2021 Volume 40 Issue 4
Article Contents

LI Rui, ZHANG Huanhuan, HE Yuting, AN Yajun, ZHANG Zhaofeng, TANG Mingjin. Iron isotopic compositions of combustion source particles and mineral dust[J]. Environmental Chemistry, 2021, (4): 990-998. doi: 10.7524/j.issn.0254-6108.2020081502
Citation: LI Rui, ZHANG Huanhuan, HE Yuting, AN Yajun, ZHANG Zhaofeng, TANG Mingjin. Iron isotopic compositions of combustion source particles and mineral dust[J]. Environmental Chemistry, 2021, (4): 990-998. doi: 10.7524/j.issn.0254-6108.2020081502

Iron isotopic compositions of combustion source particles and mineral dust

  • Corresponding author: TANG Mingjin, mingjintang@gig.ac.cn
  • Received Date: 15/08/2020
    Fund Project: Supported by Ministry of Science and Technology of China (2018YFC0213901) and Guangdong Foundation for Program of Science and Technology Research(2019B121205006,2020B1212060053).
  • Iron,one of the essential micronutrients for life,would largely promote oceanic primary productivity. Atmospheric deposition has been recognized as the dominant source of bioavailable iron in the open ocean;however,the relative contribution of combustion aerosol and mineral dust to bioavailable iron in the ocean remains poorly understood. The development of iron isotope techniques provides a new way for tracing iron sources. The application of iron isotope technique in atmospheric and oceanic sciences is still limited,and iron isotopic compositions of aerosols from various sources are not well understood. In this study,we selected one Chinese coal fly ash,two American coal fly ashes,one European city waste fly ash and three mineral dust samples from different regions (Arizona test dust from America,Luochuan Loess from China,and Xinjiang dust from China) and measured their iron contents and iron isotopic compositions. The maximum mass fraction of iron in coal fly ash was measured to be ~10%,significantly higher than those for city waste fly ash and mineral dust (both in the range of 2% to 4%). The δ56Fe values were determined to be 0.05‰-0.75‰ for the four fly ash samples and -0.05‰-0.21‰ for three mineral dust samples,respectively. Compared with mineral dust,combustion source particles showed heavier iron isotopic compositions,probably attributed to large variations in physicochemical properties of fuels and fly ashes.
  • 加载中
  • [1] MOORE C M, MILLS M M, ARRIGO K R, et al. Processes and patterns of oceanic nutrient limitation[J]. Nature Geoscience, 2013, 6(9):701-710.

    Google Scholar Pub Med

    [2] BOYD P W, ELLWOOD M J. The biogeochemical cycle of iron in the ocean[J]. Nature Geoscience, 2010, 3(10):675-682.

    Google Scholar Pub Med

    [3] BOYD P W, JICKELLS T, LAW C S, et al. Mesoscale iron enrichment experiments 1993-2005:Synthesis and future directions[J]. Science, 2007, 315(5812):612-617.

    Google Scholar Pub Med

    [4] MAHOWALD N M, HAMILTON D S, MACKEY K R M, et al. Aerosol trace metal leaching and impacts on marine microorganisms[J]. Nature Communications, 2018, 9(15):1-18.

    Google Scholar Pub Med

    [5] TAGLIABUE A, BOWIE A R, BOYD P W, et al. The integral role of iron in ocean biogeochemistry[J]. Nature, 2017, 543(7643):51-59.

    Google Scholar Pub Med

    [6] CONWAY T M, JOHN S G. Quantification of dissolved iron sources to the North Atlantic Ocean[J]. Nature, 2014, 511(7508):212-215.

    Google Scholar Pub Med

    [7] CHEN H, GRASSIAN V H. Iron dissolution of dust source materials during simulated acidic processing:The effect of sulfuric, acetic, and oxalic acids[J]. Environmental Science & Technology, 2013, 47(18):10312-10321.

    Google Scholar Pub Med

    [8] SCHROTH A W, CRUSIUS J, SHOLKOVITZ E R, et al. Iron solubility driven by speciation in dust sources to the ocean[J]. Nature Geoscience, 2009, 2(5):337-340.

    Google Scholar Pub Med

    [9] SOLMON F, CHUANG P Y, MESKHIDZE N, et al. Acidic processing of mineral dust iron by anthropogenic compounds over the north Pacific Ocean[J]. Journal of Geophysical Research:Atmosphere, 2009, 114:D02305, 1-20.

    Google Scholar Pub Med

    [10] MAHOWALD N M, BAKER A R, BERGAMETTI G, et al. Atmospheric global dust cycle and iron inputs to the ocean[J]. Global Biogeochemical Cycles, 2005, 19:GB4025, 1-15.

    Google Scholar Pub Med

    [11] MESKHIDZE N, CHAMEIDES W L, NENES A. Dust and pollution:A recipe for enhanced ocean fertilization?[J]. Journal of Geophysical Research:Atmospheres, 2005, 110:D03301, 1-23.

    Google Scholar Pub Med

    [12] MARTIN J H. Glacial-interglacial CO2 change:The iron hypothesis[J]. Paleoceanography, 1990, 5(1):1-13.

    Google Scholar Pub Med

    [13] 高会旺,祁建华,石金辉,等. 亚洲沙尘的远距离输送及对海洋生态系统的影响[J]. 地球科学进展,2009,24(1):1-10. GAO H W, QI J H, SHI J H, et al. Lang range transport of Asian dust and its effects on ocean ecosystem[J]. Advances in Earth Science, 2009, 24(1):1-10(in Chinese).

    Google Scholar Pub Med

    [14] ITO A, MYRIOKEFALITAKIS S, KANAKIDOU M, et al. Pyrogenic iron:The missing link to high iron solubility in aerosols[J]. Science Advance, 2019, 5(5):1-10.

    Google Scholar Pub Med

    [15] MATSUI H, MAHOWALD N M, MOTEKI N, et al. Anthropogenic combustion iron as a complex climate forcer[J]. Nature Communications, 2018, 9(1593):1-10.

    Google Scholar Pub Med

    [16] ITO A. Atmospheric processing of combustion aerosols as a source of bioavailable iron[J]. Environmental Science & Technology Letters, 2015, 2(3):70-75.

    Google Scholar Pub Med

    [17] 王建强,李小虎,毕冬伟,等. 全球海水剖面Fe同位素组成的不均一性及其影响因素[J]. 地球科学,2017,42(9):1519-1530. WANG J Q, LI X H, BI D W, et al. Fe isotopic composition heterogeneity of seawater profiles and its influence factors[J]. Earth Science, 2017, 42(9):1519-1530(in Chinese).

    Google Scholar Pub Med

    [18] 刘瑾,宋金明,袁华茂,等. 铁同位素在现代海洋环境的示踪研究[J]. 地质论评,2018,64(5):1225-1236. LIU J, SON J M, YUAN H M, et al. The tracing study of iron isotopes in modern marine environment[J]. Geological Review, 2018, 64(5):1225-1236(in Chinese).

    Google Scholar Pub Med

    [19] 孙剑,朱祥坤. 表生过程中铁的同位素地球化学[J]. 地质论评,2015,61(6):1370-1382. SUN J, ZHU X K. Fe isotope geochemistry of earth surface system[J]. Geological Review, 2015, 61(6):1370-1382(in Chinese).

    Google Scholar Pub Med

    [20] CONWAY T M, HAMILTON D S, SHELLEY R U, et al. Tracing and constraining anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron isotopes[J]. Nature Communications, 2019, 10(1):2628, 1-10.

    Google Scholar Pub Med

    [21] KURISU M, ADACHI K, SAKATA K, et al. Stable isotope ratios of combustion iron produced by evaporation in a steel plant[J]. ACS Earth Space Chemistry, 2019, 3(4):588-598.

    Google Scholar Pub Med

    [22] KURISU M, TAKAHASHI Y, IIZUKA T, et al. Very low isotope ratio of iron in fine aerosols related to its contribution to the surface ocean[J]. Journal of Geophysical Research:Atmosphere, 2016, 121(18):11119-11136.

    Google Scholar Pub Med

    [23] ABADIE C, LACAN F, RADIC A, et al. Iron isotopes reveal distinct dissolved iron sources and pathways in the intermediate versus deep Southern Ocean[J]. Proceedings of the National Academy of Sciences, 2017, 114(5):858-863.

    Google Scholar Pub Med

    [24] FITZSIMMONS J N, CONWAY T M, LEE J M, et al. Dissolved iron and iron isotopes in the southeastern Pacific Ocean[J]. Global Biogeochemical Cycles, 2016, 30(10):1372-1395.

    Google Scholar Pub Med

    [25] 苏鹏,陆达伟,杨学志,等. 非传统稳定同位素在大气颗粒物溯源中的应用[J]. 中国科学:化学,2018,48(10):1163-1170. SU P, LU D W, YANG X Z, et al. Application of non-traditional stable isotopes in source tracing of airborne particulate matter[J]. Scientia Sinica Chimica, 2018, 48(10):1163-1170(in Chinese).

    Google Scholar Pub Med

    [26] 陈天宇,蔡平河,李伟强,等. 大洋溶解铁的物质来源及其同位素示踪[J]. 海洋地质与第四纪地质,2019,39(5):46-57. CHEN T Y, CAI P H, LI W Q, et al. The sources of dissolved iron in the global ocean and isotopic tracing[J]. Marine Geology & Quaternary Geology, 2019, 39(5):46-57(in Chinese).

    Google Scholar Pub Med

    [27] 宋柳霆,刘丛强,王中良,等. 铁同位素方法在环境地球化学研究中的应用与进展[J]. 地球与环境,2006,24(1):70-80. SONG L T, LIU C Q, WANG Z L, et al. Advances in applications of iron isotopes in environmental geochemistry[J]. Earth and Environment, 2006, 24(1):70-80(in Chinese).

    Google Scholar Pub Med

    [28] 何永胜,胡东平,朱传卫. 地球科学中铁同位素研究进展[J]. 地学前缘,2015,22(5):54-71. HE Y S, HU D P, ZHU C W. Progress of iron isotope geochemistry in geoscience[J]. Earth Science Frontiers, 2015, 22(5):54-71(in Chinese).

    Google Scholar Pub Med

    [29] HE Y, KE S, TENG F Z, et al. High-precision iron isotope analysis of geological reference materials by high-resolution MC-ICP-MS[J]. Geostandards & Geoanalytical Research, 2015, 39(3):341-356.

    Google Scholar Pub Med

    [30] SCHOENBERG R, VON BLANCKENBURG F. An assessment of the accuracy of stable Fe isotope ratio measurements on samples with organic and inorganic matrices by high-resolution multicollector ICP-MS[J]. International Journal of Mass Spectrometry, 2005, 242(2):257-272.

    Google Scholar Pub Med

    [31] 梁鹏. 地球科学中铁同位素分析测试方法研究进展[J]. 地下水,2019,44(4):97-100. LIANG P. Research progress on test methods of iron isotope analysis in earth science[J]. Ground Water, 2019, 44(4):97-100(in Chinese).

    Google Scholar Pub Med

    [32] MILLET M A, BAKER J A, PAYNE C E. Ultra-precise stable Fe isotope measurements by high resolution multiple-collector inductively coupled plasma mass spectrometry with a 57Fe-58Fe double spike[J]. Chemical Geology, 2012, 304-305:18-25.

    Google Scholar Pub Med

    [33] MEAD C, HERCKES P, MAJESTIC B J, et al. Source apportionment of aerosol iron in the marine environment using iron isotope analysis[J]. Geophysical Research Letters, 2013, 40(21):5722-5727.

    Google Scholar Pub Med

    [34] BEARD B L, JOHNSON C M, SKULAN J L, et al. Application of Fe isotopes to tracing the geochemical and biological cycling of Fe[J]. Chemical Geology, 2003, 195(1):87-117.

    Google Scholar Pub Med

    [35] CRADDOCK P R, DAUPHAS N. Iron isotopic compositions of geological reference materials and chondrites[J]. Geostandards & Geoanalytical Research, 2011, 35(1):101-123.

    Google Scholar Pub Med

    [36] MAJESTIC B J, ANBAR A D, HERCKES P. Stable isotopes as a tool to apportion atmospheric iron[J]. Environmental Science & Technology, 2009, 43(12):4327-4333.

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1359) PDF downloads(44) Cited by(0)

Access History

Iron isotopic compositions of combustion source particles and mineral dust

Fund Project: Supported by Ministry of Science and Technology of China (2018YFC0213901) and Guangdong Foundation for Program of Science and Technology Research(2019B121205006,2020B1212060053).

Abstract: Iron,one of the essential micronutrients for life,would largely promote oceanic primary productivity. Atmospheric deposition has been recognized as the dominant source of bioavailable iron in the open ocean;however,the relative contribution of combustion aerosol and mineral dust to bioavailable iron in the ocean remains poorly understood. The development of iron isotope techniques provides a new way for tracing iron sources. The application of iron isotope technique in atmospheric and oceanic sciences is still limited,and iron isotopic compositions of aerosols from various sources are not well understood. In this study,we selected one Chinese coal fly ash,two American coal fly ashes,one European city waste fly ash and three mineral dust samples from different regions (Arizona test dust from America,Luochuan Loess from China,and Xinjiang dust from China) and measured their iron contents and iron isotopic compositions. The maximum mass fraction of iron in coal fly ash was measured to be ~10%,significantly higher than those for city waste fly ash and mineral dust (both in the range of 2% to 4%). The δ56Fe values were determined to be 0.05‰-0.75‰ for the four fly ash samples and -0.05‰-0.21‰ for three mineral dust samples,respectively. Compared with mineral dust,combustion source particles showed heavier iron isotopic compositions,probably attributed to large variations in physicochemical properties of fuels and fly ashes.

Reference (36)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint