大), OPFRs 化合物标准品(CIL(Cambridge Isotope Laboratorie), 美国)及对应内标标准品信息见表 1. 1.3 样本采集与前处理

以广州市年龄在 18—40岁, 且近期无烫染发行为的男性作为研究对象, 志愿者在了解本次研究目的并签署知情同意书后, 贴近头皮采集全部头发样品, 铝箔纸包裹编号后放入密实袋, 干燥阴凉处保存, 每份样品大于 5g. 采集后的头发置于锥形瓶, Milli-Q水振荡清洗两遍, 去除头发表面附着的灰尘等外部污染物, 进行冷冻干燥. 实验前用 HEX 洗过的不锈钢剪刀将其剪短至 0.5—1 cm. 采用行星式球磨仪将头发样品充分研磨成粉/絮状.取 0.1g 研磨头发于离心管加入 1mL EtAC 及 20 µL 各类目标物的同位素内标(OPFRs、PFASs、mPAEs 的内标及¹³C₁₂-BDE 209 的质量浓度为 100 ng·mL⁻¹, BDE 118、BDE 128 的质量浓度为 200 ng·mL⁻¹, PAEs 内标的质量浓度为 500 ng·mL⁻¹), 通风橱静置过夜使溶剂挥发. 然后加入 HEX、ACE、ACN 及 EtAC(1:1:1:1, *V/V/V/V*)的混合溶液 4 mL, 2000 r·min⁻¹ 涡旋 4 min, 20 ℃ 超声 20 min, 4000 r·min⁻¹ 离心 15 min 取上清, 重复 3 次. 上清液氮吹浓缩至1 mL 后加入 20 mg 无水 Na₂SO₄ 和 100 mg C18 进行净化. 1200 r·min⁻¹ 涡旋 7 min、3500 r·min⁻¹ 离心 15 min,转移上清液至干净的玻璃管中, 氮吹近干后 200 µL MEOH 复溶, -20 ℃ 下静置 4—6 h 冷冻沉淀除杂, 上清液待 GC-MS、GC-MS/MS 和 LC-MS/MS 检测分析.

		内标	Internal standards			2,3',4,4',5-五溴联苯 醚(BDE118)					2,2',3,3',4,4'-六溴联 苯醚(BDE128)			¹³ C ₁₂ -十溴联苯醚 (¹³ C ₁₂ -BDE209)	1											
:1 目标化合物及内标标准品信息 nformation of target chemicals and internal standards		目标化合物	Target chemicals	LDUES	2,4,4-三溴联苯醚 (BDE28)	2,2',4,4'-四溴联苯醚 (BDE47)	2,2',4,4',5-五溴联苯 醚(BDE99)	2,2',4,4',6-五溴联苯 醚(BDE100)	2,2',4,4',5,5'-六溴联	苯醚(BDE153)	2,2',4,4',5,6'-六溴联 苯醚(BDE154)	2,2',3,4,4',5',6-七溴	联本醚(BDE183)	十溴联苯醚 (BDE209)												
		内标 ·	Internal standards		¹³ C ₄ -邻苯二甲酸单2- 乙基-5-羟基己基酯 (¹³ C ₄ -5OH-mEHP)	邻苯二甲酸单(2-乙 氧-5-氧己基)酯- ¹³ C4,(5Oxo-MEHP- ¹³ C4)	邻苯二甲酸单(2-乙 基己基)酯- ¹³ C4(mEHP- ¹³ C4)	¹³ C ₄ -邻苯二甲酸单 乙酯(¹³ C ₄ -mEP)	d4-邻苯二甲酸单辛	酉旨(d4-mnOP)	¹³ C4-邻苯二甲酸单 苄基酯(¹³ C4-mBzP)	d₄-邻苯二甲酸单辛	BE(d4-mnOP)	¹³ C4-邻苯二甲酸单 正丁酯(¹³ C4-mnBP)	-											
	cilial stalluatus	目标化合物	Target chemicals	IIIFAES	邻苯二甲酸单(2-乙 基-5-羟基己基)	邻苯二甲酸单(2-乙 氧-5-氧己基)酯 (50xo-MEHP)	邻苯二甲酸单(2-乙 基己基)酯(mEHP)	邻苯二甲酸单乙酯 (mEP)	邻苯二甲酸单辛基	乙酯(mnOP)	邻苯二甲酸单苄基 酯(mBzP)	邻苯二甲酸单异壬	雪茸(minP)	邻苯二甲酸单异丁 酯(miBP)												
		内标	Internal standards		d ₁₅ -磷酸三苯酯(d ₁₅ - TPHP)	d ₁₈ -三(2-氯丙基)磷 酸酯(d ₁₈ -TCIPP)	d ₁₂ -三(2-氯乙基)磷 酸酯(d ₁₂ -TCEP)			d ₁₅ -磷酸三苯酯(d ₁₅ -	TPHP)			d ₁₂ -三(2-氯乙基)磷 酸酯(d ₁ ,-TCEP)	d ₁₈ -三(2-氯丙基)磷	後 首(d ₁₈ -1 UIPP)	d ₁₅ -三(1,3-二氯-2-丙	基)磷酸酯(d ₁₅ - ThCIDD)	IDUILT'							
		目标化合物	l arget chemicals	OFFINS	磷酸三苯酯(TPHP)	磷酸三异丙酯 (TIPRP)	磷酸三乙酯(TEP)	磷酸三丁酯(TNBP)	磷酸三(2-丁氧乙基)	酯 (TBOEP)	磷酸三2-乙基己基酯 (TEHP)	2-乙基己基二苯基磷	酸酯(EHDPP)	磷酸三(2-氯乙基)酢 (TCEP)	磷酸三(2-氯丙基)酯	(TCIPP) 三(13 一気 3 玉並)	—(I,)	(日)日本田工業業	姚晙二十本間(1 - L')							
, Tahle 1 The	Table 1 The 1	内标	Internal standards			¹³ C ₁₂ -全氟辛酸	(MPFOA)			¹³ C12-全氟辛烷磺酸	(MPFOS)		"C12-全東半酸	(MPFOA)			¹³ C1-全氟辛烷磺酸	(MPFOS)								
		目标化合物	l arget chemicals	ITA38	全氟庚酸(PFHpA)	全氟辛酸(PFOA)	全氟壬酸(PFNA)	全氟癸酸(PFDA)	全氟十一烷酸	(PFUdA)	全氟十二烷酸 (PFDoA)	全氟十三烷酸	(PF1rDA)	全氟十四烷酸 (PFTeDA)	全氟丁烷磺酸盐	(FFBS) 今毎コ虐雄酸卦	王琳山孙映政亜 (PFHxS)	全氟辛烷磺酸	(PFOS)	全氟癸烷磺酸盐	(PFDS)					
		内标	Internal standards									d₄-邻苯二甲酸二丁	間(d4-DNBP)													
		目标化合物	l arget chemicals	FAES	邻苯二甲酸二甲酯 (DMP)	邻苯二甲酸二乙酯 (DEP)	邻苯二甲酸二异丁 酯(DIBP)	邻苯二甲酸二丁酯 (DNBP)	邻苯二甲酸二甲氧	乙酯(DMEP) 24世日11月1日)	孙本甲酸4-甲 基-2-戊基酯 (DMPP)	邻苯二甲酸双-2-乙	戦歩し間(DEEP)	邻苯二甲酸二戊酯 (DPP)	邻苯二甲酸二己酯	(DHP) 如本一田畹丁芊祗	(BBP) (BBP)	邻苯二甲酸二(2-丁	氧基)乙酯(BBEP)	邻苯二甲酸二(2-乙	基)己酯(DEHP) M 幸 一 田 縣 一 幸 毗	344山丁段山今間 (DPHP)	《北亚》 邻苯二甲酸二正辛	醋(DOP)	邻苯二甲酸二壬酯	(DNF)

1512

42 卷

1.4 仪器分析

PBDEs 和 PAEs 分别采用气相色谱-质谱联用仪(GC-MS)和三重四极杆气相色谱质谱联用仪(GC-MS/MS)进行分析. PBDEs: 负化学离子源(NCI), DB-5HT 色谱柱(15 m×0.25 mm i.d., 0.10 μm)分离. 起始温度 110 °C, 保留 5 min, 20 °C·min⁻¹ 升至 200 °C, 保持 4.5 min, 10 °C·min⁻¹ 升至 310 °C, 保持 15 min. PAEs: DB-5MS 毛细管柱(30 m × 0.25 mm i.d., 0.25 μm), 进样口温度 290 °C, 传输线温度 150 °C; 载气为氦气, 流速 1 mL·min⁻¹; 起始温度 90 °C, 15 °C·min⁻¹ 的速率升至 310 °C, 保持 5 min. 溶剂延迟 5 min, EI 源, 电子轰击能量 70 eV, 多重反应监测模式(MRM); 离子源温度 230 °C, 四极杆温度 150 °C. 不分流进样且进样量均为 1 μL.

OPFRs、PFASs、mPAEs使用 Agilent 1260 液相色谱仪、AB SCIEX API 4000+ MS/MS 三重四极杆 串联质谱仪分析(LC-MS/MS),色谱柱分别为: Kinetex 2.6 μm Biphenyl 100 A(2.1 mm×100 mm)、 Poroshell 120 EC-C18(4.6 mm× 100 mm, 2.7 μm)、Kinetex EVO-C18 100 A(2.1 mm×100 mm, 5 μm),均 采用电喷雾电离源(ESI)及多反应监测模式(MRM),进样量 5 μL,其余仪器分析条件见表 2.

Tal	ble 2 Liquid chromatography and m	ass spectrometry parameters of OP	FRs, PFASs and mPAEs
分析条件 Analytical Conditions	OPFRs	PFASs	mPAEs
色谱条件 (流动相、洗脱梯 度) Chromatographic conditions (Mobile phase, elution gradient)	A: 甲醇, B: 0.01 mol·L ⁻¹ 乙酸铵溶液; 0—0.1 min: 65% B 0.1—9 min: 65%—5% B 9—13 min: 5%—0% B 13—14 min: 0% B 14—15.1 min: 0%—65% B 15.1—20 min: 65% B 柱温40 ℃, 流速250 μL·min ⁻¹	A: 乙腈, B: 0.01 mol·L ⁻¹ 乙酸铵溶液; 0—1 min: 20% A 1—8 min: 20%—100% A 8—12.5 min: 100% A 12.5—13 min: 100%—20% A 13—18 min: 20% A 柱温50 ℃, 流速300 µL·min ⁻¹	A: 乙腈, B: 0.1%甲酸水溶液, 0—12 min: 15%—45% A 12—15 min: 45% A 15—19 min: 45%—98% A 19—21 min: 98% A 21—21.1 min: 98%—15% A 21.1—25 min: 15% A 柱温40 ℃, 流速300 µL·min ⁻¹
质谱条件 Mass spectrometry conditions	正离子扫描方式;毛细管电压:4000 V; 气体(N ₂)温度:550 ℃	负离子扫描方式,离子喷雾电压为- 4500 V,离子源温度为450℃	负离子扫描方式,离子喷雾电压4000 V, 气体(N ₂)温度350℃

表 2	OPFRs 、	PFASs 及	mPAEs	的液相包	白谱和质	谱参数
-----	----------------	---------	-------	------	------	-----

1.5 质量保证与质量控制(QAQC)

所有玻璃器材使用前均采用碱液(pH>11)浸泡 4 h 以上, 经自来水及超纯水冲洗并用烘箱烘干, 再在 400 ℃ 的马弗炉中焙烧 4 h, 使用前经 DCM 和 HEX 淋洗吹干. 方法定量限(limit of quantification, LOQ)和方法检出限(limit of detection, LOD)为空白样品中目标化合物浓度的均值加 10 倍或者 3 倍标 准差, 空白未检出时定义为 10 倍或者 3 倍信噪比. 实验采用内标法定量, 设置空白、基质、空白加标和 基质加标等 4 组实验且每组 3 个重复, 用空白加标和基质加标浓度减去空白和基质的平均浓度计算回 收率和相对标准差.

2 结果与讨论(Results and discussion)

2.1 前处理条件优化

2.1.1 分散固相萃取剂的选择

现有研究中, EtAC、HEX、ACE、MTBE常用作 OPFRs、PAEs、PAFSs 和 PBDEs 的提取剂或洗脱剂^[38-42],本研究在以往研究基础上首先采用 ACE、HEX 和 MTBE 对头发中污染物进行提取^[16].分散固 相萃取剂参考 Zafeiraki^[21]和熊仕茂^[43]对 OPFRs 和 PFASs 的净化条件,具体如表 3 中方案 1 所示.另有 文献指出,研磨处理可提高头发样品中污染物的提取效率^[11,37,44],故本研究在进行 EOCs 提取前将所有 头发充分研磨成粉/絮状.

头发样品经方案 1 处理后, PBDEs、OPFRs 和 PAEs 三类污染物均有较好效果, 回收率和相对标准 偏差分别介于 40%—129% 和 0.1%—21.4% 之间. 而 PFASs 中仅 PFHxS、PFOS 和 PFDS 的回收率在 60% 以上, 其余几种化合物空白和基质加标的回收率小于 7%, 损失较为严重. 为进一步探究分散固相 萃取填料对 PFASs 的影响, 溶剂加标后分别采用 MgSO₄、PSA、C18 和 GCB 净化, 结果如图 1 所示.

PFASs 的回收率整体呈现 C18>GCB>PSA>MgSO₄ 的趋势.其中经 MgSO₄处理后,8 种全氟烷酸的 回收率均低于 50%,推测 MgSO₄ 可能对 PFASs 类污染物具有较强的吸附效应,因此回收率相对差. MgSO₄ 作为干燥剂可吸收溶液中的微量水分^[38,45],考虑到可能存在的吸附作用,后续实验改用无水 Na₂SO₄. C18 一般用于去除脂肪等非极性杂质^[38],研究结果显示其对大多数化合物的影响最小^[46],因此 实验选用无水 Na₂SO₄ 和 C18 作为净化填料.

Table 3 Four pretreatment schemes of organic extraction solvent and dispersed solid phase extraction			
方案	有机提取溶剂	分散固相萃取剂	
Scheme	Organic extraction solvent	Disperse solid phase extractant	
1	ACE, HEX, MTBE	无水MgSO4, PSA, C18	
2	ACE, HEX, MTBE		
3	EtAC, HEX, MTBE	无水Na ₂ SO ₄ , C18	
4	EtAC, HEX, ACN, ACE		

Fig.1 Recoveries of PFASs in four kinds of dispersed solid phase extraction fillers

2.1.2 有机萃取溶剂的优化

确定净化填料后,进一步对有机萃取溶剂展开优化. Alves 等^[22]分别比较了乙酸乙酯、异丙醇、四氢呋喃/异丙醇的(50:50, *V/V*)对 PFASs 的提取效果,发现乙酸乙酯效果最好(回收率 69.0%—141% 之间).此外乙酸乙酯常作为 OPFRs 优良的提取剂或洗脱剂,能够获得较好的回收效果^[41],故本研究分别 对比了 ACE+HEX+MTBE(方案 2)和 EtAC+HEX+MTBE(方案 3)对 5 类污染物的提取效率.结果显示, 经方案 2 处理后, EHDPP、PFHpA 和 PFOA 的回收率较差,回收率在 29.6%—42.8% 之间;而方案 3 处理后 EHDPP、PFBS 的回收率在 21.4%—48.2% 之间,两种方案均存在一定的缺陷.

综合以上实验结果,考虑到 mPAEs 属于亲水性化合物,因此进一步采用 EtAC+HEX+ACE+ACN(方案 4)作为提取剂,无水 Na₂SO₄和 C18 作为净化剂对头发进行前处理,结果如图 2 所示. PBDEs、PFASs、OPFRs、PAEs 和 mPAEs 基质加标回收率在 53.6%—138% 之间, RSD: 0.01%—18.9%, 化合物整体回收率较之前有大幅提升.值得注意的是, PFASs 和 OPFRs 中回收率一直低于 40%的 PFDA、EHDPP、TCP 等化合物,经过方案 4 处理后效果得到明显改善,回收率和相对标准偏差分别为 53.6%—138% 和 0.01%—16.0%.

图 2 头发经方案 4 处理后测得 5 类化合物的空白和基质加标回收率 Fig.2 Blank and matrix spiked recoveries of 5 classes of chemicals in hair obtained after treatment with scheme 4

2.2 方法学验证

2.2.1 标准曲线和检出限

本研究采用内标法定量,使用甲醇和异辛烷将"1.2"中标准品进行稀释,分别配制 mPAEs、PFASs、OPFRs及 PBDEs混合溶液,然后依次稀释成9个系列浓度(2.0、5.0、10.0、20.0、50.0、100.0、200.0、500.0、1000.0 ng·mL⁻¹).考虑到样品中较高的检出浓度,PAEs标曲浓度为5.0、10.0、20.0、50.0、100.0、200.0、500.0、1000.0、2000.0、3000.0、4000.0、5000.0 ng·mL⁻¹.所配标准曲线在仪器最佳条件下检测,以待测物与对应内标峰面积比值 Y 对其质量浓度比值 X 进行分析,各目标化合物在相应浓度范围有良好线性关系,相关系数(correlation coefficient, R)均大于 0.995.按照"1.5"中方法计算每种化合物的方法定量限和检出限.PBDEs、OPFRs、PAEs、mPAEs 和 PFASs 的检出限在 0.042—364.7 ng·g⁻¹之间,详见表4.

目标物	相关系数	定量限	检出限	目标物	相关系数	定量限	检出限
Target chemicals	(R)	(LOQ)	(LOD)	Target chemicals	(R)	(LOQ)	(LOD
PAES	0.000	20.00	(204	PFASS	0.007	2 420	0.720
DMP	0.999	20.98	6.294	РЕНРА	0.997	2.429	0.729
DEP	0.999	32.35	9.705	PFOA	0.998	1.788	0.537
DIBP	0.995	1215	364.7	PFNA	0.997	1.208	0.362
DNBP	0.998	856.0	256.8	PFDA	0.997	0.816	0.245
DMEP	0.998	15.11	4.533	PFUdA	0.996	0.668	0.200
DMPP	0.999	1.996	0.599	PFDoA	0.999	0.344	0.103
DEEP	0.997	17.29	5.186	PFTrDA	0.997	1.098	0.329
DPP	0.997	0.581	0.174	PFTeDA	0.997	1.457	0.437
DHP	0.999	0.297	0.089	PFBS	0.999	0.152	0.045
BBP	0.999	0.690	0.207	PFHxS	0.998	0.140	0.042
BBEP	0.999	1.129	0.339	PFOS	0.999	0.377	0.113
DEHP	0.997	1074	322.2	PFDS	0.997	0.457	0.137
DPHP	0.999	0.159	0.048				
DOP	0.999	0.629	0.189				
DNP	0.996	12.89	3.866				
OPFRs				mPAEs			
TPHP	0.995	1.044	0.313	50H-MEHP	0.998	3.249	0.975
TIPRP	0.998	0.187	0.056	5Oxo-MEHP	0.998	0.146	0.044
TEP	0.999	0.574	0.172	mEHP	0.998	48.16	14.45
TNBP	0.995	17.12	5.135	mEP	0.999	2.874	0.862
TBOEP	0.997	1.280	0.384	mnOP	0.998	0.574	0.172
TEHP	0.999	4.726	1.575	mBzP	0.998	0.315	0.095
EHDPP	0.996	3.822	1.147	miNP	0.998	0.465	0.139
TCEP	0.999	12.44	3.731	miBP	0.997	21.79	6.538
TCIPP	0.998	6.327	1.898				
TDCIPP	0.999	32.51	9.752				
ТСР	0.998	22.59	6.776				
PBDEs				PBDEs	,		
BDE 28	0.997	1.546	0.464	BDE 153	0.999	0.513	0.154
BDE 47	0.996	7.813	2.344	BDE 154	0.999	4.673	1.402
BDE 99	0.999	2.179	0.654	BDE 183	0.999	3.419	1.026
BDE 100	0 999	1 783	0 535	BDE 209	0 999	1 506	0.453

表4 目标化合物相关系数(R)、定量限(LOQ)及检出限(LOD)($ng \cdot g^{-1}$)

2.2.2 准确度和精密度

准确度采用目标化合物在头发样品中的加标回收率确定,精密度用平行样品之间的相对标准偏差(RSD)表示,使用同一标曲点每日重复测定3次且连续测定3d获得的日内/间精密度评价方法的稳定性.头发样品中5类化合物的基质加标回收率、相对标准差结果及样品基质加标色谱图如表5及图3所示.经方案4处理后,5类化合物回收率及相对标准偏差均在可接受范围.其中PBDEs回收率范围为:96.4%—127%(RSD<4%);OPFRs:54.7%—138%(RSD<7%);PFASs:53.6%—98.2%(RSD<10%);PAEs:88.3%—126%(RSD<16%);mPAEs:97.2%—133%(RSD<15%),所有化合物日内/间精密度均<20%,结果表明该前处理方法和操作过程适合用于头发中此5类污染物的分析.

	Table 5Mat	rix spiked recover	ries, relative stand	lard deviation	ns and precisions	s of target chemica	als
目标物 Target	回收率/% (Rec.±RSD) Recoveries	日内精密度/% Intraday precisions	日间精密度/% Interday	目标物 Target	回收率/% (Rec.±RSD) Recoveries	日内精密度/% Intraday precisions	日间精密度/% Interday
PAEs	Recoveries	precisions	precisions	PFASs	Recoveries	precisions	precisions
DMD	01.0+0.47	2 10	2.97	DELL	52 (10.04	10.4	11.1
DMP	91.0±0.47	2.19	3.80	РЕНрА	53.6±0.94	10.4	11.1
DEP	93.1±0.50	1.99	2.63	PFOA	61.4±2.19	9.75	11.5
DIBP	106±1.11	2.58	9.14	PFNA	76.6±0.08	4.90	5.51
DNBP	126±16.0	1.87	2.41	PFDA	71.1±0.30	3.55	11.7
DMEP	98.5±4.04	3.43	9.66	PFUdA	69.8±0.01	1.95	2.98
DMPP	98.9±1.45	2.11	15.5	PFDoA	74.7±6.78	1.47	3.09
DEEP	96.2±3.85	5.09	13.7	PFTrDA	58.6±3.37	2.02	3.01
DPP	89.1±1.99	4.12	13.3	PFTeDA	74.4±8.36	2.69	2.47
DHP	105±3.70	7.89	14.3	PFBS	98.2±9.26	2.93	3.58
BBP	107±4.10	5.72	13.9	PFHxS	84.7±0.51	4.38	4.23
BBEP	102±0.45	3.34	10.1	PFOS	84.1±0.12	3.11	2.86
DEHP	88.3±4.70	4.01	3.91	PFDS	86.3±1.00	3.96	3.75
DPHP	133±3.67	7.12	14.1				
DOP	116±5.20	17.1	14.6				
DNP	93.5±0.44	17.7	16.7				
mPAEs				OPFRs			
50H-MEHP	104±2.47	2.77	7.42	ТРНР	138±1.71	3.53	6.07
5Oxo-MEHP	127±1.30	3.08	11.2	TIPRP	120±1.93	2.59	1.31
mEHP	122±3.21	4.84	7.23	TEP	87.4±3.52	5.88	3.16
mEP	106±12.4	8.24	9.32	TNBP	86.8±9.29	6.24	4.64
mnOP	97.2±2.20	5.07	8.89	TBOEP	69.8±2.41	3.42	4.23
mBzP	107±0.81	3.72	8.37	TEHP	132±6.31	3.25	5.90
miNP	133±0.72	2.44	2.00	EHDPP	54.7±0.42	5.40	10.4
miBP	104±12.6	6.22	6.88	ТСЕР	83.3±1.18	3.27	5.85
				TCIPP	101±1.60	2.22	0.66
				TDCIPP	65.2±2.04	1.53	1.20
				ТСР	67.7±8.31	2.16	0.64
PBDEs				PBDEs			
BDE 28	127±0.47	2.07	5.76	BDE 153	105±1.85	5.91	10.2
BDE 47	104±0.45	0.66	5.66	BDE 154	104±1.97	4.28	9.02
BDE 99	111±1.68	0.89	4.94	BDE 183	98.4±0.38	5.41	8.02
BDE 100	112±3.82	4.58	6.26	BDE 209	96.4±0.36	0.18	0.12

表 5 目标化合物的基质加标回收率±相对标准差及精密度(%)

图 3 PBDEs(A)、PAEs(B)、mPAE(C)、PFASs(D)和 OPFRs(E)基质加标色谱图 Fig.3 The matrix spiked chromatograms of PBDEs (A), PAEs (B), mPAE (C), PFASs (D) and OPFRs (E)

2.3 头发样品分析及验证

将本研究建立的前处理方法用于检测广州市 10 例普通男性头发样品,结果显示 5 类 EOCs 在头发中均有检出(表 6). PBDEs 中主要检出污染物为 BDE 209,检出率为 100%,浓度在 1.09 —36.6 ng·g⁻¹

之间. OPFRs 和 PAEs 检出污染物种类最多,其中 TPHP、TEHP、EHDPP、TCEP、TCIPP、DMP、DEP、DIBP、DNBP、DEHP 在所有样品中均有检出,检出率为 100%,含量介于 2.69 — 4951 ng·g⁻¹之间. mEHP 和 miBP 是 mPAEs 中最主要检出的两种化合物,检出率为 100%,浓度分别为 27.0—298 ng·g⁻¹ 和 15.0—38.6 ng·g⁻¹. PFASs 中主要检出的是 PFOS 和 PFUdA,检出率分别为 100% 和 90%,含量范围 分别为 1.40—17.9 ng·g⁻¹ 和 nd—0.58 ng·g⁻¹. 头发主要检出污染物种类与之前报道相一致,其中 PBDEs 和 OPFRs 检出浓度水平与广州居民头发的检出含量类似(2.61—56.86 ng·g⁻¹、nd—287 ng·g⁻¹)^[47-48]; PAEs 和 mPAEs 的浓度与重庆城市居民及希腊孕妇的报道相似(9.22—5890 ng·g⁻¹、1.10—412.9 ng·g⁻¹)^[34,49], 而 PFASs 检出浓度水平明显高于深圳居民(<0.03—1.60 ng·g⁻¹)^[24]. 值得注意的是,包括 DMPP、DHP、TIPRP、PFBS 和 mnOP 在内的 24 种目标物在所有样品中均未检出,表明这些污染物受试者日常 生活中的暴露程度可能相对较低.

1. 6 11.		研磨	消解				
化合物 Chemicals	(<u> 沈</u> 唐范围/(ng·g ⁻¹)	Digestion // // // // // // // // // // // // //				
Chemiears	Detection frequency	Concentration range	Detection frequency	Concentration range			
OPFRs							
TPHP	100	6.32—332	100	20.9—476			
TIPRP	0	nd	0	nd			
TEP	0	nd	0	nd			
TNBP	30	nd—7.85	55	nd—7.37			
TBOEP	60	nd—33.5	33	nd—2.54			
TEHP	100	2.69—30.3	100	3.63—30.2			
EHDPP	100	8.14—176	100	16.2—174			
TCEP	100	6.38—36.6	100	4.04—44.7			
TCIPP	100	14.9—132	100	1.38—48.0			
TDCIPP	80	nd—390	66	nd—177			
ТСР	0	nd	0	nd			
PBDEs							
BDE 28	0	nd	0	nd			
BDE 47	0	nd	0	nd			
BDE 99	0	nd	0	nd			
BDE 100	0	nd	0	nd			
BDE 153	0	nd	0	nd			
BDE 154	0	nd	0	nd			
BDE 183	0	nd	0	nd			
BDE 209	100	1.09—36.6	100	0.57—41.4			
PFASs							
PFHpA	30	nd—2.04	0	nd			
PFOA	70	nd—2.47	0	nd			
PFNA	60	nd—1.05	0	nd			
PFDA	30	nd—0.36	0	nd			
PFUdA	90	nd—0.58	0	nd			
PFDoA	70	nd-0.24	0	nd			

	表 6 经研磨和消解处理后测得的头发样品中 EOCs 的检出率和浓度范围
Table 6	Detection frequency and concentration range of EOCs detected by hair samples after grinding and digestion

				续表6			
化乙酮		研磨	消解				
化合初 Chemicals	检出率/%	x度范围/(ng·g ⁻¹)	 检出率/%	浓度范围/(ng·g ⁻¹)			
	Detection frequency	Concentration range	Detection frequency	Concentration range			
PFTrDA	10	nd—0.47	0	nd			
PFTeDA	30	nd—0.08	0	nd			
PFBS	0	nd	0	nd			
PFHxS	0	nd	0	nd			
PFOS	100	1.40—17.9	0	nd			
PFDS	0	nd	0	nd			
PAEs							
DMP	100	63.9—181	na	na			
DEP	100	127—2593	na	na			
DIBP	100	804—4823	na	na			
DNBP	100	1074—4402	na	na			
DMEP	0	nd	na	na			
DMPP	0	nd	na	na			
DEEP	0	nd	na	na			
DPP	20	nd—334	na	na			
DHP	0	nd	na	na			
BBP	0	nd	na	na			
BBEP	0	nd	na	na			
DEHP	100	326—4951	na	na			
DPHP	20	nd—1.50	na	na			
DOP	0	nd	na	na			
DNP	0	nd	na	na			
mPAEs							
5OH-MEHP	60	nd—4.53	0	nd			
5Oxo-MEHP	0	nd	0	nd			
mEHP	100	27.0—298	0	nd			
mEP	30	nd—260	0	nd			
mnOP	0	nd	0	nd			
mBzP	0	nd	0	nd			
miNP	0	nd	0	nd			
miBP	100	15.0—38.6	0	nd			

注: nd 未检出; na 未获得. Note: nd, not detected, na, not available.

此外,为进一步验证研磨处理能否使头发中的污染物完全释放,本研究参考 Tang^[50]等的研究方法,将上述 10 例样品采用硝酸消解处理,液液提取后过弗罗里硅土小柱净化,上机后分析.结果显示 PFASs 的回收率非常差,¹³C₁₂-PFOA 同位素内标回收率不足 30%,而 mPAEs 同位素内标几乎全部损失. 同时发现 PBDEs 和 OPFRs 浓度与采用研磨处理后的水平相当(表 6),进一步表明采用该方法对头发样品进行前处理能够准确反映人体中 5 类 EOCs 的暴露水平.

3 结论(Conclusion)

本文在现有研究基础上对头发样品前处理条件进行优化,建立了 EtAC: HEX: ACE: ACN(1:1:

1:1, *V/V/V/V*)混合溶液超声提取、C18 和无水 Na₂SO₄ 分散固相萃取填料净化分析头发中 5 类新型有 机污染物的方法,结果显示 15 种 PAEs、12 种 PFASs、11 种 OPFRs、8 种 mPAEs 及 8 种 PBDEs 共 54 种 EOCs 的回收率在 53.6%—138% 之间.采用该方法对广州 10 例普通男性头发样本进行分析,结 果显示 5 类污染物在头发中均有检出,其中 PFOS、DMP、DEP、DINP、DNBP、DEHP、miBP、mEHP、 TPHP、TEHP、EHDPP、TCEP、TCIPP 及 BDE 209 是最主要的污染物,检出率为 100%,浓度范围在 1.09—4951 ng·g⁻¹之间.另外还将此结果与头发硝酸消解处理后的浓度水平进行了对比,表明该前处 理方法可用于分析头发中的 PBDEs、OPFRs、PFASs、PAEs 和 mPAEs 类污染物.本文建立的前处理方 法仅需 0.1 g 样品和少量有机溶剂即可获得良好回收率和精密度,灵敏度高且简单快速,能同时有效检 测头发中多种痕量新型有机污染物,可为人体多种有机污染物长期暴露研究提供技术参考.

参考文献 (References)

- [1] PAL A, GIN K Y H, LIN A Y C, et al. Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects [J]. Science of the Total Environment, 2010, 408(24): 6062-6069.
- [2] LIU B, ZHANG S G, CHANG C C. Emerging pollutants part II: Treatment [J]. Water Environment Research: a Research Publication of the Water Environment Federation, 2017, 89(10): 1829-1865.
- [3] GARCÍA J, GARCÍA-GALÁN M J, DAY J W, et al. A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts [J]. Bioresource Technology, 2020, 307: 123228.
- [4] ZHONG M M, WANG T L, ZHAO W X, et al. Emerging organic contaminants in Chinese surface water: Identification of priority pollutants [J]. Engineering, 2022, 11: 111-125.
- [5] ZENG Y Q, PAN W J, DING N, et al. Brominated flame retardants in home dust and its contribution to brominated flame retardants bioaccumulation in children hair [J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2020, 55(13): 1528-1533.
- [6] LIU L Y, HE K, HITES R A, et al. Hair and nails as noninvasive biomarkers of human exposure to brominated and organophosphate flame retardants [J]. Environmental Science & Technology, 2016, 50(6): 3065-3073.
- [7] KATSIKANTAMI I, SIFAKIS S, TZATZARAKIS M N, et al. A global assessment of phthalates burden and related links to health effects [J]. Environment International, 2016, 97: 212-236.
- [8] ZHANG Y, JIAO Y Q, LI Z X, et al. Hazards of phthalates (PAEs) exposure: A review of aquatic animal toxicology studies [J]. Science of the Total Environment, 2021, 771: 145418.
- [9] HOUDE M, MARTIN J W, LETCHER R J, et al. Biological monitoring of polyfluoroalkyl substances: A review [J]. Environmental Science & Technology, 2006, 40(11): 3463-3473.
- [10] 徐方萍.传统和新型全氟化合物在室内灰尘和孕妇血浆中污染特征研究[D].广州:暨南大学, 2020.
 XU F P. Pollution characteristics of legacy and emerging per- and polyfluoroalkyl substances in indoor dust and pregnancy women plasma[D]. Guangzhou: Jinan University, 2020(in Chinese).
- [11] LI J G, GUO F F, WANG Y X, et al. Development of extraction methods for the analysis of perfluorinated compounds in human hair and nail by high performance liquid chromatography tandem mass spectrometry [J]. Journal of Chromatography A, 2012, 1219: 54-60.
- [12] LIEW Z, GOUDARZI H, OULHOTE Y. Developmental exposures to perfluoroalkyl substances (PFASs): An update of associated health outcomes [J]. Current Environmental Health Reports, 2018, 5(1): 1-19.
- [13] ZHANG W Z, ZHENG X W, GU P, et al. Distribution and risk assessment of phthalates in water and sediment of the Pearl River Delta [J]. Environmental Science and Pollution Research International, 2020, 27(11): 12550-12565.
- [14] PENG F J, HARDY E M, BERANGER R, et al. Human exposure to PCBs, PBDEs and bisphenols revealed by hair analysis: A comparison between two adult female populations in China and France [J]. Environmental Pollution, 2020, 267: 115425.
- [15] 王晓伟,刘景富, 阴永光. 有机磷酸酯阻燃剂污染现状与研究进展 [J]. 化学进展, 2010, 22(10): 1983-1992.
 WANG X W, LIU J F, YIN Y G. The pollution status and research progress on organophosphate ester flame retardants [J]. Progress in Chemistry, 2010, 22(10): 1983-1992(in Chinese).
- [16] 李珺琪.北京大学生暴露于室内灰尘中有机阻燃剂状况的研究[D].北京:中央民族大学,2019.
 LIJQ. Study on the exposure of Beijing college students to organic flame retardants in indoor dust[D]. Beijing: Central University for Nationalities, 2019(in Chinese).
- [17] CHOU T H, OU M H, WU T Y, et al. Temporal and spatial surveys of polybromodiphenyl ethers (PBDEs) contamination of soil near a factory using PBDEs in northern Taiwan [J]. Chemosphere, 2019, 236: 124117.
- [18] LI B B, HU L X, YANG Y Y, et al. Contamination profiles and health risks of PFASs in groundwater of the Maozhou River Basin [J].

Environmental Pollution, 2020, 260: 113996.

- [19] HE C, WANG X Y, THAI P, et al. Organophosphate and brominated flame retardants in Australian indoor environments: Levels, sources, and preliminary assessment of human exposure [J]. Environmental Pollution, 2018, 235: 670-679.
- [20] XU Y Y, WENG R, LU Y S, et al. Evaluation of phthalic Acid esters in fish samples using gas chromatography tandem mass spectrometry with simplified QuEChERS technique [J]. Food Analytical Methods, 2018, 11(12): 3293-3303.
- [21] ZAFEIRAKI E, COSTOPOULOU D, VASSILIADOU I, et al. Perfluoroalkylated substances (PFASs) in home and commercially produced chicken eggs from the Netherlands and Greece [J]. Chemosphere, 2016, 144: 2106-2112.
- [22] ALVES A, JACOBS G, VANERMEN G, et al. New approach for assessing human perfluoroalkyl exposure via hair [J]. Talanta, 2015, 144: 574-583.
- [23] CHEN Z J, LIU H Y, CHENG Z, et al. Polybrominated diphenyl ethers (PBDEs) in human samples of mother-newborn pairs in South China and their placental transfer characteristics [J]. Environment International, 2014, 73: 77-84.
- [24] WANG Y X, ZHONG Y X, LI J G, et al. Occurrence of perfluoroalkyl substances in matched human serum, urine, hair and nail [J]. Journal of Environmental Sciences, 2018, 67: 191-197.
- [25] LI J H, LI Q, LI J F, et al. Simultaneous determination of poly- and perfluoroalkyl substances and organophosphorus flame retardants in serum by ultra-performance liquid chromatography/tandem mass spectrometry [J]. Rapid Communications in Mass Spectrometry:RCM, 2022, 36(14): e9312.
- [26] CHEN J A, LIU H J, QIU Z Q, et al. Analysis of di-n-butyl phthalate and other organic pollutants in Chongqing women undergoing parturition [J]. Environmental Pollution, 2008, 156(3): 849-853.
- [27] 李树飞, 杜美玲, 王开亮, 等. 待产孕妇血清中PAEs暴露水平及其与胎儿生长发育的相关性研究 [J]. 中国妇幼保健, 2013, 28(25): 4194-4197.

LI S F, DU M L, WANG K L, et al. Study on the correlation between exposure level of PAEs in serum of predelivery women and growth and development of fetuses [J]. Maternal and Child Health Care of China, 2013, 28(25): 4194-4197(in Chinese).

- [28] 崔恒威,严浩轩,陈丽梅. 多溴二苯醚的生殖发育毒性 [J]. 卫生研究, 2021, 50(3): 510-514.
 CUI H W, YAN H X, CHEN L M. Reproductive and developmental toxicity of polybrominated diphenyl ethers [J]. Journal of Hygiene Research, 2021, 50(3): 510-514(in Chinese).
- [29] MAMMANA S B, ABRAHAM E C, CAMARGO A B, et al. Enzymatic digestion coupled to surfactant-assisted dispersive liquid-liquid microextraction: A mild approach for determining polybrominated diphenyl ethers in human hair sample [J]. ChemistrySelect, 2020, 5(7): 2179-2184.
- [30] MARTINEZ G, NIU J, TAKSER L, et al. A review on the analytical procedures of halogenated flame retardants by gas chromatography coupled with single quadrupole mass spectrometry and their levels in human samples [J]. Environmental Pollution, 2021, 285: 117476.
- [31] YIN S S, BEEN F, LIU W P, et al. Hair as an alternative matrix to monitor human exposure to plasticizers Development of a liquid chromatography tandem mass spectrometry method [J]. Journal of Chromatography B, 2019, 1104: 94-101.
- [32] LIANG S, XU F, TANG W B, et al. Brominated flame retardants in the hair and serum samples from an e-waste recycling area in southeastern China: The possibility of using hair for biomonitoring [J]. Environmental Science and Pollution Research, 2016, 23(15): 14889-14897.
- [33] TADEO J L, SANCHEZ-BRUNETE C, MIGUEL E. Determination of polybrominated diphenyl ethers in human hair by gas chromatography-mass spectrometry [J]. Talanta, 2009, 78(1): 138-143.
- [34] HE M J, LU J F, MA J Y, et al. Organophosphate esters and phthalate esters in human hair from rural and urban areas, Chongqing, China: Concentrations, composition profiles and sources in comparison to street dust [J]. Environmental Pollution, 2018, 237: 143-153.
- [35] 高倍. 头发指甲作为人类全氟化合物暴露评价指示物的研究[D]. 大连: 大连理工大学, 2014. GAO B. Human hair and nail As bioindicator of exposure to perfluoroalkyl acids[D]. Dalian: Dalian University of Technology, 2014(in Chinese).
- [36] RUAN Y F, LALWANI D, KWOK K Y, et al. Assessing exposure to legacy and emerging per- and polyfluoroalkyl substances via hair
 The first nationwide survey in India [J]. Chemosphere, 2019, 229: 366-373.
- [37] WANG Y, SHI Y L, VESTERGREN R, et al. Using hair, nail and urine samples for human exposure assessment of legacy and emerging per- and polyfluoroalkyl substances [J]. Science of the Total Environment, 2018, 636: 383-391.
- [38] GAO Y, ZHANG Q H, LI X M, et al. Simultaneous determination of legacy and emerging per- and polyfluoroalkyl substances in fish by QuEChERS coupled with ultrahigh performance liquid chromatography tandem mass spectrometry [J]. Analytical Methods, 2018, 10(47): 5715-5722.
- [39] MARTÍN J, MÖDER M, GAUDL A, et al. Multi-class method for biomonitoring of hair samples using gas chromatography-mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2015, 407(29): 8725-8734.
- [40] LIN M Q, TANG J, MA S T, et al. Simultaneous determination of polybrominated diphenyl ethers, polycyclic aromatic hydrocarbons and their hydroxylated metabolites in human hair: A potential methodology to distinguish external from internal exposure [J]. Analyst,

2019, 144(24): 7227-7235.

5期

- [41] KUCHARSKA A, COVACI A, VANERMEN G, et al. Development of a broad spectrum method for measuring flame retardants -Overcoming the challenges of non-invasive human biomonitoring studies [J]. Analytical and Bioanalytical Chemistry, 2014, 406(26): 6665-6675.
- [42] 唐斌,蔡凤珊,王美欢,等.室内灰尘和空气中有机磷系阻燃剂和塑化剂的赋存、分配和暴露风险评估[C]//.2020中国环境 科学学会科学技术年会论文集(第一卷).南京,2020:1078—1084.
- [43] 熊仕茂,朱晓辉,蔡凤珊,等. 灰尘中有机磷系阻燃剂及其降解产物检测方法的建立 [J]. 环境化学, 2019, 38(11): 2457-2466.
 XIONG S M, ZHU X H, CAI F S, et al. Establishment of detection method for organic phosphorus flame retardants and their degradation products in dust [J]. Environmental Chemistry, 2019, 38(11): 2457-2466(in Chinese).
- [44] 任梦圆, 贾晓倩, 王盈, 等. 北京市海淀区孕妇膳食频率与头发中邻苯二甲酸酯水平的关联研究 [J]. 中国生育健康杂志, 2021, 32(2): 101-105.
 REN M Y, JIA X Q, WANG Y, et al. Association between food frequency and hair concentration of phthalates among pregnant women
- in Haidian District, Beijing [J]. Chinese Journal of Reproductive Health, 2021, 32(2): 101-105(in Chinese).[45] TAN H H, GU Y P, LIU S H, et al. Rapid residue determination of cyenopyrafen in Citrus peel, pulp, and whole fruit using ultra-
- performance liquid chromatography/tandem mass spectrometry [J]. Food Analytical Methods, 2018, 11(8): 2123-2130.
- [46] LOCKWOOD T E, TALEBI M, MINETT A, et al. Micro solid-phase extraction for the analysis of per- and polyfluoroalkyl substances in environmental waters [J]. Journal of Chromatography A, 2019, 1604: 460495.
- [47] ZHENG J, LUO X J, YUAN J G, et al. Levels and sources of brominated flame retardants in human hair from urban, e-waste, and rural areas in South China [J]. Environmental Pollution, 2011, 159(12): 3706-3713.
- [48] QIAO L, ZHENG X B, ZHENG J, et al. Legacy and currently used organic contaminants in human hair and hand wipes of female Ewaste dismantling workers and workplace dust in South China [J]. Environmental Science & Technology, 2019, 53(5): 2820-2829.
- [49] KATSIKANTAMI I, TZATZARAKIS M N, KARZI V, et al. Biomonitoring of bisphenols A and S and phthalate metabolites in hair from pregnant women in Crete [J]. Science of the Total Environment, 2020, 712: 135651.
- [50] TANG B, XIONG S M, ZHENG J, et al. Analysis of polybrominated diphenyl ethers, hexabromocyclododecanes, and legacy and emerging phosphorus flame retardants in human hair [J]. Chemosphere, 2021, 262: 127807.