引用本文:
刘金燕, 刘立华, 薛建荣, 吕超强, 李童, 胡博强. 重金属废水吸附处理的研究进展[J]. 环境化学, 2018, 37(9): 2016-2024
LIU Jinyan, LIU Lihua, XUE Jianrong, LV Chaoqiang, LI Tong, HU Boqiang. Research progress on treatment of heavy metal wastewater by adsorption[J]. Environmental Chemistry, 2018, 37(9): 2016-2024

重金属废水吸附处理的研究进展
刘金燕, 刘立华, 薛建荣, 吕超强, 李童, 胡博强
湖南科技大学化学化工学院, 理论有机化学与功能分子教育部重点实验室, 分子构效关系湖南省普通高等学校重点实验室, 湘潭, 411201
摘要:
由于重金属对人、动植物和微生物具有显著的毒性,不能被微生物降解,重金属废水已成为全球性重大环境问题.本文综述了重金属废水的来源、特点、危害及常见的处理方法.与其他方法比较,吸附法具有操作简单、效率高和成本低等特点,已在重金属废水处理中获得广泛应用.本文重点分析了重金属吸附剂的研究进展与存在问题,提出了重金属吸附剂的研究重点和发展方向.
关键词:    重金属    吸附法    吸附剂    研究进展   
Research progress on treatment of heavy metal wastewater by adsorption
LIU Jinyan, LIU Lihua, XUE Jianrong, LV Chaoqiang, LI Tong, HU Boqiang
Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
Abstract:
The presence of heavy metals in wastewater has led to major global environmental problem, because heavy metals have significant toxicity to humans, animals and plants and microorganisms even at low levels, and cannot be degraded by microorganisms. In this paper, the origin, characteristics, hazards and common treatment methods of heavy metal wastewater are summarized. Compared with other methods, adsorption is widely applied in the treatment of heavy metals because of its simple operation, high efficiency, and low cost. The research progress and existing problems of heavy metal adsorbents are discussed emphatically. The research emphasis and development direction of heavy metal adsorbents are also put forward.
Key words:    heavy metal ions    adsorption    adsorbent    research progress   
收稿日期: 2017-11-01
基金项目: 国家自然科学基金(51378201)和湖南省教育厅科学研究重点项目(16A069)资助.
刘立华,Tel:13170426986,E-mail:llh213@163.com,liulihualj@sina.com.cn
相关功能
PDF(1273KB) Free
打印本文
加入收藏夹
把本文推荐给朋友
作者相关文章
刘金燕  在本刊中的所有文章
刘立华  在本刊中的所有文章
薛建荣  在本刊中的所有文章
吕超强  在本刊中的所有文章
李童  在本刊中的所有文章
胡博强  在本刊中的所有文章

参考文献:
[1] LIU L, LI Y, LIU X, et al. Chelating stability of an amphoteric chelating polymer flocculants with Cu (Ⅱ), Pb (Ⅱ), Cd (Ⅱ), and Ni (Ⅱ)[J]. Spectrochimica Acta Part a Molecular & Biomolecular Spectroscopy, 2014, 118: 765-775.
[2] O'CONNELL D W, BIRKINSHAW C, O'DWYER T F. Heavy metal adsorbents prepared from the modification of cellulose: A review[J]. Bioresource Technology, 2008, 99(15): 6709-6724.
[3] FU F, WANG Q. Removal of heavy metal ions from wastewaters: A review[J]. Journal of Environmental Management, 2011, 92(3): 407-418.
[4] FINCH N C, SYME H M, ELLIOTT J. Association of urinary cadmium excretion with feline hypertension[J]. Veterinary Record, 2012, 170(5): 122-125.
[5] BOSCO S M D, JIMENEZ R S, VIGNADO C, et al. Removal of Mn (Ⅱ) and Cd (Ⅱ) from wastewaters by natural and modified clays[J]. Adsorption-journal of the International Adsorption Society, 2006, 12(2): 133-146.
[6] KUMIAWAN T A, CHAN G Y, LO W H, et al. Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals[J]. Science of the Total Environment, 2006, 366(2-3): 409-426.
[7] 刘立华, 吴俊, 李鑫, 等. 重金属螯合絮凝剂对废水中铅、镉的去除性能[J]. 环境工程学报, 2011, 5(5): 1029-1034. LIU L H, WU J, LI X, et al. Removal performance of heavy metal chelating flocculant for Pb2+ and Cd2+ in wastewater[J]. Chinese Journal of Environmental Engineering, 2011, 5(5): 1029-1034 (in Chinese).
[8] LIU L H, WU J, LI X, et al. Synthesis of poly (dimethyldiallylammonium chloride-co-acrylamide)-graft-triethylenetetramine-dithiocarbamate and its removal performance and mechanism of action towards heavy metal ions[J]. Separation and Purification Technology, 2013, 103(2): 92-100.
[9] LIU L H, LI T, YANG G, et al. Synthesis of thiol-functionalized mesoporous calcium silicate and its adsorption characteristics for heavy metal ions[J]. Journal of Environmental Chemical Engineering, 2017, 5(6): 6201-6215.
[10] SHEIKHHOSSEINI A, SHIRVANI M, SHARIATMADARI H. Competitive sorption of nickel, cadmium, zinc and copper on palygorskite and sepiolite silicate clay minerals[J]. Geoderma, 2013, 192(1): 249-253.
[11] LEE T. Removal of heavy metals in storm water runoff using porous vermiculite expanded by microwave preparation[J]. Water Air & Soil Pollution, 2012, 223(6): 3399-3408.
[12] SHI L N, ZHANG X, CHEN Z L. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron[J]. Water Research, 2011, 45(2): 886-892.
[13] SALEM A, SENE R A. Removal of lead from solution by combination of natural zeolite-kaolin-bentonite as a new low-cost adsorbent[J]. Chemical Engineering Journal, 2011, 174(2-3): 619-628.
[14] FALAYI T, NTULI F. Effect of attapulgite calcination on heavy metal adsorption from acid mine drainage[J]. Korean Journal of Chemical Engineering, 2015, 32(4): 707-716.
[15] SDIRI A, KHAIRY M, BOUAZIZ S. Natural clayey adsorbent for selective removal of lead from aqueous solutions[J]. Applied Clay Science, 2016, 126: 89-97.
[16] MOSA A, EL-GHAMRY A, TRUBY P. Chemically modified crop residues as a low-cost technique for the removal of heavy metal ions from wastewater[J]. Water Air & Soil Pollution, 2011, 217(1-4): 637-647.
[17] NETZAHUATL-MUNOZ A R, GUILLEN-JIMENEZ F D M, CHAVEZ-GOMEZ B, et al. Kinetic study of the effect of pH on hexavalent and trivalent chromium removal from aqueous solution by cupressus lusitanica, bark[J]. Water Air & Soil Pollution, 2012, 223(2): 625-641.
[18] NGAH W S W, TEONG L C, HANAFIAH M A K M. Adsorption of dyes and heavy metal ions by chitosan composites: A review[J]. Carbohydrate Polymers, 2011, 83(4): 1446-1456.
[19] ELHAFEZ S E, HAMAD H A, ZAATOUT A, et al. Management of agricultural waste for removal of heavy metals from aqueous solution: adsorption behaviors, adsorption mechanisms, environmental protection, and techno-economic analysis[J]. Environmental Science & Pollution Research, 2017, 24(2): 1397-1415.
[20] SEYEDMOHAMMADI J, MOTAVASSEL M, MADDAHI M H, et al. Application of nanochitosan and chitosan particles for adsorption of Zn(Ⅱ) ions pollutant from aqueous solution to protect environment[J]. Modeling Earth Systems & Environment, 2016, 2(3): 165-177.
[21] MENDE M, SCHWARZ D, STEINBACH C, et al. Simultaneous adsorption of heavy metal ions and anions from aqueous solutions on chitosan-Investigated by spectrophotometry and SEM-EDX analysis[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2016, 510: 275-282.
[22] LI Q, CHAI L, QIN W. Cadmium (Ⅱ) adsorption on esterified spent grain: Equilibrium modeling and possible mechanisms[J]. Chemical Engineering Journal, 2012, 197(29): 173-180.
[23] CHAI L, LI Q, ZHU Y, et al. Synthesis of thiol-functionalized spent grain as a novel adsorbent for divalent metal ions[J]. Bioresource Technology, 2010, 101(15): 6269-72.
[24] REPO E, WARCHOL J K, BHATNAGAR A, et al. Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials[J]. Journal of Colloid & Interface Science, 2011, 358(1): 261-267.
[25] CHAND P, BAFANA A, PAKADE Y B. Xanthate modified apple pomace as an adsorbent for removal of Cd (Ⅱ), Ni (Ⅱ) and Pb (Ⅱ), and its application to real industrial wastewater[J]. International Biodeterioration & Biodegradation, 2015, 97: 60-66.
[26] HOMAGAI P L, GHIMIRE K N, INOUE K. Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse[J]. Bioresource Technology, 2010, 101(6): 2067-2069.
[27] NEERAJ G, KRISHNAN S, KUMAR P S, et al. Performance study on sequestration of copper ions from contaminated water using newly synthesized high effective chitosan coated magnetic nanoparticles[J]. Journal of Molecular Liquids, 2016, 214: 335-346.
[28] VIJAYARAGHAVAN K, YUN Y S. Bacterial biosorbents and biosorption[J]. Biotechnology Advances, 2008, 26(3): 266-291.
[29] PRITHVIRAJ D, DEBOLEENA K, NEELU N, et al. Biosorption of nickel by Lysinibacillus sp. BA2 native to bauxite mine[J]. Ecotoxicology & Environmental Safety, 2014, 107: 260-268.
[30] 苏艳蓉, 柴立元, 杨志辉, 等. Pannonibacter phragmitetus T1菌对Pb2+的吸附特性[J]. 中国有色金属学报, 2011, 21(12): 3211-3217. SU Y R, CHAI L Y, YANG Z H, et al. Biosorption characteristics of Pb2+by Pannonibacter phragmitetus T1[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(12): 3211-3217 (in Chinese).
[31] DHANKHAR R, HOODA A. Fungal biosorption--an alternative to meet the challenges of heavy metal pollution in aqueous solutions[J]. Environmental Technology, 2011, 32(5): 467-491.
[32] COJOCARU C, DIACONU M, CRETESCU I, et al. Biosorption of copper (Ⅱ) ions from aqua solutions using dried yeast biomass[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2009, 335(1): 181-188.
[33] 王玉娟. 废啤酒酵母去除电镀废水中镉的试验研究[D]. 沈阳:东北大学, 2008. WANG Y J. Experimental research on removing cadmium from electroplating wastewater by waste saccharomyces cerevisiae[D]. Shenyang: Northeastern University, 2008 (in Chinese).
[34] SHANG Y X, YU X F, ROMERO-GONZALEZ M E. Screening of algae material as a filter for heavy metals in drinking water[J]. Algal Research, 2015, 12: 258-261.
[35] SHEN Y, LI H, ZHU W, et al. Microalgal-biochar immobilized complex: a novel efficient biosorbent for cadmium removal from aqueous solution[J]. Bioresource Technology, 2017, 244(Pt 1): 1031-1038.
[36] REDDAD Z, GERENTE C, ANDRES Y, et al. Ni (Ⅱ) and Cu (Ⅱ) binding properties of native and modified sugar beet pulp[J]. Carbohydrate Polymers, 2002, 49(1): 23-31.
[37] PEREZMARIN A B, ZAPATA V M, ORTUNO J F, et al. Removal of cadmium from aqueous solutions by adsorption onto orange waste[J]. Journal of Hazardous Materials, 2007, 139(1): 122-131.
[38] 周理程, 向仁军, 成应向, 等. 典型水生植物对重金属离子的吸附性能[C]. 长沙:2010重金属污染综合防治技术研讨会, 2010: 311-317. ZHOU L C, XIANG R J, CHENG Y X, et al. Adsorption properties of typical aquatic plants to heavy metal ions[C]. Changsha: 2010 Heavy Metal Pollution Prevention and Control Technology Symposium, 2010: 311-317 (in Chinese).
[39] LOTA K, ACZNIK I, SIERCZYNSKA A, et al. The capacitance properties of activated carbon obtained from chitosan as the electrode material for electrochemical capacitors[J]. Materials Letters, 2016, 173: 72-75.
[40] ABDELGHANI N T, ELCHAGHABY G A, ZAHRAN E M. Cost effective adsorption of aluminium and iron from synthetic and real wastewater by rice hull activated carbon (RHAC)[J]. American Journal of Analytical Chemistry, 2015, 6(1): 71-83.
[41] TOFIGHY M A, MOHAMMADI T. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets[J]. Journal of Hazardous Materials, 2011, 185(1): 140-147.
[42] ZARE-DORABEI R, FERDOWSI S M, BARZIN A, et al. Highly efficient simultaneous ultrasonic-assisted adsorption of Pb (Ⅱ), Cd (Ⅱ), Ni (Ⅱ) and Cu (Ⅱ) ions from aqueous solutions by graphene oxide modified with 2,2'-dipyridylamine: Central composite design optimization[J]. Ultrasonics Sonochemistry, 2016, 32: 265-276.
[43] BARCZAK M, MICHALAK-ZWIERZ K, GDULA K, et al. Ordered mesoporous carbons as effective sorbents for removal of heavy metal ions[J]. Microporous & Mesoporous Materials, 2015, 211: 162-173.
[44] YAO S H, ZHANG J, SHEN D K, et al. Removal of Pb (Ⅱ) from water by the activated carbon modified by nitric acid under microwave heating[J]. Journal of Colloid & Interface Science, 2016, 463: 118-127.
[45] RIVERAUTRILLA J, SANCHEZPOLO M, GOMEZSERRANO V, et al. Activated carbon modifications to enhance its water treatment applications. An overview[J]. Journal of Hazardous Materials, 2011, 187(1-3): 1-23.
[46] YANAGISAWA H, MATSUMOTO Y, MACHIDA M. Adsorption of Zn (Ⅱ) and Cd (Ⅱ) ions onto magnesium and activated carbon composite in aqueous solution[J]. Applied Surface Science, 2010, 256(6): 1619-1623.
[47] SOUNTHARARAJAH D P, LOGANATHAN P, KANDASAMY J, et al. Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns[J]. Journal of Hazardous Materials, 2015, 287: 306-316.
[48] MARADUR S P, CHANG H K, KIM S Y, et al. Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile[J]. Synthetic Metals, 2012, 162(5-6): 453-459.
[49] PARK S J, KIM Y M. Adsorption behaviors of heavy metal ions onto electrochemically oxidized activated carbon fibers[J]. Materials Science & Engineering A, 2005, 391(1-2): 121-123.
[50] LI Q, YU J G, ZHOU F, et al. Synthesis and characterization of dithiocarbamate carbon nanotubes for the removal of heavy metal ions from aqueous solutions[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2015, 482: 306-314.
[51] ZHANG X Y, HUANG Q, LIU M Y, et al. Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu2+, removal[J]. Applied Surface Science, 2015, 343: 19-27.
[52] XIE F, FAN R Y, YI Q P, et al. NaOH modification of persimmon powder-formaldehyde resin to enhance Cu2+ and Pb2+ removal from aqueous solution[J]. Procedia Environmental Sciences, 2016, 31: 817-826.
[53] RAVIKUMAR L, KALAIVANIA S, MUTHUKRISHNARAJ A, et al. Novel hyperbranched polyurethane resins for theremoval of heavy metal ions from aqueous solution[J]. Process Safety & Environmental Protection, 2016, 104: 11-23.
[54] LIU F, LI L, LING P, et al. Interaction mechanism of aqueous heavy metals onto a newly synthesized IDA-chelating resin: Isotherms, thermodynamics and kinetics[J]. Chemical Engineering Journal, 2011, 173(1): 106-114.
[55] LU Y, WU Z H, LI M F, et al. Hydrophilic PVA-co-PE nanofiber membrane functionalized with iminodiacetic acid by solid-phase synthesis for heavy metal ions removal[J]. Reactive & Functional Polymers, 2014, 82(17): 98-102.
[56] EVREN M, ACAR I, GUCLU K, et al. Removal of Cu2+ and Pb2+ ions by N-vinyl 2-pyrrolidone/itaconic acid hydrogels from aqueous solutions[J]. Canadian Journal of Chemical Engineering, 2014, 92(1): 52-59.
[57] WANG J, LI J. Cu2+ adsorption onto ion-imprinted composite hydrogels: thermodynamics and mechanism studies[J]. Polymer Bulletin, 2015, 72(9): 2143-2155.
[58] CHENG Q, LI C, XU L. Adsorption of Cr (VI) ions using the amphiphilic gels based on 2-(dimethylamino)ethyl methacrylate modified with 1-bromoalkanes[J]. Chemical Engineering Journal, 2011, 173(1): 42-48.
[59] SINGH V, SHARMA A K, MAURYA S. Efficient cadmium (Ⅱ) removal from aqueous solution using microwave synthesized guar gum-graft-poly (ethylacrylate)[J]. Industrial and Engineering Chemistry Research, 2009, 48(10): 4688-4696.
[60] JIANG W, CHEN X, NIU Y, et al. Spherical polystyrene-supported nano-Fe3O4 of high capacity and low-field separation for arsenate removal from water[J]. Journal of Hazardous Materials, 2012, 243(4): 319-325.
[61] PANG Y, ZENG G M, TANG L, et al. PEI-grafted magnetic porous powder for highly effective adsorption of heavy metal ions[J]. Desalination, 2011, 281(1): 278-284.
[62] ZHAI Y, XU X, WANG H, et al. Adsorption of copper on tri-amino-functionalized mesoporous delta manganese dioxide from aqueous solution[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2013, 435(5): 78-84.
[63] WU Z, LI W, WEBLEY P A, et al. General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal[J]. Advanced Materials, 2012, 43(14): 485-491.
[64] ZHANG D, ZHANG C L, ZHOU P. Preparation of porous nano-calcium titanate microspheres and its adsorption behavior for heavy metal ion in water[J]. Journal of Hazardous Materials, 2011, 186(2-3): 971-977.
[65] HABIBA U, AFIFI A M, SALLEH A, et al. Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+[J]. Journal of Hazardous Materials, 2017, 322(Pt A): 182-194.
[66] KE F, JIANG J, LI Y Z, et al. Highly selective removal of Hg2+ and Pb2+ by thiol-functionalized Fe3O4@metal-organic framework core-shell magnetic microspheres[J]. Applied Surface Science, 2017, 413: 266-274.
[67] WU Z, ZHAO D. Ordered mesoporous materials as adsorbents[J]. Chemical Communications, 2011, 47(12): 3332-3338.
[68] JIA Y, ZHANG Y, WANG R, et al. Mesoporous zirconium phosphonate hybrid material as adsorbent to heavy metal ions[J]. Industrial & Engineering Chemistry Research, 2012, 51(38): 12266-12273.
[69] MA T Y, ZHANG X J, SHAO G S, et al. Ordered macroporous titanium phosphonate materials: synthesis, photocatalytic activity, and heavy metal ion adsorption[J]. Journal of Physical Chemistry C, 2008, 112(8): 3090-3096.
[70] SHAHBAZI A. Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb (Ⅱ), Cu (Ⅱ) and Cd (Ⅱ) heavy metal ions in batch and fixed bed column[J]. Chemical Engineering Journal, 2011, 168(2): 505-518.
[71] WU H Y, CHEN C T, HUNG I, et al. Direct synthesis of cubic benzene-bridged mesoporous organosilica functionalized with mercaptopropyl groups as an effective adsorbent for mercury and silver ions[J]. The Journal of Physical Chemistry C, 2010, 114(15): 7021-7029.
[72] WU Z, LI W, WEBLEY P A, et al. General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal[J]. Advanced Materials, 2012, 43(14): 485-491.
[73] WU Z, WEBLEY P A, ZHAO D. Comprehensive study of pore evolution, mesostructural stability, and simultaneous surface functionalization of ordered mesoporous carbon (FDU-15) by wet oxidation as a promising adsorbent[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2010, 26(12): 10277-10286.
[74] MCMANAMON C, BURKE A M, HOLMES J D, et al. Amine-functionalised SBA-15 of tailored pore size for heavy metal adsorption[J]. Journal of Colloid and Interface Science, 2012, 369(1): 330-337.
[75] QI G, LEI X, LI L, et al. Preparation and evaluation of a mesoporous calcium-silicate material (MCSM) from coal fly ash for removal of Co (Ⅱ) from wastewater[J]. Chemical Engineering Journal, 2015, 279(4): 777-787.
[76] 刘立华, 杨刚刚, 王易峰, 等. 模板法合成介孔硅酸钙及其对重金属离子的吸附性能[J]. 环境化学, 2016, 35(9): 1943-1951. LIU L H, YANG G G, WANG Y F, et al. Synthesis of mesoporous calcium silicate by template methodand its adsorption performance for heavy metal ions[J]. Environmental Chemistry, 2016, 35(9): 1943-1951 (in Chinese).
[77] SHEET I, KABBANI A, HOLAIL H, et al. Removal of Heavy Metals Using Nanostructured Graphite Oxide, Silica Nanoparticles and Silica/Graphite Oxide Composite[J]. Energy Procedia, 2014, 50(5): 130-138.
[78] SHAKER M A. Adsorption of Co (Ⅱ), Ni (Ⅱ) and Cu (Ⅱ) ions onto chitosan-modified poly (methacrylate) nanoparticles: Dynamics, equilibrium and thermodynamics studies[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 57: 111-122.
[79] WU S, HU J, WEI L, et al. Construction of porous chitosan-xylan-TiO2, hybrid with highly efficient sorption capability on heavy metals[J]. Journal of Environmental Chemical Engineering, 2014, 2(3): 1568-1577.
[80] JOHN M, HEUSS-ABBICHLER S, ULLRICH A, et al. Purification of heavy metal loaded wastewater from electroplating industry under synthesis of delafossite (ABO2) by "Lt-delafossite process"[J]. Water Research, 2016, 100: 98-104.
[81] MADRAKIAN T, AFKHAMI A, ZADPOUR B, et al. New synthetic mercaptoethylamino homopolymer-modified maghemite nanoparticles for effective removal of some heavy metal ions from aqueous solution[J]. Journal of Industrial & Engineering Chemistry, 2015, 21(1): 1160-1166.
[82] NALBANDIAN M J, ZHANG M, SANCHEZ J, et al. Synthesis and optimization of Fe2O3 nanofibers for chromate adsorption from contaminated water sources[J]. Chemosphere, 2016, 144: 975-981.
[83] LIU Y, FU R, SUN Y, et al. Multifunctional nanocomposites Fe3O4@SiO2-EDTA for Pb (Ⅱ) and Cu (Ⅱ) removal from aqueous solutions[J]. Applied Surface Science, 2016, 369: 267-276.
[84] CALDERON B, FUⅡANA A. Heavy metal release due to aging effect during zero valent iron nanoparticles remediation[J]. Water Research, 2015, 83: 1-9.
[85] KIM S A, KAMALA-KANNAN S, LEE K J, et al. Removal of Pb (Ⅱ) from aqueous solution by a zeolite-nanoscale zero-valent iron composite[J]. Chemical Engineering Journal, 2013, 217(1): 54-60.
[86] FANG Z, QIU X, HUANG R, et al. Removal of chromium in electroplating wastewater by nanoscale zero-valent metal with synergistic effect of reduction and immobilization[J]. Desalination, 2011, 280(1-3): 224-231.
[87] GHASEMI Z, SEIF A, AHMADI T S, et al. Thermodynamic and kinetic studies for the adsorption of Hg (Ⅱ) by nano-TiO2, from aqueous solution[J]. Advanced Powder Technology, 2012, 23(2): 148-156.
[88] DOU B, DUPONT V, PAN W, et al. Removal of aqueous toxic Hg (Ⅱ) by synthesized TiO2 nanoparticles and TiO2/montmorillonite[J]. Chemical Engineering Journal, 2011, 166(2): 631-638.
[89] 李海军, 张霞, 孙海天. 纳米TiO2薄膜对痕量Cu (Ⅱ)的吸附研究[J]. 东北大学学报(自然科学版), 2011, 32(11): 1615-1618. LI H J, ZHANG X, SUN H T. Study on adsorption of Trace Cu (Ⅱ) by nano-TiO2 Films[J]. Journal of Northeastern University (Natural Science), 2011, 32(11): 1615-1618 (in Chinese).
[90] SCOTT T B, POPESCU I C, CRANE R A, et al. Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants[J]. Journal of Hazardous Materials, 2011, 186(1): 280-287.
[91] PETALA E, DIMOS K, DOUVALIS A, et al. Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr (VI) removal from aqueous solution[J]. Journal of Hazardous Materials, 2013, 261(13): 295-306.
[92] 晏长成, 陈维芳, 潘玲, 等. 膨润土负载纳米零价铁去除水中铅的研究[J]. 水资源与水工程学报, 2013, 24(6): 20-24. YAN C C, CHEN W F, PAN L, et al. Study on removal of lead in water with nanzero-valent iron supported on Bentonite[J]. Journal of Water Resources and Water Engineering, 2013, 24(6): 20-24 (in Chinese).
[93] BAIKOUSI M, GEORGIOU Y, DAIKOPOULOS C, et al. Synthesis and characterization of robust zero valent iron/mesoporous carbon composites and their applications in arsenic removal[J]. Carbon, 2015, 93(5): 636-647.
相关文献:
1.刘广洋, 刘中笑, 张延国, 高苹, 徐东辉, 郑姝宁.基于功能化纳米材料的环境中重金属快速检测研究进展[J]. 环境化学, 2017,36(11): 2357-2365