引用本文:
刘丽, 张婧, 董绍楠, 章福平, 毕树平. 铝-草酸和铝-麦芽酚手性配合物特性的密度泛函理论研究[J]. 环境化学, 2018, 37(9): 1928-1939
LIU Li, ZHANG Jing, DONG Shaonan, ZHANG Fuping, BI Shuping. Studies on the properties of aluminium-oxalate and aluminium-maltolate chiral complexes by density functional theory[J]. Environmental Chemistry, 2018, 37(9): 1928-1939

铝-草酸和铝-麦芽酚手性配合物特性的密度泛函理论研究
刘丽, 张婧, 董绍楠, 章福平, 毕树平
南京大学化学化工学院, 南京, 210023
摘要:
手性物质广泛存在于环境和生物体中,探讨环境体系中手性金属-有机配合物特性具有重要科学意义. 本文采用密度泛函理论(DFT)结合团簇模型(CM)的量子化学计算方法,在B3LYP/6-311+G(d,p)基组水平下,以铝-草酸和铝-麦芽酚为典型实例,研究手性"铝-有机配合物"的动静态性质,系统地开展了以下工作:(1)优化得到了1对铝-草酸和3对铝-麦芽酚手性配合物,并通过静态结构参数、能量参数和谱学性质分析了手性配合物之间的差异;(2)模拟了手性配合物可能存在的10条水交换反应路径,对比了手性配合物水交换反应速率常数;(3)通过Berny方法得到了铝-草酸手性配合物异构体构型转化的动态反应路径,并计算了对映体构型转化的活化能. 结果表明,手性对映体具有基本相同的静态结构和能量特征,但偶极矩存在明显差异;溶剂效应对手性对映体静态结构特征、偶极矩和动态水交换反应速率均有影响;手性对映体之间可发生构型相互转化从而改变对映体所占比例.
关键词:    手性“铝-有机配合物”    水交换反应    构型转化    密度泛函理论   
Studies on the properties of aluminium-oxalate and aluminium-maltolate chiral complexes by density functional theory
LIU Li, ZHANG Jing, DONG Shaonan, ZHANG Fuping, BI Shuping
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
Abstract:
Chiral substances widely exist in the environment and organisms. It is of great scientific significance to investigate the characteristics of chiral metal-organic complexes in environment. In this work, density functional theory (DFT) calculations combined with cluster model (CM) were performed at B3LYP/6-311+G(d,p) level to investigate the chiral "aluminium-organic complexes". Using both aluminium-oxalate and aluminium-maltolate complexes as examples, systematic studies on the static and dynamic properties of chiral "aluminium-organic complexes" were conducted. Static configurations for one pair of aluminium-oxalate and three pairs of aluminium-maltolate chiral complexes were optimized to obtain their static structure parameters and energetic parameters, as well as spectroscopic properties. Ten possible water-exchange reaction pathways were obtained and the water-exchange rate constants are predicted. Chirality inversion pathway for aluminium-oxalate was simulated using Berny algorithm, and the activation barrier was obtained. The results show that the static structure parameters and energetic parameters of the enantiomers are basically same, but there are obvious differences in the dipole moment. The static structure parameters, dipole moment and the water-exchange rate constants are affected by the solvent effect. The inversion of enantiomers will happen in the environment, leading to the change in the proportion of chiral enantiomers.
Key words:    chiral “aluminium-organic complexes”    water-exchange reaction    configuration inversion    density functional theory   
收稿日期: 2017-11-14
基金项目: 国家自然科学基金(21177054)资助.
毕树平,Tel:86\025-86205840,E-mail:bisp@nju.edu.cn
相关功能
PDF(14678KB) Free
打印本文
加入收藏夹
把本文推荐给朋友
作者相关文章
刘丽  在本刊中的所有文章
张婧  在本刊中的所有文章
董绍楠  在本刊中的所有文章
章福平  在本刊中的所有文章
毕树平  在本刊中的所有文章

参考文献:
[1] LEHMLER H J, HARRAD S J, HVHNERFUSS H, et al. Chiral polychlorinated biphenyl transport, metabolism, and distribution: A review[J]. Environmental Science & Technology, 2010, 44(8):2757-2766.
[2] KUMAR A, CAPUA E, KESHARWANI M K, et al. Chirality-induced spin polarization places symmetry constraints on biomolecular interactions[J]. Proceedings of the National Academy of Sciences of the United States of American, 2017, 114(10):2474-2478.
[3] SANGANYADO E, LU Z J, FU Q G, et al. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes[J]. Water Research, 2017, 124:527-542.
[4] 刘维屏,徐超,周珊珊. 手性污染物与环境安全[J]. 环境化学, 2006, 25(3):247-251. LIU W P, XU C, ZHOU S S. Chiral contaminants and environmental safety[J]. Environmental Chemistry, 2006, 25(3):247-251 (in Chinese).
[5] YE J, ZHAO M R, NIU L L, et al. Enantioselective environmental toxicology of chiral pesticides[J]. Chemical Research in Toxicology, 2015, 28(3): 325-338.
[6] PUCHTA R, VAN ELDIK R. Ligand-exchange process on solvated beryllium cations. Part Ⅲ which model reaction is preferable for quantum-chemical investigation of a water-exchange mechanism?[J]. Helvetica Chimica Acta, 2008, 91(6):1063-1071.
[7] JIN X Y, YAN Y, SHI W J, et al. Density functional theory studies on the structures and water-exchange reactions of aqueous Al(Ⅲ)-oxalate complexes[J]. Environmental Science & Technology, 2011, 45(23):10082-10090.
[8] YU P, PHILLIPS B L, OLMSTEAD M M, et al. Rates of solvent exchange in aqueous aluminium (Ⅲ)-maltolate complexes[J]. Dalton Transacitons, 2002, 43(10):2119-2125.
[9] 张婧,董绍楠,侯晓霞,等. 密度泛函理论方法研究铝-麦芽酚配合物的形态结构与水交换反应[J]. 生态毒理学报, 2017, 12(3): 261-272. ZHANG J, DONG S N, HOU X X, et al. Investigation of the configuration characterics and water-exchange reactions of aluminium (Ⅲ)-maltolate complexes by density functional theory[J]. Asian Journal of Ecotoxicology, 2017, 12(3): 261-272 (in Chinese).
[10] MILMAN V, WINKLER B, WHITE J A, et al. Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study[J]. International Journal of Quantum Chemistry, 2015, 77(5):895-910.
[11] 吴海英, 程新路, 张红, 等. 利用两种不同赝势对铝热力学特性的研究[J]. 四川大学学报(自然科学版), 2005, 42(5): 978-982. WU H Y, CHENG X L, ZHANG H, et al. The study of thermodynamic properties of Al by two different pseudopotential[J]. Journal of Sichuan University (Natural Science Edition), 2005, 42(5):978-982 (in Chinese).
[12] STEPHENS P J, DEVLIN F J, PAN J J. The determination of the absolute configurations of chiral molecules using vibrational circular dichroism (VCD) spectroscopy[J]. Chirality, 2008, 20(5):643-663.
[13] FENG L Y, ZHAO C Q, XIAO Y, et al. Electrochemical DNA three-way junction based sensor for distinguishing chiral metallo-supramolecular complexes[J]. Chemical Communications, 2012, 48(55):6900-6902.
[14] DOMÉNECH A, KOSHEVOY I O, PENNO D, et al. Electrochemical chiral recognition by microparticle coatings of Pd complexes with bridging cyclometalated phosphines[J]. Electrochimica Acta, 2008, 53(8):3416-3426.
[15] 张亚会, 刘刚, 徐慧. 电化学方法手性识别的研究进展[J]. 化学通报, 2017, 80(8):699-707. ZHANG Y H, LIU G, XU H. Progress in electrochemical methods for chiral recognition[J]. Chemistry Bulletin, 2017, 80(8):699-707 (in Chinese).
[16] 章慧. 应用电子圆二色光谱方法确定手性金属配合物的绝对构型[J]. 大学化学, 2017, 32(3):1-14. ZHANG H. Application of electronic circular dichroism spectroscopic methods in determination of absolute configuration of chiral metal complexes[J]. University chemistry, 2017, 32(3):1-14 (in Chinese).
[17] SI Y L, YANG G C, HU M G, et al. Assignment of the absolute configuration of dinuclear zirconium complexes containing two homochiral N atoms using TDDFT calculations of ECD[J]. Chemical Physics Letters, 2011, 502(4-6):266-270.
[18] BRINI E, FENNELL C J, FERNANDEZ-SERRA M, et al. How water's properties are encoded in its molecular structure and energies[J]. Chemical Reviews, 2017, 117(19):12385-12414.
[19] 方魏,丁蕾,杨庄,等. 甲醇溶剂环境下两种稳定构象α-丙氨酸分子的手性转变机理[J]. 复旦大学学报(自然科学版), 2017, 56(5):636-644. FANG W, DING L, YANG Z, et al. The chiral transition mechanism of two stable conformations of α-alanine molecules in methanol solvent environment[J]. Journal of Fudan University (Natural Science), 2017, 56(5):636-644 (in Chinese).
相关文献:
1.张婧, 董绍楠, 侯晓霞, 袁晓涵, 毕树平.“温度-压力-溶剂”对Al(H2O)63+动态水交换反应影响的密度泛函理论研究[J]. 环境化学, 2018,37(6): 1179-1185
2.金晶, 董绍楠, 侯晓霞, 张婧, 毕树平.铝-8-羟基喹啉配合物静态结构和动态水交换的密度泛函理论研究[J]. 环境化学, 2016,35(6): 1125-1133
3.侯晓霞, 董绍楠, 张婧, 毕树平.水溶液中Al3+第三水化层对Al(H2O)63+水交换特性影响的密度泛函理论研究[J]. 环境化学, 2016,35(2): 246-253
4.金晓艳, 严喻, 杨文静, 唐杰, 毕树平.“平面型”十三聚合铝形态水交换反应的密度泛函研究[J]. 环境化学, 2013,32(7): 1123-1128