引用本文:
姜晨阳, 潘飞, 庄旭明, 田宇纮, 邬旭然. 分散液液微萃取-能量色散X射线荧光光谱法测定环境水样中的痕量铜[J]. 环境化学, 2017, 36(8): 1795-1801
JIANG Chenyang, PAN Fei, ZHUANG Xuming, TIAN Yuhong, WU Xuran. Determination of trace copper in environmental water samples by dispersive liquid-liquid microextraction and energy dispersive X-ray fluorescence spectroscopy[J]. Environmental Chemistry, 2017, 36(8): 1795-1801

分散液液微萃取-能量色散X射线荧光光谱法测定环境水样中的痕量铜
姜晨阳, 潘飞, 庄旭明, 田宇纮, 邬旭然
烟台大学化学化工学院, 烟台, 264005
摘要:
本文采用分散液液微萃取(DLLME)技术来分离富集环境水样中痕量铜,结合薄样技术,利用能量色散-X射线荧光光谱仪(ED-XRF)对其进行检测.实验以二乙基二硫代氨基甲酸钠(DDTC)为螯合剂,对萃取剂、分散剂的种类及体积、螯合剂的用量、pH值、萃取时间等影响实验萃取效率的因素进行了优化,得出在50μL四氯化碳,0.4 mL甲醇,pH=8,DDTC质量分数为0.03%,萃取时间3 min的条件下进行实验,萃取效率最佳.实验采用内标法进行定量,检出限为0.08μg·L-1,对两种实际样品进行6次平行检测,相对标准偏差(RSD)分别为3.1%和3.3%,加标回收率为97%-105%.因此本方法适用于环境水样中铜含量的检测.
关键词:    分散液液微萃取    X射线荧光分析       
Determination of trace copper in environmental water samples by dispersive liquid-liquid microextraction and energy dispersive X-ray fluorescence spectroscopy
JIANG Chenyang, PAN Fei, ZHUANG Xuming, TIAN Yuhong, WU Xuran
College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
Abstract:
A novel method based on dispersive liquid-liquid microextraction (DLLME) and energy-dispersive X-ray fluorescence spectroscopy (ED-XRF) with thin sample technology for the preconcentration and determination of Cu(Ⅱ) in environmental water samples was developed. In the present study, sodium diethyldithiocarbamate (DDTC) was used as the chelating agent. A series of influence factors relevant to the microextraction efficiency including the type and volume of extractant and disperser solvent, the concentration of chelating reagents, pH and extraction time were optimized. The best condition was obtained as follows:50 μL carbon tetrachloride, 0.4 mL methanol, pH=8, DDTC mass fraction of 0.03% and extraction time of 3 min. The quantitative analysis was evaluated by the internal standard method under the optimal conditions, the recoveries were in the range of 97%-105% along with the detection limit of 0.08 μg·L-1. The repeatability of the developed method was also evaluated by six parallel tests for two actual samples with the relative standard deviation (RSD) of 3.1% and 3.3%, respectively. The developed method can be applied in the determination of trace copper in environmental water samples.
Key words:    Dispersed liquid-liquid microextraction    X-ray fluorescence analysis    Copper   
收稿日期: 2016-12-23
基金项目: 国家自然科学基金(21575122)资助.
邬旭然,Tel:0535-6706056,E-mail:ytdxwxr@126.com
相关功能
PDF(1375KB) Free
打印本文
加入收藏夹
把本文推荐给朋友
作者相关文章
姜晨阳  在本刊中的所有文章
潘飞  在本刊中的所有文章
庄旭明  在本刊中的所有文章
田宇纮  在本刊中的所有文章
邬旭然  在本刊中的所有文章

参考文献:
[1] VARDIA H K, RAO P S, DURVE V S. Effect of copper, cadmium and zinc on fish-food organisms, Daphnia lumholtzi, and Cypris subglobosa[J]. Proceedings:Animal Sciences, 1988, 97(2):175-180.
[2] DUPUY P, USCIATI M. The use of copper in destroying typhoid organisms, and the effects of copper on man[J]. Journal of the Franklin Institute, 1905, 160(6):463-470.
[3] 孙清斌, 尹春芹, 邓金锋,等.大冶矿区土壤-蔬菜重金属污染特征及健康风险评价[J]. 环境化学, 2013, 32(4):671-677. SUN Q B,YIN C Q,DENG J F, et al. Characteristics of heavy metal pollution and health risk assessment of soil-vegetables in Daye mining area[J]. Environmental Chemistry, 2013, 32(4):671-677(in Chinese).
[4] EISLER R. Copper hazards to fish, wildlife, and invertebrates:A synoptic review[J]. Center for Integrated Data Analytics Wisconsin Science Center, 1998, 85(25):11-15.
[5] FARAJZADEH M A, BAHRAM M, MEHR B G, et al. Optimization of dispersive liquid-liquid microextraction of copper by atomic absorption spectrometry as its oxinate chelate:Application to determination of copper in different water samples[J]. Talanta, 2008, 75(3):832-840.
[6] REZAEE M, ASSADI Y, MILANI HOSSEINI M R, et al. Determination of organic compounds in water using dispersive liquid-liquid microextraction[J]. Journal of Chromatography A, 2006, 1116(12):1-9.
[7] WEN X, YANG Q, YAN Z, et al. Determination of cadmium and copper in water and food samples by dispersive liquid-liquid microextraction combined with UV-vis spectrophotometry[J]. Microchemical Journal, 2011, 97(2):249-254.
[8] 闫相伊, 韩翔, 王进义.常见金属离子检测新方法研究进展[J]. 陕西农业科学,2016,62(2):79-82. YAN X Y, HAN X, WANG J Y. Research progress on new methods of common metal ions detection[J].Shanxi Journal of Agricultural Sciences,2016,62(2):79-82(in Chinese).
[9] 彭杨,吴婧, 巢静波,等.土壤/沉积物中14种金属元素的ICP-MS准确测定方法[J]. 环境化学, 2017,36(1):175-181. PENG Y,WU Q,CHAO J B, et al. Determination of 14 kinds of metal elements in soil/sediments by ICP-MS method[J]. Environmental Chemistry,2017,36(1):175-181(in Chinese).
[10] 赵志南, 严冬, 何群华,等. ICP-MS测定《全国土壤污染状况详查》 项目中14种元素[J]. 环境化学, 2017,36(2):448-452. ZHAO Z N, YAN D, HE Q H, et al. Determination of 14 Elements in "National Soil Pollution Survey" by ICP-MS[J]. Environmental Chemistry,2017,36(2):448-452(in Chinese).
[11] 王晓军.分散液液微萃取-电感耦合等离子体质谱联用技术在痕量金属元素分析中的应用[D]. 杭州:浙江工业大学,2015. WANG X J. Application of dispersive liquid-liquid microextraction coupled with inductively coupled plasma-mass spectrometry in the separation and preconcentration of trace metal elements[D]. Hangzhou:Zhejiang University of Technology,2015(in Chinese).
[12] 徐鉴, 邵阳, 张翠玲.分散液液微萃取-分光光度法测定水中痕量铜[J]. 应用化工,2015,44(2):371-373. XU J, SHAO Y, ZHANG C L. Determination of trace copper in water by spectrophotometry with dispersive liquid-liquid microextraction[J]. Applied Chemical Industry,2015,44(2):371-373(in Chinese).
[13] 陈飞.分散液液微萃取浮动溶剂固化——原子吸收光谱法测定环境水体样品中的重金属[J]. 福建分析测试, 2012,21(2):6-10. CHEN F. Dispersive liquid-liquid microextraction based on the solidification of floating organic drop followed by combined with atomic absorption spectrometry as a fast technique for the simultaneous determination of heavy metals ions[J].Fujian Analysis & Testing,2012,21(2):6-10(in Chinese).
[14] BROWN R J C, JARVIS K E, DISCH B A, et al. Comparison of ED-XRF and LA-ICP-MS with the European reference method of acid digestion-ICP-MS for the measurement of metals in ambient particulate matter[J]. Accreditation and Quality Assurance, 2010, 15(9):493-502.
[15] 邬旭然, 韩晓锋, 王丽,等.薄样技术-能量色散X射线荧光光谱法测定钯铂金[J]. 冶金分析, 2013, 33(10):34-39. WU X R,HAN X F,WANG L, et al. Determination of palladium, platinum and gold by energy dispersive X-ray fluorescence spectrometry with thin sample technology[J].Metallurgical Analysis,2013,33(10):34-39(in Chinese).
[16] 郝晓雯, 张龙, 杜莉谢,等. XRF法测定雪松松针及花粉中的无机元素[J]. 烟台大学学报自然科学与工程版, 2016, 29(1):22-27. HAO X W,ZHANG L,DU L X,et al. Determination of Inorganic Elements in Pine Needles and Pine Pollen of Cedrus Deodara by XRF[J]. Journal of Yantai University (Natural Science and Engineering Edition),2016, 29(1):22-27(in Chinese).
[17] 陈远盘.X射线荧光光谱分析中的薄样法[J].分析试验室, 1986,5(3):38-44. CHEN Y P. Thin sample method in X-ray fluorescence spectrometry[J].Analytical Laboratory,1986,5(3):38-44(in Chinese).
[18] WEN X, YANG Q, YAN Z, et al. Determination of cadmium and copper in water and food samples by dispersive liquid-liquid microextraction combined with UV-vis spectrophotometry[J]. Microchemical Journal, 2011, 97(2):249-254.
[19] HEMMATKHAH P, BIDARI A, JAFARVAND S, et al. Speciation of chromium in water samples using dispersive liquid-liquid microextraction and flame atomic absorption spectrometry[J]. Microchimica Acta, 2009, 166(1):69-75.
[20] DADFARNIA S, SHABANI A M H, NOZOHOR M. Dispersive Liquid-Liquid Microextraction-Solidified Floating Organic Drop Combined with Spectrophotometry for the Speciation and Determination of Ultratrace Amounts of Selenium[J]. Journal of the Brazilian Chemical Society, 2013, 25(2):229-237.
[21] MARGUÍ E, FLOOR G H, HIDALGO M, et al. Analytical possibilities of total reflection X-ray spectrometry (TXRF) for trace selenium determination in soils[J]. Analytical Chemistry, 2010, 82(18):7744-7751.
[22] MAO X, CHEN H, LIU J. Determination of Trace Amount of Silver by Atomic-Absorption-Spectrometry-Coupled Flow Injection On-Line Coprecipitation Preconcentration Using DDTC-Copper as Coprecipitate Carrier[J]. Microchemical Journal, 1998, 59(3):383-391.
[23] CAMAGONG C T, HONJO T. Use of dicyclohexano-18-crown-6 to separate traces of silver(I) from potassium thiocyanate in hydrochloric acid media, and determination of the silver by atomic absorption spectrometry[J]. Analytical and Bioanalytical Chemistry, 2002, 373(8):856-862.
[24] TUZEN M, SOYLAK M. Column solid-phase extraction of nickel and silver in environmental samples prior to their flame atomic absorption spectrometric determinations[J]. Journal of Hazardous Materials, 2009, 164(23):1428-1432.
[25] SHEMIRANI F, KOZANI R R, ASSADI Y. Development of a cloud point extraction and preconcentration method for silver prior to flame atomic absorption spectrometry[J]. Microchimica Acta, 2007, 157(1):81-85.
[26] MANZOORI J L, ABDOLMOHAMMAD-ZADEH H, AMJADI M. Ultra-trace determination of silver in water samples by electrothermal atomic absorption spectrometry after preconcentration with a ligand-less cloud point extraction methodology[J]. Journal of Hazardous Materials, 2007, 144(12):458-463.
[27] MOHAMMADI S Z, AFZALI D, TAHER M A, et al. Ligandless dispersive liquid-liquid microextraction for the separation of trace amounts of silver ions in water samples and flame atomic absorption spectrometry determination[J]. Talanta, 2009, 80(2):875-879.