引用本文:
李盼盼, 杨悦锁, 路莹, 张茜, 李明杰, 徐斌, 于彤. 水位波动对土壤苯系物的污染运移和水化学影响[J]. 环境化学, 2017, 36(8): 1842-1848
LI Panpan, YANG Yuesuo, LU Ying, ZHANG Xi, LI Mingjie, XU Bin, YU Tong. Impact of water level fluctuation on BTEX migration and hydrochemistry in soils[J]. Environmental Chemistry, 2017, 36(8): 1842-1848

水位波动对土壤苯系物的污染运移和水化学影响
李盼盼1, 杨悦锁1,2, 路莹1, 张茜1, 李明杰1, 徐斌1, 于彤1
1. 吉林大学, 地下水资源与环境教育部重点实验室, 长春, 130021;
2. 沈阳大学, 区域污染环境生态修复教育部重点实验室, 沈阳, 110044
摘要:
迄今为止,水环境的BTEX(苯系物)污染仍然是一个尚未解决的环境问题,研究在水位波动条件下BTEX在土壤介质中的运移过程是充分了解BTEX对水环境影响的前提.本实验以甲苯为污染物,建立了土壤水环境中有机污染物运移实验模型,并通过控制砂柱饱和-非饱和状态转化来实现土壤所处环境(水位波动条件或饱水条件)的不同,对比研究了两种条件对污染物运移和相关的水文地球化学特征的影响.利用中砂、细砂、含10%黏土的细砂等3种土壤介质的实验数据对实验模拟进行验证.结果显示,在水位波动条件下中砂、含10%黏土的细砂介质中甲苯的衰减速率(6.4 mg·L-1·d-1、5.3 mg·L-1·d-1)均大于饱和条件下甲苯的衰减速率(0.57 mg·L-1·d-1、0.59 mg·L-1·d-1).水位波动条件对水环境电导率没有影响,但甲苯的加入使水环境的pH升高.甲苯和地下水位波动的共同作用推迟了地下水环境中NO3-、SO42- 和NO2- 达到平衡的时间.
关键词:    水位波动    土壤水环境    甲苯衰减    水文地球化学    土壤介质   
Impact of water level fluctuation on BTEX migration and hydrochemistry in soils
LI Panpan1, YANG Yuesuo1,2, LU Ying1, ZHANG Xi1, LI Mingjie1, XU Bin1, YU Tong1
1. MoE Key Lab of Groundwater Resources and Environment(Jilin University), Changchun, 130021, China;
2. MoE Key Lab of Eco-restoration of Regional Contaminated Environment(Shenyang University), Shenyang, 110044, China
Abstract:
Petroleum contaminated water remains an unsolved environmental problem. It benefits to understand the impact on water environment by knowing the migration process of BTEX in soil media under the effect of water level fluctuation. An experiment model was established to simulate the migration of toluene in soil water environment, realize different water environments (water level fluctuation or full water), and control the saturated-unsaturated state of the sand columns. The difference between the two conditions on the pollutant migration and hydrogeochemical characteristics was compared. The experiment model was verified by the laboratory experiments conducted in the soils of medium sand, fine sand and fine sand with 10% clay. Results showed that the attenuation rates of toluene under the condition of water level fluctuation (6.4 mg·L-1·d-1, 5.3 mg·L-1·d-1) were bigger than the saturation condition (0.57 mg·L-1·d-1, 0.59 mg·L-1·d-1). Water level fluctuation had no effect on the conductivity of water. Toluene elevated the pH of water environment. The equilibrium time of NO3-, SO42- and NO2- in the water environment was delayed due to groundwater level fluctuation and toluene.
Key words:    water table fluctuation    soil water environment    toluene attenuation    hydrochemistry    soil media   
收稿日期: 2016-12-19
基金项目: 国家自然科学基金(41272255,41472237)和辽宁省创新团队项目(LT2015017)资助.
杨悦锁,Tel:13674250369,E-mail:Yangyuesuo@jlu.edu.cn
相关功能
PDF(3746KB) Free
打印本文
加入收藏夹
把本文推荐给朋友
作者相关文章
李盼盼  在本刊中的所有文章
杨悦锁  在本刊中的所有文章
路莹  在本刊中的所有文章
张茜  在本刊中的所有文章
李明杰  在本刊中的所有文章
徐斌  在本刊中的所有文章
于彤  在本刊中的所有文章

参考文献:
[1] 孟庆山, 陈能远, 杨超. 地下水位波动带内滨海软土性状研究进展[J]. 人民长江, 2011, 42(4):29-32. MENG Q S, CHEN N Y, YANG C. Research progress review of characters of marine soft clay in underground water fluctuating zone[J]. Yangtze River, 2011, 42(4):29-32(in Chinese).
[2] ZHANG Q, WANG G, SUGIURA N, et al. Distribution of petroleum hydrocarbons in soils and the underlying unsaturated subsurface at an abandoned petrochemical site, North China[J]. Hydrological Processes, 2014, 28(4):2185-2191.
[3] RIVETT M O, WEALTHALL G P, DEARDEN R A, et al. Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones[J]. Journal of Contaminant Hydrology, 2011, 123(3):130-156.
[4] ZHOU A, ZHANG Y, DONG T, et al. Response of the microbial community to seasonal groundwater level fluctuations in petroleum hydrocarbon-contaminated groundwater[J]. Environmental Science and Pollution Research, 2015, 22(13):10094-10106.
[5] VINCENT G, SHAHRIARI A R, LUCOT E, et al. Spatial and seasonal variations in soil respiration in a temperate deciduous forest with fluctuating water table[J]. Soil Biology and Biochemistry, 2006, 38(9):2527-2535.
[6] KOHFAHL C, MASSMANN G, PEKDEGER A. Sources of oxygen flux in groundwater during induced bank filtration at a site in Berlin, Germany[J]. Hydrogeology Journal, 2009, 17(3):571-578.
[7] MASSMANN G, SÜLTENFUß J. Identification of processes affecting excess air formation during natural bank filtration and managed aquifer recharge[J]. Journal of Hydrology, 2008, 359(3):235-246.
[8] FAYBISHENKO B A. Hydraulic behavior of quasi-saturated soils in the presence of entrapped air:Laboratory experiments[J]. Water Resources Research, 1995, 31(10):2421-2435.
[9] SELKER J S, FRY V A, GORELICK S M. Experimental investigations for trapping oxygen gas in saturated porous media for in situ bioremediation[J]. Water Resources Research, 1997, 33(12):2687-2696.
[10] DAVIS G B, RAYNER J L, TREFRY M G, et al. Measurement and modeling of temporal variations in hydrocarbon vapor behavior in a layered soil profile[J]. Vadose Zone Journal, 2005, 4(2):225-239.
[11] DOBSON R, SCHROTH M H, ZEYER J. Effect of water-table fluctuation on dissolution and biodegradation of a multi-component, light nonaqueous-phase liquid[J]. Journal of Contaminant Hydrology, 2007, 94(3):235-248.
[12] REDDI L N, HAN W, BANKS M K. Mass loss from LNAPL pools under fluctuating water table conditions[J]. Journal of Environmental Engineering, 1998, 124(12):1171-1177.
[13] DU S, SU X, ZHANG W. Effective storage rates analysis of groundwater reservoir with surplus local and transferred water used in Shijiazhuang City, China[J]. Water and Environment Journal, 2013, 27(2):157-169.
[14] 刘汉乐, 周启友, 徐速. 非饱和带中非均质条件下LNAPL运移与分布特性实验研究[J]. 水文地质工程地质, 2006, 33(5):52-57. LIU H L, ZHOU Q F, XU S. An experimental investigation of LNAPL migration and redistribution in unsaturated heterogeneous porous media[J]. Hydrogeology & Engineering Geology, 2006, 33(5):52-57(in Chinese).
[15] LEE J Y, CHEON J Y, LEE K K, et al. Factors affecting the distribution of hydrocarbon contaminants and hydrogeochemical parameters in a shallow sand aquifer[J]. Journal of contaminant Hydrology, 2001, 50(1):139-158.
[16] 李翔, 席北斗, 姜永海, 等. 水位波动带氮素迁移转化规律[J]. 环境工程学报, 2013, 7(12):4703-4708. LI X, XI B D, JIANG Y H, et al. Nitrogen migration and transformation in fluctuation belt of water table[J]. Chinese Journal of Environmental Engineering, 2013, 7(12):4703-4708(in Chinese).
[17] TANNER C C, D'EUGENIO J, MCBRIDE G B, et al. Effect of water level fluctuation on nitrogen removal from constructed wetland mesocosms[J]. Ecological Engineering, 1999, 12(1):67-92.
[18] SASIKALA S, TANAKA N, WAH H S Y W, et al. Effects of water level fluctuation on radial oxygen loss, root porosity, and nitrogen removal in subsurface vertical flow wetland mesocosms[J]. Ecological Engineering, 2009, 35(3):410-417.
[19] WEBSTER K L, MCLAUGHLIN J W. Importance of the water table in controlling dissolved carbon along a fen nutrient gradient[J]. Soil Science Society of America Journal, 2010, 74(6):2254-2266.
[20] 刘明遥. 石油烃在包气带中迁移转化规律与数值模拟研究[D]. 长春:吉林大学, 2014. LIU M Y. Study on migration and transformation, and numerical simulation of petroleum hydrocarbons in aeration zone[D]. Changchun:Jilin University, 2014(in Chinese).
[21] FARNSWORTH C E, HERING J G. Inorganic geochemistry and redox dynamics in bank filtration settings[J]. Environmental Science & Technology, 2011, 45(12):5079-5087.
[22] KONG J, XIN P, HUA G F, et al. Effects of vadose zone on groundwater table fluctuations in unconfined aquifers[J]. Journal of Hydrology, 2015, 528:397-407.
[23] SU X, XU W, DU S. In situ infiltration test using a reclaimed abandoned river bed:managed aquifer recharge in Shijiazhuang City, China[J]. Environmental Earth Sciences, 2014, 71(12):5017-5025.
[24] RUDZIANSKAITE A, SUKYS P. Effects of groundwater level fluctuation on its chemical composition in karst soils of Lithuania[J]. Environmental Geology, 2008, 56(2):289-297.
[25] 杨明星, 杨悦锁, 杜新强, 等. 石油污染地下水有机污染组分特征及其环境指示效应[J]. 中国环境科学, 2013, 33(6):1025-1032. YANG M X, YANG Y S, DU X Q, et al. Organic fractions and their environmental implications of petroleum contaminated groundwater[J]. China Environment Science, 2013, 33(6):1025-1032(in Chinese).
[26] 国家环境保护总局.水和废水监测分析方法[M]. 北京:中国环境科学, 2002. State Environmental Protection Agency. Water and wastewater monitoring analysis method[M]. Beijing:China Environmental Science, 2002(in Chinese).
[27] 张茜, 温玉娟, 杨悦锁, 等. 土壤含水层处理系统去除对硝基酚[J]. 化工学报, 2015, 66(4):1440-1448. ZHANG X, WEN Y J, YANG Y S,et al. P-nitrophenlo removal using soil aquifer treatment (SAT) system[J]. Journal of Chemical Industry and Engineering (China), 2015, 66(4):1440-1448(in Chinese).
[28] 杨明星. 石油有机污染组分在水位波动带中的分异演化机理研究[D]. 长春:吉林大学, 2014. YANG M X. Fate and transport of petroleum organic compounds in water table fluctuation zone[D]. Changchun:Jilin University, 2014(in Chinese).
[29] VINSON D S, BLOCK S E, CROSSEY L J, et al. Biogeochemistry at the zone of intermittent saturation:Field-based study of the shallow alluvial aquifer, Rio Grande, New Mexico[J]. Geosphere, 2007, 3(5):366-380.