引用本文:
刘海龙, 吉力, 张忠民. 铁、铝催化过氧化氢氧化有机物特征[J]. 环境化学, 2018, 37(9): 1940-1949
LIU Hailong, JI Li, ZHANG Zhongmin. Characteristics of organic matters during hydrogen peroxide oxidation catalyzed by iron or aluminum[J]. Environmental Chemistry, 2018, 37(9): 1940-1949

铁、铝催化过氧化氢氧化有机物特征
刘海龙1, 吉力1, 张忠民2
1. 山西大学环境与资源学院, 太原, 030006;
2. 太原市环境监测中心站, 太原, 030002
摘要:
氧化作为水处理常用的方法,对水质和水处理过程影响深远,因而备受关注.运用三维荧光光谱和紫外差异分析等技术研究过氧化氢单独氧化、铝催化过氧化氢氧化、铁催化过氧化氢氧化对水体有机物的作用;并分析其对溶解性有机物(DOM)的结构和形成消毒副产物潜能的影响.结果表明,铁、铝明显催化过氧化氢对有机物的氧化过程,且铁催化能力明显强于铝.当催化剂投量均为0.018 mmol·L-1,过氧化氢投加量3.5 mg·L-1时,UV254和TOC值的去除率分别是铁催化35.5%、36.4%和铝催化5.0%、29.3%,而单独氧化仅为14.0%、16.7%.利用三维荧光光谱和紫外差异吸收值去卷积分可以明显检测出上述3种氧化对有机物结构影响的差异.催化氧化不改变荧光峰位置,但不同程度地削弱了各荧光峰强度和区域荧光积分值.其中,铁催化对于类蛋白区、可见光区类富里酸和紫外区类富里酸降解程度较高.由紫外差异去卷积分得到,3种体系对水体有机物紫外结构破坏位点在272 nm处是一致的,但破坏程度不同.如3.5 mg·L-1H2O2、0.018 mmol·L-1催化剂投量时,紫外吸收差异值ΔA272/A272分别为单独氧化7.0%,铝催化8.3%,铁催化18.9%.催化氧化对有机物紫外结构铝催化特征位点为λ339 nm、λ364 nm;铁催化特征位点为λ319 nm、λ425 nm.铝、铁离子催化氧化均提高了三卤甲烷的去除率,铝催化去除率优于铁催化.
关键词:    富里酸    过氧化氢    催化氧化    三维荧光    DOM    消毒副产物   
Characteristics of organic matters during hydrogen peroxide oxidation catalyzed by iron or aluminum
LIU Hailong1, JI Li1, ZHANG Zhongmin2
1. School of Environmental Sciences and Resources, Shanxi University, Taiyuan, 030006, China;
2. Taiyuan Environment Detection Central Station, Taiyuan, 030002, China
Abstract:
Oxidation, as a commonly used water treatment method, has a profound impact on water quality and water treatment, and it draws close attention. Effects of oxidation by hydrogen peroxide, hydrogen peroxide oxidation catalyzed by iron and oxidation catalyzed by aluminum on aquatic organic matter (AOM) were studied by using three-dimensional fluorescence and ultraviolet differential absorbance methods. Influence of the above oxidation reactions on the structure and disinfection by-products formation potential of dissolved organic matter (DOM) was analyzed. Results showed that iron and aluminum significantly catalyzed the oxidation of organic matter by hydrogen peroxide, and the catalytic ability of iron was stronger than that of aluminum. When the dosages of catalyst and H2O2 were 0.018 mmol·L-1 and 3.5 mg·L-1 respectively, the removal rates of UV254 and TOC were 35.5%, 36.4% respectively for iron catalysis and 5.0%, 29.3% for aluminum catalysis, while only 14.0%, 16.7% for oxidation by hydrogen peroxide. Three-dimensional fluorescence spectroscopy and UV differential absorbance deconvolution integral were used to detect the differences of the three oxidation rveactions for the structure of organic matter. Catalytic oxidation had no effect on the position of the fluorescence peak, while the intensity of fluorescence peak and the integral value of regional fluorescence were weakened to some extent. Among them, iron catalysis had higher degree of degradation for the protein-like region, fulvic-like acid of visible region and fulvic-like acid of ultraviolet region. According to the UV differential deconvolution, it can be obtained that sites damaged by three systems were consistent for organic matter in water at 272 nm, but the degree of damage was different. For example, while the doses of catalyst and H2O2 were 0.018 mmol·L-1, and 3.5 mg·L-1 respectively, the difference in UV absorbance ΔA272/A272 was 7.0% for oxidation by hydrogen peroxide, 8.3% for aluminum catalysis and 18.9% for iron catalysis, respectively. In addition, aluminum catalytic characteristic locations were 339 nm and 364 nm. Iron catalytic characteristic locations were 319 nm and 425 nm. The removal rate of trihalomethane was increased by iron and aluminum catalysis oxidation, and the removal rate of aluminum catalysis was better than that of iron catalysis.
Key words:    fulvic acid    hydrogen peroxide    catalytic oxidation    three-dimensional fluorescence    DOM    disinfection by-products   
收稿日期: 2017-11-17
基金项目: 国家自然科学基金(51179099/E090301),山西省重点研发计划项目(201603D321007),山西省科技攻关项目(20140313003-3),山西省留学回国人员科技活动择优资助项目(2014)和山西省回国留学人员科研资助项目(2015-004)资助.
刘海龙,Tel:13466842179,E-mail:hlliu827@aliyun.com
相关功能
PDF(6912KB) Free
打印本文
加入收藏夹
把本文推荐给朋友
作者相关文章
刘海龙  在本刊中的所有文章
吉力  在本刊中的所有文章
张忠民  在本刊中的所有文章

参考文献:
[1] LI C W, KORSHIN G V, BENJAMIN M M. Monitoring DBP formation with differential UV spectroscopy[J]. Journal, 1998, 90 (8): 88-100.
[2] NANABOINA V, KORSHIN G V. Evolution of absorbance spectra of ozonated wastewater and its relationship with the degradation of trace-level organic species[J]. Environmental Science & Technology, 2010, 44(16): 6130-6137.
[3] ALBERT S, O'NEIL J M, UDY J W, et al. Blooms of the cyanobacterium Lyngbya majuscula in coastal Queensland, Australia: disparate sites, common factors[J]. Marine Pollution Bulletin, 2005, 51: 428-437.
[4] JONES, A M, PHAM, et al. Dissociation kinetics of Fe(Ⅲ) and Al(Ⅲ) natural organic matter complexes at pH 6.0 and 8.0 and 25 ℃[J]. Geochimica Et Cosmochimica Acta, 2009, 73: 2875-2887.
[5] STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial[J]. Limnology & Oceanography Methods, 2008, 6(11): 572-579.
[6] YAN M, BENEDETTI M F, KORSHIN G V. Study of iron and aluminum binding to Suwannee River fulvic acid using absorbance and fluorescence spectroscopy: comparison of data interpretation based on NICA-Donnan and Stockholm humic models[J]. Water Research, 2013, 47(14): 5439-5446.
[7] YU H, Qu F, LIANG H, et al. Understanding ultrafiltration membrane fouling by extracellular organic matter of Microcystis aeruginosa using fluorescence excitation-emission matrix coupled with parallel factor analysis[J]. Desalination, 2014, 337(1): 67-75.
[8] KORSHIN G V, LI C W, BENJAMIN M M. Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory[J]. Water Research, 1997, 31(7): 1787-1795.
[9] YAN M, DRYER D, KORSHIN G V, et al. In situ study of binding of copper by fulvic acid: comparison of differential absorbance data and model predictions[J]. Water Research, 2013, 47(2): 588-596.
[10] MURPHY K R, STEDMON, C A, GRAEBER D, et al. Fluorescence spectroscopy and multi-way techniques[J]. Parafac. anal. Methods, 2013, 5 (23): 6557-6566.
[11] 黄君礼, 鲍治宇. 紫外吸收光谱法及其应用[M]. 北京: 中国科学技术出版社, 1992, 11(4): 67-72. HUANG Q L, BAO Z Y. Ultraviolet absorption spectroscopy and its application[M]. Beijing: China Science and Technology Press,1992, 11(4): 67-72 (in Chinese).
[12] 刘伟生. 配位化学[M]. 北京: 化学工业出版社, 2013. LIU W S. Coordination chemistry[M].Beijing: Chemical Industry Press, 2013 (in Chinese).
[13] WANG Z, CAO J. Interactions between protein-like and humic-like components in dissolved organic matter revealed by fluorescence quenching[J]. Water Research, 2015, 68(68): 404-413.
[14] 吴静, 崔硕, 谢超波, 等. 好氧处理后城市污水荧光指纹的变化[J]. 光谱学与光谱分析, 2011, 3(12): 3302-3306. WU J, CUI S, XIE C B, et al. The change of fluorescent fingerprint of urban wastewater after aerobic treatment[J]. Spectroscopy and Spectral Analysis,2011, 3(12):3302-3306 (in Chinese).
[15] 金鑫, 金鹏康. 基于PARAFAC分析的二级出水DOM臭氧化特性研究[J]. 中国环境科学, 2015, 35(2): 427-433. JIN X, JIN P K. Ozonation characteristics of DOM in secondary effluent based on fluorescence PARAFAC analysis.[J]. China Environmental Science, 2015, 35(2): 427-433 (in Chinese).
[16] 姚璐璐, 涂响, 于会彬, 等. 三维荧光区域积分评估城市污水中溶解性有机物去除[J]. 环境工程学报, 2013, 7(2): 411-416. YAO LL, TU X, YU H B, et al. Evaluation of dissolved organic matter removal in municipal wastewater based on fluorescence regional integration[J]. Journal of Environmental Engineering, 2013, 7(2): 411-416(in Chinese).
[17] 许金钩. 荧光分析法[M]. 北京: 科学出版社, 2006. XU J G. Fluorescence analysis[M]. Beijing: Science Press,2006(in Chinese).
[18] BAGHOTH S A, SHANMA S K, AMY G L. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC[J]. Water Research, 2011, 45(2): 797-809.
[19] HUMMEL W, GLAUS MA, LOON L R V. Complexation of Radionuclides with Humic Substance: The Metal Concentration Effect[J]. Radiochimica Acta, 1999, 84(2): 111-114.
[20] LI C W, BENJAMIN M M, KORSHIN G V. Characterization of NOM and its adsorption by iron oxide coated sand (IOCS) using UV and fluorescence spectroscopy[J]. Journal of Environmental Engineering and Science, 2006, 5(6): 467-472.
[21] GALLARD H, GUNTEN U V. Chlorination of natural organic matter: kinetics of chlorination and of THM formation[J]. Environmental Science & Technology, 2002, 36(5): 884-90.
[22] ANMENTER J L, CRISTIA J, LI M. Pretreatment option for water with high disinfection by products formation potential[J]. Water Supply, 1998, 16(1-2): 543-550.
[23] 金鹏康, 王晓昌. 腐植酸臭氧氧化和过氧化氢催化氧化处理特性比较[J]. 环境化学, 2005, 24(5): 533-537. JIN P K, WANG X C. Comparison of characteristics between Ozone oxidation humic acid and hydrogen peroxide catalytic oxidation humic acid[J]. Environmental Chemistry, 2005, 24(5): 33-537(in Chinese).
[24] PELEATO N M, SIDHU B S, LEGGE R L, et al. Investigation of ozone and peroxone impacts on natural organic matter character and biofiltration performance using fluorescence spectroscopy[J]. Chemosphere, 2017, 172: 225-233.
相关文献:
1.刘立超, 李静, 李征, 吉庆华.Cu2+对富里酸(FA)形态结构与其三卤甲烷生成能力的影响[J]. 环境化学, 2018,37(2): 249-254
2.田文杰, 何绪文, 黄擎, 张大定, 刘俐, 李发生.模拟酸雨淋溶条件下紫壤淋出液中溶解性有机质的三维荧光特性[J]. 环境化学, 2011,30(11): 1844-1850
3.金鹏康, 王晓昌, 白帆.腐植酸臭氧氧化和过氧化氢催化氧化处理特性比较[J]. 环境化学, 2005,24(5): 533-537