引用本文:
张宏娜, 温蓓, 马义兵, 胡晓宇, 张淑贞. 大田条件下污泥施用土壤中全氟烷酸化合物的玉米吸收和传输[J]. 环境化学, 2018, 37(9): 1885-1894
ZHANG Hongna, WEN Bei, MA Yibing, HU Xiaoyu, ZHANG Shuzhen. Uptake and translocation of perfluoroalkyl acids in biosolids-amended soils and plants[J]. Environmental Chemistry, 2018, 37(9): 1885-1894

大田条件下污泥施用土壤中全氟烷酸化合物的玉米吸收和传输
张宏娜1, 温蓓1, 马义兵2, 胡晓宇3, 张淑贞1
1. 中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室, 北京, 100085;
2. 中国农业科学院农业资源与农业区划研究所, 北京, 100081;
3. 北京疾病预防控制中心, 北京, 100020
摘要:
本文采集了山东长期污泥施用地区的污泥肥料、污泥施用土壤和农作物玉米(Zea mays L.),研究了全氟烷酸化合物(PFAAs,11种全氟烷基羧酸(PFCAs)以及5种全氟烷基磺酸(PFSAs))在污泥施用土壤-植物中的吸收与传输过程.污泥肥料中检测到了11种PFCAs以及4种PFSAs,PFAAs总含量为284.2 ng·g-1干重(dw),其中全氟辛烷羧酸(PFOA)和全氟辛烷磺酸(PFOS)为主要检出物.污泥施用土壤中PFAAs总量为16.3-56.4 ng·g-1 dw,各PFAAs在污泥施用土壤中的分布与其在污泥肥料中的分布一致,表明土壤中的PFAAs主要来自污泥肥料.PFAAs在玉米各组织中分布特征为根 > 叶 > 茎,PFAAs在根、茎和叶中的含量随土壤中含量的增加而增加.玉米对PFCAs和PFSAs的根富集因子RCFs(Croot/Csoil)分别为1.26-8.69和1.18-4.22,RCFs值与碳链长度未呈显著相关性;PFAAs从根到茎的传输因子TFr-sCstraw/Croot)和从茎到叶的传输因子TFs-lCleaf/Cstraw)与PFAAs的碳链长度呈显著负相关(P < 0.01).
关键词:    全氟烷酸    污泥肥料    污泥施用土壤    玉米    吸收    传输   
Uptake and translocation of perfluoroalkyl acids in biosolids-amended soils and plants
ZHANG Hongna1, WEN Bei1, MA Yibing2, HU Xiaoyu3, ZHANG Shuzhen1
1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China;
2. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China;
3. Beijing Center for Disease Prevention and Control, Beijing, 100020, China
Abstract:
Biosolids, soil and maize (Zea mays L.) samples were collected from biosolids-amended fields in Shandong Province. Uptake and translocation of perfluoroalkyl acids (PFAAs, eleven perfluorocarboxylic acids (PFCAs) and five perfluorosulfonic acids (PFSAs)) in the soil-plant system were studied. Eleven PFCAs and four PFSAs were detected quantitatively in biosolids. Total concentration of PFAAs in biosolids was 284.2 ng·g-1 dry weight (dw), with perfluorooctanoic acid (PFOA) and perfluorooctane sulfate (PFOS) as two dominant species. Total contents of PFAAs in biosolids-amended soils ranged from 16.3 to 56.4 ng·g-1 dw. The profile of PFAAs in biosolids-amended soils was consistent with that in biosolids, indicating that PFAAs in soils were mainly from the biosolids. The distribution of PFAAs in maize followed the order of roots > leaves > straws. The levels of PFAAs in maize tissues increased with those in soils. The root concentration factors (RCFs, Croot/Csoil) of PFCAs and PFSAs ranged from 1.26 to 8.69 and from 1.18 to 4.22, respectively. The transfer factors from roots to straws (TFr-s, Cstraw/Croot) and from straws to leaves (TFs-l, Cleaf/Cstraw) correlated negatively with PFAA carbon chain length (P < 0.05).
Key words:    perfluoroalkyl acids    biosolids    biosolids-amended soils    maize    uptake    translocation   
收稿日期: 2017-11-10
基金项目: 国家自然科学基金(41371460,41671465,21537005)资助.
温蓓,Tel:010-62849329,E-mail:bwen@rcees.ac.cn
相关功能
PDF(2279KB) Free
打印本文
加入收藏夹
把本文推荐给朋友
作者相关文章
张宏娜  在本刊中的所有文章
温蓓  在本刊中的所有文章
马义兵  在本刊中的所有文章
胡晓宇  在本刊中的所有文章
张淑贞  在本刊中的所有文章

参考文献:
[1] LINDSTROM A B, STRYNAR M J, LIBELO E L. Polyfluorinated compounds: Past, present, and future[J]. Environmental Science & Technology, 2011, 45(19): 7954-7961.
[2] AHRENS L. Polyfluoroalkyl compounds in the aquatic environment: A review of their occurrence and fate[J]. Journal of Environmental Monitoring, 2011, 13(1): 20-31.
[3] DREYER A, WEINBERG I, TEMME C, et al. Polyfluorinated compounds in the atmosphere of the Atlantic and Southern Oceans: Evidence for a global distribution[J]. Environmental Science & Technology, 2009, 43(17): 6507-6514.
[4] 高燕, 傅建捷, 王亚韡, 等. 全氟化工厂土芯中全氟化合物的分布规律[J]. 环境化学, 2014, 33(10): 1686-1691. GAO Y, FU J J, WANG Y W, et al. Spatial and vertical distribution of perfluoroalkyl substances in soil cores around manufacturing facilities[J]. Environmental Chemistry, 2014, 33(10): 1686-1691 (in Chinese).
[5] GIESY J P, KANNAN K. Global distribution of perfluorooctane sulfonate in wildlife[J]. Environmental Science & Technology, 2001, 35(7): 1339-1342.
[6] HOUDE M, DE SILVA A O, MUIR D C G, et al. Monitoring of perfluorinated compounds in aquatic biota: An updated review PFCs in aquatic biota[J]. Environmental Science & Technology, 2011, 45(19): 7962-7973.
[7] JIANG W W, ZHANG, Y F, ZHU L Y, et al. Serum levels of perfluoroalkyl acids (PFAAs) with isomer analysis and their associations with medical parameters in Chinese pregnant women[J]. Environment International, 2014, 64: 40-47.
[8] 高珂, 傅建捷, 高燕, 等. 武汉市某高校学生血清中全氟烷酸水平及暴露途径初步研究[J]. 环境化学, 2015, 34(8): 1424-1432. GAO K, FU J J, GAO Y, et al. A preliminary study on perfluoroalkyl acids levels in serum and expourse pathways for students from a university in Wuhan[J]. Environmental Chemistry, 2015, 34(8): 1424-1432 (in Chinese).
[9] YANG G, ZHANG G M, WANG H C. Current state of sludge production, management, treatment and disposal in China[J]. Water Research, 2015, 78: 60-73.
[10] CHEN H, YAN S H, YE Z L, et al. Utilization of urban sewage sludge: Chinese perspectives[J]. Environmental Science and Pollution Research, 2012, 19(5): 1454-1463.
[11] SUN H W, GERECKE A C, GIGER W, et al. Long-chain perfluorinated chemicals in digested sewage sludges in Switzerland[J]. Environmental Pollution, 2011, 159(2): 654-662.
[12] ZHANG W, ZHANG Y T, TANIYASU S, et al. Distribution and fate of perfluoroalkyl substances in municipal wastewater treatment plants in economically developed areas of China[J]. Environmental Pollution, 2013, 176: 10-17.
[13] HIGGINS C P, FIELD J A, CRIDDLE C S, et al. Quantitative determination of perfluorochemicals in sediments and domestic sludge[J]. Environmental Science & Technology, 2005, 39(11): 3946-3956.
[14] YOO H, WASHINGTON J W, JENKINS T M, et al. Quantitative determination of perfluorochemicals and fluorotelomer alcohols in plants from biosolid-amended fields using LC/MS/MS and GC/MS[J]. Environmental Science & Technology, 2011, 45(19): 7985-7990.
[15] WEN B, LI L F, ZHANG H N, et al. Field study on the uptake and translocation of perfluoroalkyl acids (PFAAs) by wheat (Triticum aestivum L.) grown in biosolids-amended soils[J]. Environmental Pollution, 2014, 184: 547-554.
[16] GUO R, ZHOU Q F, CAI Y Q, et al. Determination of perfluorooctanesulfonate and perfluorooctanoic acid in sewage sludge samples using liquid chromatography/quadrupole time-of-flight mass spectrometry[J]. Talanta, 2008, 75(5): 1394-1399.
[17] YAN H, ZHANG C J, ZHOU Q, et al. Short- and long-chain perfluorinated acids in sewage sludge from Shanghai, China[J]. Chemosphere, 2012, 88(11): 1300-1305.
[18] CHEN H, ZHANG C, HAN J B, et al. PFOS and PFOA in influents, effluents, and biosolids of Chinese wastewater treatment plants and effluent-receiving marine environments[J]. Environmental Pollution, 2012, 170: 26-31.
[19] SEPULVADO J G, BLAINE A C, HUNDAL L S, et al. Occurrence and fate of perfluorochemicals in soil following the land application of municipal biosolids[J]. Environmental Science & Technology, 2011, 45(19): 8106-8112.
[20] WASHINGTON J W, YOO H, ELLINGTON J J, et al. Concentrations, distribution, and persistence of perfluoroalkylates in sludge-applied soils near Decatur, Alabama, USA[J]. Environmental Science & Technology, 2010, 44(22): 8390-8396.
[21] ZHANG H N, WEN B, HU X Y, et al. Uptake, translocation, and metabolism of 8:2 fluorotelomer alcohol in soybean (Glycine max L. Merrill)[J]. Environmental Science & Technology, 2016, 50(24): 13309-13317.
[22] RHOADS K R, JANSSEN E M L, LUTHY R G, et al. Aerobic biotransformation and fate of N-ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE) in activated sludge[J]. Environmental Science & Technology, 2008, 42(8): 2873-2878.
[23] BLAINE A C, RICH C D, SEDLACKO E M, et al. Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils[J]. Environmental Science & Technology, 2014, 48(14): 7858-7865.
[24] BLAINE A C, RICH C D, HUNDAL L S, et al. Uptake of perfluoroalkyl acids into edible crops via land applied biosolids: Field and greenhouse studies[J]. Environmental Science & Technology, 2013, 47(24): 14062-14069.
[25] WEN B, LI L F, LIU Y, et al. Mechanistic studies of perfluorooctane sulfonate, perfluorooctanoic acid uptake by maize (Zea mays L. Cv. Ty2)[J]. Plant and Soil, 2013: 1-10.
[26] WEN B, WU Y L, ZHANG H N, et al. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils[J]. Environmental Pollution, 2016, 216: 682-688.
[27] FELIZETER S, MCLACHLAN M S, DE VOOGT P. Root uptake and translocation of perfluorinated alkyl acids by three hydroponically grown crops[J]. Journal of Agricultural and Food Chemistry, 2014, 62(15): 3334-3342.
[28] FELIZETER S, MCLACHLAN M S, DE VOOGT P. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa)[J]. Environmental Science & Technology, 2012, 46(21): 11735-11743.
[29] COLLINS C, FRYER M, GROSSO A. Plant uptake of non-ionic organic chemicals[J]. Environmental Science & Technology, 2006, 40(1): 45-52.
[30] SIMONICH S L, HITES R A. Organic pollutant accumulation in vegetation[J]. Environmental Science & Technology, 1995, 29(12): 2905-2914.
[31] ZHAO M M, ZHANG S Z, WANG S, et al. Uptake, translocation, and debromination of polybrominated diphenyl ethers in maize[J]. Journal of Environmental Sciences, 2012, 24(3): 402-409.
相关文献:
1.吕继涛, 罗磊, 张淑贞, 杨科.玉米对纳米TiO2的吸收和累积[J]. 环境化学, 2011,30(5): 903-907
2.邹明强, 王大宁, 谢淑娟.玉米、大豆中减钾总β放射性的快速测定方法[J]. 环境化学, 1992,11(3): 71-74