引用本文:
罗桂林, 田林锋, 陈月霞, 李娇, 马映雪. 基于多元统计的宁夏沙湖主要污染物季节性变化原因探究[J]. 环境化学, 2018, 37(9): 2071-2080
LUO Guilin, TIAN Linfeng, CHEN Yuexia, LI Jiao, MA Yingxue. Statistics based study on the seasonal variation of main pollutants in Shahu Lake, Ningxia[J]. Environmental Chemistry, 2018, 37(9): 2071-2080

基于多元统计的宁夏沙湖主要污染物季节性变化原因探究
罗桂林1, 田林锋2,3, 陈月霞2, 李娇2, 马映雪2
1. 宁夏理工学院, 石嘴山市, 753000;
2. 石嘴山市环境监测站, 石嘴山市, 753000;
3. 同济大学, 上海, 200092
摘要:
以西北地区典型高原封闭湖泊宁夏沙湖为研究对象,分春、夏、秋、冬季(4月、6月、8月、10月)对沙湖水体网格点14个区域主要污染物高锰酸盐指数、氨氮、总磷、总氮、氟化物及叶绿素等常规指标进行监测和统计,同时对不同季节主要污染空间分布特征进行研究. 研究结果表明,沙湖高锰酸盐指数和氟化物100%超标,石油类春、夏、冬季100%超标,总氮春、夏、秋、冬超标率分别为43%、64%、7.1%和100%,总磷春、夏、秋、冬超标率分别为50%、100%、85%和85%. 相关性分析结果表明,春季氟化物浓度随水温的升高而降低(r=-0.663,P<0.01),总磷浓度随水温的升高而降低(r=-0.673,P<0.01);高锰酸盐指数和石油类会降低水体透明度. 夏季叶绿素和高锰酸盐指数存在较强的正相关性(r=0.744,P<0.01),高锰酸盐指数和石油类也存在较强的正相关性(r=0.763,P<0.01);秋季高锰酸盐指数随pH的升高而降低(r=-0.672,P<0.01),石油类和透明度呈现一定的正相关(r=0.784,P<0.01),高锰酸盐指数和总磷呈现一定的相关性(r=0.594,P<0.05);冬季各项监测指标之间没有明显的相关性. 14个监测点位春、冬季节聚为两类,夏、秋季节聚为三类. 春季共提出2个主成分,揭示75%的污染来源; 夏季共提出1个主成分,揭示53%的污染来源; 秋季共提出2个主成分,揭示62%的污染来源; 冬季共提出3个主成分,揭示80%的污染来源.
关键词:    沙湖    季节性    多元统计    污染原因   
Statistics based study on the seasonal variation of main pollutants in Shahu Lake, Ningxia
LUO Guilin1, TIAN Linfeng2,3, CHEN Yuexia2, LI Jiao2, MA Yingxue2
1. Ningxia Polytechnic Institute, Shizuishan, 753000, China;
2. Shizuishan City Environmental Monitoring Station, Shizuishan, 753000, China;
3. Tongji University, Shanghai, 200092, China
Abstract:
This study mainly focused on the statistical analysis of the relationships between the important water quality indicators of fourteen monitoring locations in Shahu Lake, which is a typical closed lake located on the plateau of Ningxia province. Permanganate index, ammonia nitrogen, total phosphorus, total nitrogen and chlorophyll were monitored and analyzed in the four seasons, including spring (April), summer (June), autumn (August), and winter (October).The statistical analysis showed that in all samples, the measured permanganate index and fluoride both exceeded the environmental standards. Around 43%, 64%, 7.1% and 100% of the total nitrogen measured in spring, summer, autumn and winter, respectively, exceeded the environmental standard value, while for the total phosphorus in the samples, the exceeding ratio were 50%, 100%, 85% and 85%, respectively. The correlation analysis showed that concentrations of fluoride and the total phosphorus of the monitoring locations measered in spring both decreased with an increase of the water temperature (fluoride:r=-0.663, P<0.01, TP:r=-0.673, P<0.01). Strong positive correlations were found between chlorophyll and permanganate index (r=0.744, P<0.01), and between permanganate index and petroleum (r=0.763, P<0.01). The permanganate index measured in autumn decreased with an increase of pH (r=-0.672, P<0.01). The transparency was also positively correlated with the petroleum index (r=0.784, P<0.01), showing that high permanganate index could reduce the water transparency. In addition, there was a certain correlation between permanganate index and total phosphorus index (r=0.594, P<0.05). However, no significant correlation was observed between these monitoring indicators in winter. Furthermore, the indicators of the fourteen monitoring locations in spring and winter could be clustered into two categories by the HCA method, while that in summer and autumn seasons could be clustered into three categories. Two components were extracted from the experimental data in spring by the PCA meathod, accounting for 75% of the variations (the potential pollution sources). However, only one principal component was extracted from the experimental data measured in summer, revealing 53% of the potential pollution sources. For the experimental data in autumn, two main components were extracted, revealing 62% of the potential pollution sources. Three main components were extracted from the experimental data in winter, revealing 80% of the potential pollution sources.
Key words:    Shahu Lake    seasonal    multivariate statistics    pollution cause   
收稿日期: 2018-03-16
基金项目: 宁夏高等学校科学技术研究项目(NGY2016203)和宁夏回族自治区环境保护厅"沙湖、星海湖水质污染成因及控制研究"资助.
田林锋,E-mail:tianlinfeng448@126.com
相关功能
PDF(6712KB) Free
打印本文
加入收藏夹
把本文推荐给朋友
作者相关文章
罗桂林  在本刊中的所有文章
田林锋  在本刊中的所有文章
陈月霞  在本刊中的所有文章
李娇  在本刊中的所有文章
马映雪  在本刊中的所有文章

参考文献:
[1] 胡汝骥, 姜逢清, 王亚俊, 等. 论中国干旱区湖泊研究的重要意义[J]. 干旱区研究, 2007, 24(2):137-140. HU R J, JIANG F Q, WANG Y J, et al. On the importance of research on the Lake in arid land of China[J]. Arid Zone Research, 2007, 24(2):137-140 (in Chinese).
[2] 王洪道, 顾丁锡, 刘雪芬, 等. 中国湖泊水资源[M]. 北京: 农业出版社, 1987. WANG H D, GU D X, LIU X F, et al. Chinese lake water resources[M]. Beijing: Agriculture Publishing House, 1987(in Chinese).
[3] 王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社,1998. WANG S M, DOU H S. Lake history of China[M]. Beijing: Science Press, 1998 (in Chinese).
[4] 杨桂山, 马荣华, 张路, 等. 中国湖泊现状及面临的重大问题与保护策略[J]. 湖泊科学, 2010, 22(6): 799-810. YANG G S, MA R H, ZHANG L, et al. Lake status, major problem and protection strategy in China[J]. Journal of Lake Sciences, 2010, 22(6): 799-810 (in Chinese).
[5] 杨桂山, 马荣华, 段洪涛, 等. 中国湖泊的数量、面积与空间分布[J]. 中国科学, 2011, 41(3): 394-401. YANG G S, MA R H, DUAN H T, et al. Number, area and spatial distribution of Chinese Lakes[J]. Chinese Science, 2011, 41(3): 394-401 (in Chinese).
[6] 吴智文, 春喜, 梁文俊, 等. 我国干旱区湖泊演化研究综述[J]. 湿地科学与管理, 2017, 13(1): 55-60. WU Z W, CHUN X, LIANG W J, et al. Review of lake evolution in arid semi-arid area[J]. Wetland Science and Management,2017, 13(1): 55-60 (in Chinese).
[7] 璩向宁, 钟艳霞. 宁夏沙湖旅游区水环境问题及保护措施[J]. 水土保持研究, 2002, 9(3): 171-173. QU X N, ZHONG Y X.Problems of water environment and their protective measures in the Sand Lake tourist area of Ningxia[J]. Research of Soil and Water Conservation, 2002, 9(3): 171-173 (in Chinese).
[8] 曹园园. 基于水环境和景观格局的宁夏沙湖生态安全研究[D]. 银川: 宁夏大学, 2016. CAO Y Y. Research of ecological safety based on water environment and landscape pattern in Ningxia Shahu Lake[J]. Yinchuan: Ningxia University, 2016 (in Chinese).
[9] 陈洁. 宁夏沙湖水环境预警研究[D]. 西安: 长安大学, 2014. CHENG J. Study on early warning of water environment in Sand Lake, Ningxia[D]. Xi'an: Chang'an University, 2014 (in Chinese).
[10] 璩向宁, 曹园园, 刘文辉, 等. 宁夏沙湖主湖区水环境变化特征[J]. 湿地科学, 2017, 15(2): 200-206. QU X N, CAO Y Y, LIU W H, et al. Change characteristics of water environment of main lake area of Shahu Lake in Ningxia[J]. Wetland Science, 2017, 15(2): 200-206 (in Chinese).
[11] 米文宝, 樊新刚, 刘明丽. 宁夏沙湖水生生态系统健康评估[J]. 生态学杂志, 2007, 26(2): 296-300. MI W B, FAN X G, LIU M M. Health assessment of Shahu Lake aquatic ecosystem in Ningxia[J]. Chinese Journal of Ecology, 2007, 26(2): 296-300 (in Chinese).
[12] 田林锋, 胡继伟, 秦樊鑫, 等. 基于统计的百花湖表层水中重金属分布特征[J]. 环境科学研究, 2011, 24(3): 16-24. TIAN L F, HU J W, QIN F X, et al. Statistical analysis of distribution characteristics of heavy metals in surface water from Baihua Lake[J]. Research of Environmental Sciences, 2011, 2011, 24(3): 16-24 (in Chinese).
[13] 田林锋, 胡继伟, 秦樊鑫, 等. 重金属元素在贵州红枫湖水体中的分布特征[J]. 中国环境科学, 2011, 31(3): 481-489. TIAN L F, HU J W, QIN F X, et al. Distribation of heavy metal elements in the water body from Lake Hongfeng[J]. China Environmental Science, 2011, 31(3): 481-489 (in Chinese).
[14] 田林锋, 胡继伟, 秦樊鑫, 等. 红枫湖沉积物重金属元素地球化学特征及风险性评价[J]. 环境化学, 2011, 30(9): 1590-1597. TIAN L F, HU J W, QIN F X, et al. Geochemical characteristics and risk assessment of heavy metals in sediments from Lake Hongfeng[J]. Environmental Chemistry, 2011, 30(9): 1590-1597 (in Chinese).
[15] 汤国安, 杨昕. ArcGIS地理信息系统空间分析实验教程[M].北京: 科学出版社. 2006. TANG G A, YANG X. ArcGIS geographic information system spatial analysis experiment course[M]. Beijing: Science Press,2006 (in Chinese).
[16] 倪青山, 刘小丹. SPSS应用试验教程[M]. 长沙: 湖南大学出版社, 2007. NI Q S, LIU X D. SPSS Application Test Tutorial[M]. Changsha: Hunan University Press, 2007 (in Chinese).
[17] 田林锋, 胡继伟, 黄先飞, 等. 贵州百花湖沉积物重金属稳定性及潜在生态风险性研究[J]. 环境科学学报, 2011, 32(4): 885-894. TIAN L F, HU J W, HUANG X F, et al. Ecological risk and stability of heavy metals in sediments from Lake Baihua in Guizhou Province[J]. Acta Scientiae Circumstantiae, 2011, 32(4): 885-894 (in Chinese).
[18] 林涛, 徐盼盼, 钱会, 等. 黄河宁夏段水质评价及其污染源分析[J]. 环境化学, 2017, 36(6): 1388-1396. LIN T, XU P P, QIAN H, et al. Assessment of water quality and analysis of pollution source in Ningxia section of the Yellow River[J]. Environment Chemistry, 2017, 36(6): 1388-1396 (in Chinese).
[19] SHI H, VIGNEAU-CALLAHAN K E, SHESTOPALOV A I, et al. Characterization of diet-dependent metabolic serotypes: primary validation of male and female serotypes in independent cohorts of rats[J]. Journal of Nutrition, 2002, 132: 1039-1046.
[20] MARIETJ VAN DER WERF, BART PIETERSE, NICOLE VAN LUI JK, et al. Multivariate analysis of microarray date by principal component discriminant analysis: prioritizing relevant transcripts linked to the degradation of different carbohydrates in Pseudomonas putida S12[J]. Microbiology, 2006, 152(1): 257-272.
[21] 邢静, 张越, 陈彦磊, 等. 基于主成分分析法的黄河流域国控断面水质评价[J]. 节水灌溉, 2013, 22(10): 31-34. XIAO J, HANG Y, CHEN Y L, et al. Assessment of Yellow River basin in water quality of state-controlled sections in based on principal component analysis method[J]. Water Saving Irrigation, 2013, 22(10): 31-34 (in Chinese).
[22] DENG J J, HUANG X F, HU J W. Distribution of several microorganisms and activity of alkaline phosphatase in sediments from Baihua Lake[J]. Asia-Pacific Journal of Chemical Engineering, 2009, 4: 711-716.
[23] 李小胜, 陈珍珍. 如何正确应用 SPSS 软件做主成分分析[J]. 统计研究, 2010, 27(4):105-108. LI X S, CHENG Z Z. Correctly using SPSS software for principal components analysis[J]. Statistical Research, 2010, 27(4):105-108 (in Chinese).赵光升, 冯旭, 郭伟,等ICP-MS直接测定酱油中的26种元素[J].环境化学,2018,37(9):2081-2083. ZHAO G S FENG X, GUO W,et al.Determine 26 elements in soy sauce by ICPMS without digestion[J].Environmental Chemistry,2018,37(9):2081-2083.