引用本文:
蓝家程, 孙玉川, 胡宁. 基于降雨事件的岩溶地下河多环芳烃浓度、组成变化及生态风险评价[J]. 环境化学, 2018, 37(9): 2049-2059
LAN Jiacheng, SUN Yuchuan, HU Ning. Changes of the concentration and composition of polycyclic aromatic hydrocarbons and their ecological risk assessment during the scale of rainfall events in a karst underground river[J]. Environmental Chemistry, 2018, 37(9): 2049-2059

基于降雨事件的岩溶地下河多环芳烃浓度、组成变化及生态风险评价
蓝家程1, 孙玉川2, 胡宁3
1. 贵州师范大学喀斯特研究院/国家喀斯特石漠化防治工程技术研究中心, 贵阳, 550001;
2. 重庆市岩溶环境重点实验室/西南大学地理科学学院, 重庆, 400715;
3. 河南省新乡市地震局, 新乡, 453000
摘要:
对重庆市南山老龙洞地下河出口进行连续采样监测,利用GS-MS测定水中16种优控多环芳烃(polycyclic aromatic hydrocarbons, PAHs)的质量浓度.研究降雨期间地下河水中溶解态PAHs浓度、组成变化及其生态风险水平.结果表明,地下河流量对降雨响应可分为4个阶段,流量对降雨的响应与雨强和水文地质结构有关,老龙洞地下河属于管道与裂隙组合的岩溶水文系统;地下河出口总溶解态PAHs为103.2-674 ng·L-1,平均值为259.3 ng·L-1;游离态PAHs为97.9-660.3 ng·L-1,平均值为250.6 ng·L-1;溶解性有机质(dissolved organic matter, DOM)结合态PAHs为3.3-31.54 ng·L-1,平均值为8.66 ng·L-1.PAHs组成以低分子量PAHs为主,其在总溶解态、游离态和DOM结合态PAHs 比例分别为96.7%、97.9%和66.3%,中、高分子量PAHs相对富集于DOM结合态中;PAHs质量浓度变化对降雨或流量响应敏感,整体上随流量的增加,PAHs质量浓度呈增加的趋势,流量的峰值、谷值与PAHs的峰值、谷值形成很好的对应关系;降雨期间地下河PAHs生态风险水平由中度风险2级→低风险→中度风险2级→低风险→中度风险2级的变化过程,整体上属于中等风险水平.
关键词:    多环芳烃    降雨事件    生态风险评价    岩溶地下河   
Changes of the concentration and composition of polycyclic aromatic hydrocarbons and their ecological risk assessment during the scale of rainfall events in a karst underground river
LAN Jiacheng1, SUN Yuchuan2, HU Ning3
1. School of Karst Science/State Engineering Technology Institute for Karst Desertification control, Guizhou Normal University, Guiyang, 550001, China;
2. Chongqing Key Laboratory of Karst Environment/School of Geographical Science, Southwest University, Chongqing, 400715, China;
3. Seismological Bureau of Xinxiang, Xinxiang, Henan, 453000, China
Abstract:
Water samples in the outlet of Laolongdong underground river were continuously collected to determine the concentration and composition of PAHs in the dissolved phase and quantify the ecological risk of dissolved PAHs during rainfall events. The concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) were measured by gas chromatography-mass spectrometry (GC-MS). The results showed that the discharge of underground river response to rainfall could be divided into four stage. The discharge response to rainfall was related to rainfall intensity and hydrogeological structure. The curves of discharge indicated that Laolongdong underground river system belonged to a karst hydrological system including karst fissures together with conduits. The concentrations of PAHs ranged from 103.2 to 674 ng·L-1 in the dissolved phase, from 97.9 to 660.3 ng·L-1 in freely dissolved phase, and from 3.3 to 31.5 ng·L-1 in DOM-associated phose, with mean values of 259.3 ng·L-1, 250.6 ng·L-1, 8.66 ng·L-1, respectively. Low molecular weight (LMW) PAHs were predominant in water, and its proportion accounted for 96.7% in the total dissolved phase, 97.9% in the freely dissolved phase and 66.3% in DOM associated phase, respectively. PAHs with 4-5 rings were found to bind preferenwally to DOM. The concentrations of PAHs responded sensitively to the rainfall or discharge. PAHs concentrations increased with increasing discharge overall. The peaks and valleys of PAHs concentrations were well corresponding to the peaks and valleys of discharge. The levels of ecological risk of PAHs showed the following order during rainfall events:Moderate risk 2→low-risk→moderate risk 2→low-risk→moderate risk 2.
Key words:    polycyclic aromatic hydrocarbons    rainfall events    risk ecological assessment    karst underground river   
收稿日期: 2017-11-17
基金项目: 国家自然科学基金(41761091,41601584),贵州省科学技术基金(黔科合J字[2015]2111号,黔科合基础[2017]1417),贵州省科技合作计划项目(黔科合LH字[2015]7775号)和贵州师范大学2015年博士科研启动项目(600204)资助.
孙玉川,Tel:13883372371,E-mail:sunyc@swu.edu.cn
相关功能
PDF(2224KB) Free
打印本文
加入收藏夹
把本文推荐给朋友
作者相关文章
蓝家程  在本刊中的所有文章
孙玉川  在本刊中的所有文章
胡宁  在本刊中的所有文章

参考文献:
[1] MAIOLI O L G, RODRIGUES K C, KNOPPERS B A, et al. Distribution and sources of aliphatic and polycyclic aromatic hydrocarbons in suspended particulate matter in water from two Brazilian estuarine systems[J]. Continental Shelf Research, 2011, 31(10): 1116-1127.
[2] YANG D, QI S, ZHANG Y, et al. Levels, sources and potential risks of polycyclic aromatic hydrocarbons (PAHs) in multimedia environment along the Jinjiang River mainstream to Quanzhou Bay, China[J]. Marine Pollution Bulletin, 2013, 76(1-2): 298-306.
[3] JOHNSEN A R, KARLSON U, Diffuse PAH contamination of surface soils: environmental occurrence, bioavailability, and microbial degradation[J]. Applied Microbiology and Biotechnology, 2007, 76(3): 533-543.
[4] YUNKER M B, MACDONALD R W, VINGARZAN R, et al. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry, 2002, 33(4): 489-515.
[5] LIGARAY M, BAEK S S, KWON H O, et al. Watershed-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs)[J]. Journal of Hazardous Materials, 2016, 320: 442-457.
[6] MOTELAY-MASSEI A, GARBAN B, TIPHAGNE-LARCHER K, et al. Mass balance for polycyclic aromatic hydrocarbons in the urban watershed of Le Havre (France): Transport and fate of PAHs from the atmosphere to the outlet[J]. Water Research, 2006, 40(10): 1995-2006.
[7] SCHWARZ K, GOCHT T, GRATHWOHL P. Transport of polycyclic aromatic hydrocarbons in highly vulnerable karst systems[J]. Environmental Pollution, 2011, 159(1): 133-139.
[8] 康杰, 胡健, 朱兆洲, 等. 太湖及周边河流表层沉积物中PAHs的分布、来源与风险评价[J]. 中国环境科学, 2017, 37(3): 1162-1170. KANG J, HU J, ZHU Z Z, et al. Distribution, source and risk assessment of PAHs in surface sediments from Taihu Lake and its surrounding rivers[J]. China Environmental Science, 2017, 37(3): 1162-1170 (in Chinese).
[9] 段晓勇, 印萍, 刘金庆, 等. 滦河口表层沉积物中重金属和多环芳烃的分布、来源及风险评估[J]. 中国环境科学, 2016, 36(4): 1198-1206. DUAN X Y, YIN P, LIU J Q, et al. Heavy metals and polycyclic aromatic hydrocarbons in surface sediments of Luan River estuary: distributions, sources and ecological risk assessments[J]. China Environmental Science, 2016, 36(4): 1198-1206 (in Chinese).
[10] 吴义国, 方冰芯, 李玉成, 等. 杭埠——丰乐河表层沉积物中多环芳烃的污染特征、来源分析及生态风险评价[J]. 环境化学, 2017, 36(2): 420-429. WU Y G, FANG B X, LI Y C, et al. Occurrence of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Hangbu-Fengle River: Pollution characteristics,potential source and risk assessment[J]. Environmental Chemistry, 2017, 36(2): 420-429 (in Chinese).
[11] 李法松, 韩铖, 操璟璟, 等. 长江安庆段及毗邻湖泊沉积物中多环芳烃分布及风险评价[J]. 环境化学, 2016, 35(4): 739-748. LI F S, HAN C, CAO J J, et al. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in sediments from Anqing section of Yangtze River and lakes around Anqing City[J]. Environmental Chemistry, 2016, 35(4): 739-748 (in Chinese).
[12] 王超, 谭丽, 吕怡兵, 等. 长江重庆段表层水体中多环芳烃的分布及来源分析[J]. 环境化学, 2015, 34(1): 18-22. WANG C, TAN L, LYU Y B, et al. Distribution and origin of polycyclic aromatic hydrocarbons (PAHs) in surface water from Chongqing section of the Yangtze River[J]. Environmental Chemistry, 2015, 34(1): 18-22 (in Chinese).
[13] 王喆, 卢丽, 夏日元. 城市近郊型地下河水中多环芳烃分布规律与来源解析[J]. 环境化学, 2015, 34(11): 2096-2102. WANG Z, LU L, XIA R Y. Distribution and source apportionment of polycyclic aromatic hydrocarbons in water from suburban type underground river[J]. Environmental Chemistry, 2015, 34(11): 2096-2102 (in Chinese).
[14] 蓝家程, 孙玉川, 田萍, 等. 岩溶地下河流域水中多环芳烃污染特征及生态风险评价[J]. 环境科学, 2014, 35(10): 3722-3730. LAN J C, SUN Y C, TIAN P, et al. Contamination and ecological risk assessment of polycyclic aromatic hydrocarbons in water and in karst underground river catchment[J]. Environmental Science, 2014, 35(10): 3722-3730 (in Chinese).
[15] 孙玉川, 沈立成, 袁道先. 表层岩溶泉水中多环芳烃污染特征及来源解析[J]. 环境科学, 2014, 35(6): 2091-2098. SUN Y C, SHEN L C, YUAN D X. Contamination and source of polycyclic aromatic hydrocarbons inepikarst spring water[J]. Environmental Science, 2014, 35(6): 2091-2098 (in Chinese).
[16] 袁道先, 蔡桂鸿. 岩溶环境学[M]. 重庆: 重庆出版社, 1988. YUAN D X, CAI G H. Kaest environment[M]. Chongqing: Chongqing press, 1988(in Chinese).
[17] FORD D C, WILLIAMS P. Karst hydrogeology and geomorphology[M]. Wiley & Sons, Chichester, 2007.
[18] LAN J, SUN Y, XIAO S. et al. Polycyclic aromatic hydrocarbon contamination in a highly vulnerable underground river system in Chongqing, Southwest China[J]. Journal of Geochemical Exploration, 2016, 168: 65-71.
[19] SHAO Y, WANG Y, XU X, et al. Occurrence and source apportionment of PAHs in highly vulnerable karst system[J]. Science of the Total Environment, 2014, 490: 153-160.
[20] WANG Y, XUE R, LI J, et al. Compositional fractionation of polyaromatic hydrocarbons in the karst soils, South China[J]. Environmental Earth Sciences, 2011, 66(7): 2013-2019.
[21] 孔祥胜, 祁士华, 蒋忠诚, 等. 广西大石围巨型漏斗土壤中多环芳烃与环境因素[J]. 环境科学, 2012, 33(11): 3905-3915. KONG X S, QI S H, JIANG Z C, et al. Environmental factors on fistribution of polycyclic aromatic hydrocarbons in soils from Dashiwei Karst Giant Doline (Tiankeng) in Guangxi, China[J]. Environmental Science, 2012, 33(11): 3905-3915 (in Chinese).
[22] 孔祥胜, 祁士华, 孙骞, 等. 广西大石围天坑中多环芳烃的大气传输与分异[J]. 环境科学, 2012, 33(12): 3212-3219. KONG X S, QI S H, SUN J, et al. Transport and differentiation of polycyclic aromatic hydrocarbons in air from Dashiwei Karst Sinkholes in Guangxi, China[J]. Environmental Science, 2012, 33(12): 3212-3219 (in Chinese).
[23] 蓝家程, 孙玉川, 师阳, 等. 岩溶地下河表层沉积物多环芳烃的污染及生态风险研究[J]. 环境科学, 2015, 36(3): 855-861. LAN J C, SUN Y C, SHI Y, et al. Contamination and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediment in karst underground river[J]. Environmental Science, 2015, 36(3): 855-861 (in Chinese).
[24] 孙玉川, 沈立成, 袁道先. 多环芳烃在岩溶区上覆土壤中的垂直迁移及控制因素[J]. 土壤学报, 2014, 51(4): 795-805. SUN Y C, SHEN L C, YUAN D X. Rules and controlling factors of vertical migration of polycyclic aromatic hydrocarbons in the overlying soil in karst terranes[J]. Acta Pedologica Sinica, 2014, 51(4): 795-805 (in Chinese).
[25] PERRETTE Y, POULENARD J, DURAND A, et al. Atmospheric sources and soil filtering of PAH content in karst seepage waters[J]. Organic Geochemistry, 2013, 65(6): 37-45.
[26] 蓝家程, 孙玉川, 师阳, 等. 岩溶地下河流域表层土壤多环芳烃污染特征及来源分析[J]. 环境科学, 2014, 35(8): 2937-2943. LAN J C, SUN Y C, SHI Y, et al. Source and contamination of polycyclic aromatic hydrocarbons in surface soil in karst underground river basin[J]. Environmental Science, 2014, 35(8): 2937-2943 (in Chinese).
[27] AKKANEN J, KUKKONEN J V K. Measuring the bioavailability of two hydrophobic organic compounds in the presence of dissolved organic matter[J]. Environmental Toxicology and Chemistry, 2003, 22 (3): 518-524.
[28] MOECKEL C, MONTEITH D T, LLEWELLYN N R, et al. Relationship between the Concentrations of Dissolved Organic Matter and Polycyclic Aromatic Hydrocarbons in a Typical U.K. Upland Stream[J]. Environmental Science & Technology, 2014, 48(1): 130-138.
[29] POERSCHMANN J, ZHANG Z Y, KOPINKE F D, et al. Solid phase microextraction for determining the distribution of chemicals in aqueous matrices[J]. Analytical Chemistry, 1997, 69(4): 597-600.
[30] LI N Q, LEE H K. Tandem-cartridge solid-phase extraction followed by GC/MS analysis for measuring partition coefficients of association of polycyclic aromatic hydrocarbons to humic acid[J]. Analytical Chemistry, 2000, 72(21): 5272-5279.
[31] 江泽利, 孙玉川, 王尊波, 等. 降雨期间岩溶地下河溶解态多环芳烃变化特征及来源解析[J]. 环境科学, 2015, 36(11): 4088-4094. JIANG Z L, SUN Y C, WANG Z B, et al. Variation characteristics and sources of polycyclic aromatic hydrocarbons in karst subterranean river during rainfall events[J]. Environmental Science, 2015, 36(11): 4088-4094 (in Chinese).
[32] 乔肖翠, 何江涛, 杨蕾, 等. DOM 及pH 对典型PAHs 在土壤中迁移影响模拟实验研究[J]. 农业环境科学, 2014, 33(5): 943-950. QIAO X C, HE J T, YANG L, et al. Influences of DOM and pH on PAHs Migrations in Soil Columns[J]. Journal of Agro-Environment Science, 2014,33(5): 943-950 (in Chinese).
[33] SHEVENELL L, MCCARTHY J F. Effects of precipitation events on colloids in a karst aquifer[J]. Journal of Hydrology, 2002, 255(1-4): 50-68.
[34] KALF D F, CROMMENTUIJN T, VANDEPLASSCHE E J. Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs)[J]. Ecotoxicology and Environmental Safety, 1997, 36(1): 89-97.
[35] SUN J H, WANG G L, CHAI Y, et al. Distribution of polycyclic aromatic hydrocarbons (PAHs) in Henan Reach of the Yellow River, Middle China[J]. Ecotoxicology and Environmental Safety, 2009, 72(5): 1614-1624.
[36] CAO Z G, LIU J L,LUAN Y, et al. Distribution and ecosystem risk assessment of polycyclic aromatic hydrocarbons in the Luan River, China[J]. Ecotoxicology, 2010, 19(5): 827-837.
[37] 刘丰, 刘静玲, 陈秋颖, 等. 海河南系表层沉积物中多环芳烃的污染特征与生态风险评价[J]. 科学通报, 2013, 58(12): 1109-1116. LIU F, LIU J L, CHEN Q Y, et al. Pollution characteristics and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the southern part of the Haihe River system in China[J]. Chin Sci Bull, 2013, 58: 1109-1116 (in Chinese).
相关文献:
1.李法松, 韩铖, 操璟璟, 周葆华, 徐志兵, 左月, 姚静波, 王瑜, 金陶胜.长江安庆段及毗邻湖泊沉积物中多环芳烃分布及风险评价[J]. 环境化学, 2016,35(4): 739-748
2.丁晴晴, 李科, 董黎明.北京市冬季道路沉积物中多环芳烃的污染特征和源解析[J]. 环境化学, 2016,35(9): 1903-1912
3.王靖宇, 宁寻安, 李锐敬, 温炜彬, 杨佐毅, 贺睿哲, 刘敬勇.典型印染废水处理过程中芳香烃化合物的污染特征及污泥生态风险评价[J]. 环境化学, 2015,34(6): 1201-1208
4.冯精兰, 刘书卉, 申君慧, 栗笑迎, 孙剑辉.新乡市道路灰尘中PAHs的污染特征和来源解析[J]. 环境化学, 2013,32(4): 630-639
5.徐绍箐, 马启敏, 李泽利, 程海鸥.锦州湾表层沉积物中多环芳烃测定与生态风险评价[J]. 环境化学, 2011,30(11): 1900-1905
6.廖书林, 郎印海, 王延松.辽河口湿地土壤多环芳烃的分布与生态风险评价[J]. 环境化学, 2011,30(2): 423-429
7.李庆召, 李国新, 罗专溪, 张娴, 颜昌宙.厦门湾海域表层沉积物重金属和多环芳烃污染特征及生态风险评价[J]. 环境化学, 2009,28(6): 869-875