引用本文:
郭溪, 张瑛, 孟甜甜, 杨瑞新, 司小会, 周集体. 实验室模拟制备环境持久性自由基及其生物毒性研究[J]. 环境化学, 2018, 37(10): 2095-2102
GUO Xi, ZHANG Ying, MENG Tiantian, YANG Ruixin, SI Xiaohui, ZHOU Jiti. Generation and toxicity of environmental persistent free radicals[J]. Environmental Chemistry, 2018, 37(10): 2095-2102

实验室模拟制备环境持久性自由基及其生物毒性研究
郭溪, 张瑛, 孟甜甜, 杨瑞新, 司小会, 周集体
大连理工大学化工与环境生命学部环境学院, 工业生态与环境工程教育部重点实验室, 大连, 116024
摘要:
一些表面吸附有机物的颗粒物在不完全燃烧的过程中会产生环境持久性自由基(EPFRs),但是目前关于这些EPFRs的水生生物毒性的报道还很有限.为了更好地了解EPFRs对水生生物的毒性作用,采用邻苯二酚-二氧化硅(CT-SiO2)模拟体系在限氧条件下制备EPFRs,考察金属离子(Fe、Cu、Ni、Zn)及其氧化物、热解温度和CT/SiO2质量比对颗粒物表面EPFRs生成的影响,并对EPFRs悬浮液中·OH的产生以及对发光细菌的急性毒性进行了测定.采用电子顺磁共振(EPR)对制备的EPFRs进行表征的结果表明,金属氧化物能够促进EPFRs的生成,而金属离子则恰好相反;热解温度以及CT/SiO2质量比是EPFRs的生成过程的重要影响因素,对CT-SiO2热解体系中EPFRs的生成浓度和类型具有至关重要的影响,EPFRs的生成浓度在热解温度为400℃且CT/SiO2质量比为0.032时,达到最高值5.04×1015 spins·g-1.本研究所制备的EPFRs在环境空气中的半衰期,能够达到18-80 d,这可能是因为其与颗粒物的结合增加了其稳定性;发光细菌(P.phosphoreum T3 spp.)的急性毒性结果表明,含有EPFRs的颗粒物对发光细菌的发光具有明显的抑制作用,发光抑制率与EPFRs浓度呈明显的剂量-效应关系,并推测可能与EPFRs悬浮液中活性氧物种(ROS)的产生有关.该结果为研究EPFRs在环境过程中的形成因素及其生物毒性提供了基础,为研究EPFRs的潜在环境风险提供了基础数据.
关键词:    环境持久性自由基    影响因素    半衰期    发光细菌    水生生物毒性   
Generation and toxicity of environmental persistent free radicals
GUO Xi, ZHANG Ying, MENG Tiantian, YANG Ruixin, SI Xiaohui, ZHOU Jiti
Laboratory of Industrial Ecology and Environmental Engineering(MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
Abstract:
Environmental persistent free radicals (EPFRs) can be formed during incomplete combustion of particles with some organic substances adsorbed on the surface. However, the current study on the toxicity of these EPFRs is still limited. To better understand the effect of EPFRs on aquatic organisms, we simulated the generation process of EPFRs in the lab using catechol-silica (CT-SiO2) as model substrate with pyrolysis under oxygen-limited environment. We investigated the effects of metal ions (Fe, Cu, Ni, Zn) and their metal oxides, pyrolysis temperature and CT/SiO2 mass ratio on the formation of EPFRs. In addition, the generation of ·OH in the suspension and the toxicity of synthesized EPFRs were also examined. Our results showed that the addition of metal oxides in matrix increased the formation of EPFRs, while metal ions inhibited it. The pyrolysis temperature and mass ratio of CT/SiO2 significantly affected the concentration and types of EPFRs formed in the pyrolysis system, where the highest concentration of EPFRs reached 5.04×1015 spins·g-1 at 400℃ and CT/SiO2 mass ratio of 0.032. Half-lives of EPFRs reached 18-80 days at ambient air. Toxicity tests revealed that EPFRs significantly inhibited the luminescence of P. phosphoreum T3 spp. with dose-response dependence, which may be contributed to the generation of reactive oxygen species (ROS) in the suspension. Our results provided information for the formation of EPFRs and their biotoxicity in environmental processes, which will be further necessary for the potential environmental risk of EPFRs.
Key words:    environmental persistent free radicals    influencing factors    half-lives    luminous bacteria    aquatic toxicity   
收稿日期: 2017-12-02
基金项目: 国家自然科学基金(21477014,21261140334)的资助.
张瑛,Tel:86-0411-84706252,E-mail:yzhang@dlut.edu.cn
相关功能
PDF(1653KB) Free
打印本文
加入收藏夹
把本文推荐给朋友
作者相关文章
郭溪  在本刊中的所有文章
张瑛  在本刊中的所有文章
孟甜甜  在本刊中的所有文章
杨瑞新  在本刊中的所有文章
司小会  在本刊中的所有文章
周集体  在本刊中的所有文章

参考文献:
[1] CHURCH D F, PRYOR W A. Free-radical chemistry of cigarette smoke and its toxicological implications[J]. Environmental Health Perspectives, 1985, 64(3):111-126.
[2] 韩林, 陈宝梁. 环境持久性自由基的产生机理及环境化学行为[J]. 化学进展, 2017, 29(9):1008-1020. HAN L, CHEN B L. Generation mechanism and fate behaviors of environmental persistent free radical[J]. Process in Chemistry, 2017, 29(9):1008-1020(in Chinese).
[3] FANG G D, GAO J, DIONYSIOU D D, et al. Activation of persulfate by quinones:free radical reactions and implication for the degradation of PCBs[J]. Environmental Science & Technology, 2013, 47(9):4605-4611.
[4] LIAO S H, PAN B, LI H, et al. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings[J]. Environmental Science & Technology, 2014, 48(15):8581-8587.
[5] CRUZ A L N D, GEHLING W, LOMNICHI S, et al. Detection of environmentally persistent free radicals at a superfund wood treating site[J]. Environmental Science & Technology, 2011, 45(15):6356-6365.
[6] CRUZ A L N D, COOK R L, DELLINGER B, et al. Assessment of environmentally persistent free radicals in soils and sediments from three Superfund sites[J]. Environmental Science Processes Impacts, 2014, 16(1):44-52.
[7] LOMNICKI S, TRUONG H, VEJERANO E, et al. Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter[J]. Environmental Science & Technology, 2008, 42(13):4982-4988.
[8] VEJERANO E P, RAO G Y, KHACHATRYAN L, et al. Environmentally persistent free radicals:Insights on a new class of pollutants[J]. Environmental Science & Technology, 2018, 52(5):2468-2481.
[9] PAUL A, STÖSSER R, ZEHL A, et al. Nature and abundance of organic radicals in natural organic matter:Effect of pH and irradiation[J]. Environmental Science & Technology, 2006, 40(19):5897-5903.
[10] VEJERANO E, LOMNICKI S M, DELLINGER B. Formation and stabilization of combustion-generated, environmentally persistent radicals on Ni(Ⅱ)O supported on a silica surface[J]. Environmental Science & Technology, 2012, 46(17):9406-9411.
[11] KELLEY M A, HEBERT V Y, THIBEAUS T M, et al. Model combustion-generated particulate matter containing persistent free radicals redox cycle to produce reactive oxygen species[J]. Chemical Research in Toxicology, 2013, 26(12):1862-1871.
[12] KIRURI L W, DELLINGER B, LOMNICKI S. Tar balls from Deep Water Horizon oil spill:Environmentally persistent free radicals (EPFR) formation during crude weathering[J]. Environmental Science & Technology, 2013, 47(9):4220-4226.
[13] PATTERSON M C, DITUSA M F, MCFERRIN C A, et al. Formation of environmentally persistent free radicals (EPFRs) on ZnO at room temperature:Implications for the fundamental model of EPFR generation[J]. Chemical Physics Letters, 2017, 670:5-10.
[14] PATTERSON M C, KEIBART N D, KIRURI L W, et al. EPFR formation from phenol adsorption on Al2O3 and TiO2:EPR and EELS studies[J]. Chemical Physics, 2013, 422(8):277-282.
[15] FANG G D, LIU C, GAO J, et al. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation[J]. Environmental Science & Technology, 2015, 49(9):5645-5653.
[16] FALCIGLIA P P, GIUSTRA M G, VAGLIASINDI F G. Low-temperature thermal desorption of diesel polluted soil:influence of temperature and soil texture on contaminant removal kinetics[J]. Journal of Hazardous Materials, 2011, 185(1):392-400.
[17] VEJERANO E, LOMNICKI S, DELLINGER B. Lifetime of combustion-generated environmentally persistent free radicals on Zn(Ⅱ)O and other transition metal oxides[J]. Journal of Environmental Monitoring, 2012, 14(10):2803-2806.
[18] QIN J L, CHENG Y X, SUN M X, et al. Catalytic degradation of the soil fumigant 1,3-dichloropropene in aqueous biochar slurry[J]. Science of the Total Environment, 2016, 569-570:1-8.
[19] GEHLING W, KHACHATRYAN L, DELLINGER B. Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5[J]. Environmental Science & Technology, 2014, 48(8):4266-4272.
[20] KHACHATRYAN L, VEJERANO E, LOMNICKI S, et al. Environmentally persistent free radicals (EPFRs). 1. Generation of reactive oxygen species in aqueous solutions[J]. Environmental Science & Technology, 2011, 45(19):8559-8566.
[21] KHACHATRYAN L, DELLINGER B. Environmentally persistent free radicals (EPFRs)-2. Are free hydroxyl radicals generated in aqueous solutions?[J]. Environmental Science & Technology, 2011, 45(21):9232-9239.
[22] KHACHATRYAN L, MCFERRIN C A, HALL R W, et al. Environmentally persistent free radicals (EPFRs). 3. Free versus bound hydroxyl radicals in EPFR aqueous solutions[J]. Environmental Science & Technology, 2014, 48(16):9220-9226.
[23] DELLINGER B, PAYOR W A, CUETO R L G, et al. The role of combustion-generated radicals in the toxicity of PM2.5[J]. Proceedings of the Combustion Institute, 2000, 28(2):2675-2681.
[24] DELLINGER B, PRYOR W A, CUETO R, et al. Role of free radicals in the toxicity of airborne fine particulate matter[J]. Chemical Research in Toxicology, 2001, 14(10):1371-1377.
[25] MAHNE S, CHUANG G C, PANKEY E, et al. Environmentally persistent free radicals decrease cardiac function and increase pulmonary artery pressure[J]. American Journal of Physiology Heart and Circulatory Physiology, 2012, 303(9):1135-1142.
[26] LEE G I, SARAVIA J, YOU D, et al. Exposure to combustion generated environmentally persistent free radicals enhances severity of influenza virus infection[J]. Particle and Fibre Toxicology, 2014, 11(57):1-10.
[27] CHUANG G C, XIA H, MAHNE S E, et al. Environmentally persistent free radicals cause apoptosis in HL-1 cardiomyocytes[J]. Cardiovascular Toxicology, 2017, 17(2):140-149.
[28] BALAKRISHUA S, LOMNICKI S, MCAVEY K M, et al. Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity[J]. Particle and Fibre Toxicology, 2009, 6(1):11.
[29] KIRURI L W, KHACHATRYAN L, DELLINGER B, et al. Effect of copper oxide concentration on the formation and persistency of environmentally persistent free radicals (EPFRs) in particulates[J]. Environmental Science & Technology, 2014, 48(4):2212-2217.
[30] 王婷, 李浩, 郭惠莹, 等. 邻苯二酚-Fe2O3和邻苯二酚-CuO体系中持久性自由基的形成机制及特征[J]. 环境化学, 2016, 35(3):423-429. WANG T, LI H, GUO H Y, et al. The formation and characteristics of persistent free radicals in catechol-Fe2O3/silica and catechol-CuO/silica systems[J]. Environmental Chemistry, 2016, 35(3):423-429(in Chinese).
[31] MARTÍNEZ C E, MARTÍNEZ-VILLEGAS N. Copper-alumina-organic matter mixed systems:alumina transformation and copper speciation as revealed by EPR spectroscopy[J]. Environmental Science & Technology, 2008, 42(12):4422-4427.
[32] CRUZ A L N D, LOMNICKI S M, DELLINGER B. Effect of low temperature thermal treatment on soils contaminated with pentachlorophenol and environmentally persistent free radicals[J]. Environmental Science & Technology, 2012, 46(11):5971-5978.
[33] DENG M J, ZHANG Y, QUAN X, et al. Acute toxicity reduction and toxicity identification in pigment-contaminated wastewater during anaerobic-anoxic-oxic (A/A/O) treatment process[J]. Chemosphere, 2017, 168:1285-1292.
[34] JEZIERSKI A, DROZD J, JERZYKIEWICE M, et al. EPR in the environmental control:Copper complexes and free radicals in soil and municipal solid waste compost[J]. Applied Magnetic Resonance, 1998, 14(2-3):275-282.
[35] GHANI W A W A K, MOHD A, SILVA G, et al. Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration:Chemical and physical characterization[J]. Industrial Crops & Products, 2013, 44(1):18-24.
[36] BASTOS A C, PRODANA M, ABRANTES N, et al. Potential risk of biochar-amended soil to aquatic systems:An evaluation based on aquatic bioassays[J]. Ecotoxicology, 2014, 23(9):1784-1793.
相关文献:
1.阮秀秀, 杜巍萌, 郭凡可, 汤育圆, 钱光人.环境持久性自由基的环境化学行为[J]. 环境化学, 2018,37(8): 1780-1788