叶夏珺, 蒋琦, 汪雨霏, 翁乐仪, 沈昊宇, 胡美琴. 磁性高分子材料Fe3O4@P(MMA-AA-DVB)的合成及其对尼泊金酯类新型污染物的富集与痕量检测[J]. 环境化学, 2018, 37(10): 2131-2142
YE Xiajun, JIANG Qi, WANG Yufei, WENG Leyi, SHEN Haoyu, HU Meiqin. Preparation of magnetic polymer Fe3O4@P(MMA-AA-DVB) and its enrichment and trace analysis of the emerging contaminants-parabens[J]. Environmental Chemistry, 2018, 37(10): 2131-2142

叶夏珺, 蒋琦, 汪雨霏, 翁乐仪, 沈昊宇, 胡美琴
浙江大学宁波理工学院, 生物与化学工程学院, 宁波, 315100
以纳米Fe3O4为磁核,甲基丙烯酸甲酯(MMA)和甲基丙烯酸(AA)为共聚单体,二乙烯基苯(DVB)为交联剂,采用悬浮聚合法制备了富含羧基的磁性高分子材料Fe3O4@P (MMA-AA-DVB).通过元素分析(EA)、X-射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、透射电镜(TEM)、振动样品磁强计(VSM)、热重分析(TG-DTG)等手段对其进行了组成、结构、形貌、磁性等表征,并研究了其吸附和富集水中4种尼泊金酯类(parabens)新型污染物(尼泊金甲酯(MPB)、尼泊金乙酯(EPB)、尼泊金丙酯(PPB)、尼泊金丁酯(BPB))的性能.在此基础上建立了一种快速、高效、灵敏的磁固相萃取-液相色谱(MSPE-HPLC)法,用于水中和化妆品中parabens残留量的测定.优化了磁固相萃取的实验条件,考察了样品pH值、富集时间和洗脱剂的种类与用量等对parabens回收率的影响.结果表明,Fe3O4@P (MMA-AA-DVB)平均粒径为约20 nm,饱和磁化强度为10.66 emu·g-1.4种parabens的富集倍数可达250倍;在浓度为2-2000 μg·L-1浓度范围内呈现良好的线性关系,线性相关系数(r)均大于0.9998;平均回收率为93.6%-101.2%,相对标准偏差(RSDs)为0.8%-8.5%;检出限(LODs)为0.22-1.60 ng·L-1:定量限(LOQs)为:0.8-5.0 ng·L-1.所建立的方法可以用于水样和化妆品样品中的parabens的日常检测.采用本方法对15个实际样品中的parabens进行了定量检测,结果表明其中13种样品含有MPB或PPB,浓度范围分别为MPB:1.26-347.8 μg·kg-1,PPB:44.89-224.8 μg·kg-1.
关键词:    磁性高分子材料    尼泊金酯    新型污染物    吸附富集    磁固相萃取    痕量检测   
Preparation of magnetic polymer Fe3O4@P(MMA-AA-DVB) and its enrichment and trace analysis of the emerging contaminants-parabens
YE Xiajun, JIANG Qi, WANG Yufei, WENG Leyi, SHEN Haoyu, HU Meiqin
Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, China
Magnetic polymer Fe3O4@P(MMA-AA-DVB) full of carboxylate-functionalized groups was prepared via suspension polymerization method with nano Fe3O4 as a core, methyl methacrylate (MMA) and methacrylic acid (AA) as monomers, divinylbenzene (DVB) as a crosslinker. The Fe3O4@P(MMA-AA-DVB) was characterized by elementary analysis (EA), powder X-ray diffraction (XRD), Fourier-transformed infrared spectrometry (FTIR), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and thermogravimetric-differential thermal gravity (TG-DTG). The application for its adsorption and enrichment properties for parabens in aqueous solution was investigated. Furthermore, a rapid, sensitive and accurate method for the simultaneous determination of 4 kinds of parabens, i.e., methylparaben (MPB), ethylparaben (EPB), propylparaben (PPB) and butylparaben (BPB), in water and cosmetics by magnetic solid-phase extraction (MSPE) liquid chromatography (MSPE-HPLC) was reported. The effects for MSPE, e. g. sample pH values, enrichment time, type and amount of elution solutions were investigated. The results showed that the average particle size of Fe3O4@P(MMA-AA-DVB) was around 20 nm, with the saturation magnetization intensity of 10.66 emu·g-1. The enrichment factor of the target parabens reached 250. Under the optimal condition, linearities were obtained ranging from 2-2000 μg·L-1 with correlation coefficients (R) higher than 0.9998 for the target parabens. The average recoveries were at 93.6%-101.2% with the relative standard deviations (RSDs) in the range of 0.8%-8.5%. The limits of detection (LODs) were in the range of 0.22-1.60 ng·L-1 and the limits of quantification (LOQs) were between 0.8 ng·L-1 and 5.0 ng·L-1. The developed method can be applied to the routine analyses for the determination of the parabens in water and cosmetics samples. The present method has been applied in the determination of the parabens in 15 real samples. The result showed that 13 of them were found to contain MPB or PPB at concentration of 1.26-347.8 μg·kg-1 for MPB and 44.89-224.8 μg·kg-1 for PPB, respectively.
Key words:    magnetic polymer    parabens    emerging contaminants    adsorption and enrichment    magnetic solid-phase extraction (MSPE)    trace analysis   
收稿日期: 2017-12-26
基金项目: 国家自然科学基金(51608479),浙江省自然科学基金(LY14B04003),宁波市自然科学基金(2014A610092),国家级大学生创新创业训练计划项目(201713022009)和浙江省新苗计划项目(2016R401181)资助.
PDF(11939KB) Free
叶夏珺  在本刊中的所有文章
蒋琦  在本刊中的所有文章
汪雨霏  在本刊中的所有文章
翁乐仪  在本刊中的所有文章
沈昊宇  在本刊中的所有文章
胡美琴  在本刊中的所有文章

[1] RICHARDSON S D, TERNES T A. Water analysis:Emerging contaminants and current issues[J]. Analytic Chemistry, 2014, 86:2813-2848.
[2] GEISSEN V, MOL H, KLUMPP E, et al. Emerging pollutants in the environment:A challenge for water resource management[J]. International Soil and Water Conservation Research, 2015, 3:57-65.
[3] RICHARDSON S D, KIMURA S Y. Water analysis:Emerging contaminants and current issues[J]. Analytic Chemistry, 2016, 88:546-582.
[4] VRIJHEID M, CASAS M, GASCON M, et al. Environmental pollutants and child health-A review of recent concerns[J]. International Journal of Hygiene and Environmental Health, 2016, 219:331-342.
[5] DARBRE P D, HARVEY P W. Paraben esters:Review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks[J]. Journal of Applied Toxicology, 2008, 28:561-578.
[6] DARBRE P D, ALJARRAH A, MILLER W R, et al. Concentrations of parabens in human breast tumors[J]. Journal of Applied Toxicology, 2004, 24:5-13.
[7] POLLOCK T, WEAVER R E, GHASEMI R, et al. Butyl paraben and propyl paraben modulate bisphenol A and estradiol concentrations in female and male mice[J]. Toxicology and Applied Pharmacology, 2017, 325:18-24.
[8] WATKINS R D J, FERGUSON K K, TORO L V A D, et al. Associations between urinary phenol and paraben concentrations and markers of oxidative stress and inflammation among pregnant women in Puerto[J]. International Journal of Hygiene and Environmental Health, 2015, 218:212-219.
[9] BRAUSCH J M, RAND G M. A review of personal care products in the aquatic environment:Environmental concentrations and toxicity[J]. Chemosphere, 2011, 82:1518-1532.
[10] 王培义.化妆品-原理·配方·生产工艺[M]. 北京:化学工业出版社, 1999:300-322. WANG P Y. Cosmetics-Principle·Component·Manufacture Technics[M]. Beijing:Chemical Industry Press, 1999:300-322(in Chinese).
[11] SHEN H Y, JIANG H L, MAO H L, et al. Simultaneous determination of seven phthalates and four parabens in cosmetic products using HPLC-DAD and GC-MS methods[J]. Journal of Separation Sciences, 2007, 30:48-54.
[12] 王学江, 张全兴, 赵建夫, 等. 氨基修饰聚苯乙烯树脂对酚酸物质的吸附性能[J]. 高分子学报, 2005(1):93-97. WANG X J, ZHANG Q X, ZHAO J F. Adsorption of phenolic acids on a new type of amino modified polystyrene[J]. Acta Polymerica Sinca, 2005(1):93-97(in Chinese).
[13] 沈妍铮,陈思,王素方,等. 对羟基苯甲酸酯类印迹微球的制备及条件优化[J]. 化学试剂, 2012, 34(6):501-504. SHEN Y Z, CHEN S, WANG S F, et al. Synthesis and optimization of molecularly imprinted microspheres for ethyl paraben[J]. Chemical Reagent, 2012, 34(6):501-504(in Chinese).
[14] HAN C, XIA B Q, CHEN X Z, et al. Determination of four paraben-type preservatives and three benzophenone-type ultraviolet light filters in seafoods by LC-QqLIT-MS/MS[J]. Food Chemistry, 2016, 194:1199-1207.
[15] VILLAVERDE-DE-SAA E, RODIL R, QUINTANA J B, et al. Matrix solid-phase dispersion combined to liquidchromatography-tandem mass spectrometry for the determination of paraben preservatives in mollusk[J]. Journal of Chromatography A, 2016, 1459:57-66.
[16] SHEN H Y, ZHU Y, WEN X E, et al. Preparation of Fe3O4-C18 nano-magnetic composite materials and their cleanup properties for organophosphorous pesticides[J]. Analytic Bioanalytic Chemistry, 2007, 387:2227-2237.
[17] 陈君良, 姚屠鹏, 朱宏亮, 等. 巯基功能化纳米Fe3O4磁性高分子复合材料的合成及其对水中亚甲基蓝的吸附作用[J]. 复合材料学报,2014,31(2):323-330. CHEN J L, YAO T P, ZHU H L, et al. Preparation of thiol-functionalized nano-Fe3O4-polymer magnetic composite material and its adsorption properties on methylene blue in water[J]. Acta Material Composite Sinica, 2014,31(2):323-330(in Chinese).
[18] SHEN H Y, CHEN Z X, LI Z H, et al. Controlled synthesis of 2,4,6-trichlorophenol-imprinted amino-functionalized nano-Fe3O4-polymer magnetic composite for highly selective adsorption[J]. Colloids and Surfaces A:Physicochemical Engineering Aspects, 2015, 481:439-450.
[19] 张蕴, 奚晓青, 许姗妮, 等. 氨基功能化纳米复合材料对水中磷酸盐的吸附研究[J]. 化学学报, 2012, 70(17):1839-1846. ZHANG Y, XI X Q, XU S N, et al. Adsorption studies on phosphate by amino-functionalized nano-size composite materials[J]. Acta Chimica Sinica, 2012, 70(17):1839-1846(in Chinese).
[20] PAN S D, SHEN H Y, ZHOU L X, et al. Controlled synthesis of pentachlorophenol imprinted polymers on the surface of magnetic graphene oxide for highly selective adsorption[J]. Journal of Material Chemistry A, 2014, 2:15345-15356.
[21] CHEN X H, ZHAO Y G, ZHANG Y, et al. Ethylenediamine-functionalized superparamagnetic carbon nanotubes for magnetic molecularly imprinted polymer matrix solid-phase dispersion extraction of 12 fluoroquinolones in river water[J]. Analytic Methods, 2015, 7:5838-5846.
[22] PAN S D, CHEN X H, LI X P, et al. Double-sided magnetic molecularly imprinted polymer modified graphene oxide for highly efficient enrichment and fast detection of trace-level microcystins from large-volume water samples combined with liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2015, 1422:1-12.
[23] FERREIRA A M C, MODER M. GC-MS determination of parabens, triclosan and methyl triclosan in water by in situ derivatisation and stir-bar sorptive extraction[J]. Analytic Bioanalytic Chemistry, 2011, 399:945-953.
[24] RANIREZ N, BORRULL F, MARCE R M. Simultaneous determination of parabens and synthetic musks in water by stir-bar sorptive extraction and thermal desorption gas chromatography-mass spectrometry[J]. Journal of Separation Sciences, 2012, 35:580-588.
[25] BECERRA-HERRERA M, MIRANDA V, ARISENDI D, et al. Chemometric optimization of the extraction and derivatization of parabens for their determination in water samples by rotating-disk sorptive extraction and gas chromatography mass spectrometry[J]. Talanta, 2018, 176:551-557.
[26] RAJABI M, SARHADI A, BAZREGAR M, et al. Rapid derivatization and extraction of paraben preservatives by fast syringe-assisted liquid-liquid microextraction and their determination in cosmetic and aqueous sample solutions by gas chromatography[J]. Analytical Methods, 2017, 9:5963-5969.
[27] GUO H H, CHEN G, WU M X, et al. Preparation of a porous aromatic framework via the Chan-Lam reaction:A coating for solid-phase microextraction of antioxidants and preservatives[J]. Microchim Acta, 2017, 184:4409-4416.
[28] CHEN C W, HSUA W C, LU Y C, et al. Determination of parabens using two microextraction methods coupled with capillary liquid chromatography-UV detection[J]. Food Chemistry, 2018, 241:411-418.
[29] 郑和辉. 液相色谱串联质谱法直接进样测定水中的5种防腐剂[J]. 环境化学,2013,32(3):522-523. ZHENG H H. Determination of 5 preservatives in water by direct injection with liquid chromatography tandem mass spectrometry[J]. Environmental Chemistry, 2013, 32(3):522-523. (in Chinese).