引用本文:
史京转, 魏红, 周孝德, 程小莉, 李克斌. CoFe2O4增强超声/H2O2降解环丙沙星[J]. 环境化学, 2018, 37(10): 2237-2246
SHI Jingzhuan, WEI Hong, ZHOU Xiaode, CHENG Xiaoli, LI Kebin. Enhanced ultrasonic/H2O2 degradation of ciprofloxacin using CoFe2O4[J]. Environmental Chemistry, 2018, 37(10): 2237-2246

CoFe2O4增强超声/H2O2降解环丙沙星
史京转1,3, 魏红1, 周孝德1, 程小莉1, 李克斌2
1. 西安理工大学, 省部共建西北旱区生态水利国家重点实验室, 西安, 710048;
2. 西北大学化学与材料科学学院, 合成与天然功能分子化学教育部重点实验室, 西安, 710069;
3. 渭南市环境科学研究所, 渭南, 714000
摘要:
实验合成磁性CoFe2O4,采用X射线衍射仪(XRD)、扫描电镜(SEM)和X射线能谱仪(EDS)对其进行表征,研究其催化超声/H2O2(US/H2O2)降解环丙沙星的效果和机理.实验考察了CoFe2O4和H2O2添加浓度、初始pH值、不同形态氮、氯离子等因素对环丙沙星降解效果的影响.并以大肠杆菌为指示菌种,分析了CoFe2O4催化US/H2O2降解环丙沙星过程中抑菌性的变化.结果表明,CoFe2O4能够有效增强US/H2O2降解环丙沙星,CoFe2O4和H2O2浓度分别为0.04 g·L-1和1.0 mmol·L-1、pH=3.0、反应60 min环丙沙星的降解率达到85.26%;与NH4+相比,NO3-促进环丙沙星的降解,NO2-和Cl-不同程度抑制环丙沙星的降解.自由基抑制结果表明,CoFe2O4增强US/H2O2降解环丙沙星主要在于·OH的生成.CoFe2O4稳定性结果表明,5次反复实验后,环丙沙星60 min的降解率仅降低了4%左右,催化剂的重复利用性较高.琼脂扩散实验表明,CoFe2O4在催化US/H2O2降解环丙沙星的同时,CoFe2O4/US/H2O2体系能够完全去除其对大肠杆菌的抑菌性.
关键词:    磁性铁钴CoFe2O4    超声/H2O2    环丙沙星    抑菌性    稳定性   
Enhanced ultrasonic/H2O2 degradation of ciprofloxacin using CoFe2O4
SHI Jingzhuan1,3, WEI Hong1, ZHOU Xiaode1, CHENG Xiaoli1, LI Kebin2
1. State key laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China;
2. Key Laboratory of Synthetic And Natural Functional Molecule Chemistry of Ministry of Education, School of Chemistry and Material Science, Northwest University, Xi'an, 710069, China;
3. Weinan Institute of Environmental Science, Weinan, 714000, China
Abstract:
Magnetic iron cobalt CoFe2O4 was synthesized, characterized by XRD、SEM and EDS methods. Its enhancement and mechanism on ciprofloxacin degradation under ultrasound/H2O2 system were studied. The parameters such as CoFe2O4 and H2O2 concentration, initial pH value, different forms of nitrogen and chloride ions on ciprofloxacin degradation were investigated. In addition, ciprofloxacin antibacterial activity on E.coli was analyzed. The results indicated that CoFe2O4 enhanced ciprofloxacin degradation under US/H2O2 system effectively. Ciprofloxacin degradation rate reached 85.26% in 60 min when CoFe2O4 and H2O2 concentration were 0.04 g·L-1 and 1.0 mmol·L-1, respectively, initial pH was 3.0. Compared with the effect of NH4+, NO3- promoted ciprofloxacin degradation while NO2- and Cl- showed inhibition. Radical scavenging experiments indicated that the catalytic enhancement was mainly attributed to the generation of hydroxyl radical (·OH). The repeated tests showed that CoFe2O4 presented good stability. Ciprofloxacin degradation rate only decreased by 4% even after five cycles. Agar diffusion test revealed that CoFe2O4 effectively enhanced ciprofloxacin degradation under US/H2O2 system, and ciprofloxacin antibacterial activity on E.coli was completely removed.
Key words:    magnetic iron cobalt CoFe2O4    ultrasonic/hydrogen peroxide    ciprofloxacin    antibacterial activity    stability   
收稿日期: 2018-03-04
基金项目: 陕西省自然科学基金(2017JM5082),陕西省水利科技项目(2013slkj-07)和环境工程国家重点学科培育学科项目(106-5X1204)资助.
魏红,Tel:13384979290,E-mail:weihong0921@163.com
相关功能
PDF(4017KB) Free
打印本文
加入收藏夹
把本文推荐给朋友
作者相关文章
史京转  在本刊中的所有文章
魏红  在本刊中的所有文章
周孝德  在本刊中的所有文章
程小莉  在本刊中的所有文章
李克斌  在本刊中的所有文章

参考文献:
[1] TONG L, LI P, WANG Y X, et al. Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS[J]. Chemosphere, 2009, 74(8):1090-1097.
[2] NAKATA H, KANNAN K, JONES P D, et al. Determination of fluoroquinolone antibiotics in wastewater effluents by liquid chromatography -mass spectrometry and fluorescence detection[J]. Chemosphere, 2005, 58(6):759-766.
[3] PENG X Z, TAN J H, TANG C M, et al. Multiresidue determination of fluoroquinolone, sulfonamide, trimethoprim, and chloramphenicol antibiotics in urban waters in China[J]. Environmental Toxicology and Chemistry, 2008, 27(1):73-79.
[4] STURINI M, SPELTINI A, PRETALI L, et al. Solid-phase extraction and HPLC determination of fluoroquinolones in surface waters[J]. Journal of Separation Science, 2009, 32(17):3020-3028.
[5] SARA R M, SARA C, ELISABET M, et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river[J]. Water Research, 2015, 69:234-242.
[6] 孙晓君, 冯玉杰, 蔡伟民,等. 废水中难降解有机物的高级氧化技术[J]. 化工环保, 2001, 21(5):264-269. SUN X J, FENG Y J, CAI W M, et al. Advanced oxidation processes for refractory organic pollutants in wastewater[J]. Environmental Protection of Chemical Industry, 2001, 21(5):264-269(in Chinese).
[7] 宋孟珂. 高级氧化技术处理废水中药品与个人护理用品的研究[D].新乡:河南师范大学硕士论文,2011. SONG M K. Research on the degradation of PPCPs in water by advanced oxidation technologies(AOTs)[D]. Xinxiang:Master's thesis of Henan Normal University, 2011(in Chinese).
[8] 吕春玲, 王莹, 刘强,等. UV/Fenton混凝法对浮选废水预处理研究[J]. 黄金, 2015, 36(4):75-77. LV C L, WANG Y, LIU Q, et al. Experimental study on the pre-treatment of flotation wastewater by UV/Fenton oxidation-coagulation process[J]. Gold, 2015, 36(4):75-77(in Chinese).
[9] RAHMANI H, GHOLAMI H, MAHVI A.H, et al. Tinidazole removal from aqueous solution by sonolysis in the presence of hydrogen peroxide[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 92(3):341-346.
[10] WANG X K, WANG Y N, LI D J,et al. Degradation of tetracycline in water by ultrasonic irradiation[J]. Water Sciense &Technology, 2013, 67(4):715-721.
[11] WEI H, HU D, SU J, et al. Intensification of Fe3O4 magnetic nanoparticles on levofloxacin sono-degradation under a US/H2O2 system[J]. Chinese Journal of Chemical Engineering, 2015, 23:296-302.
[12] 张中杰, 王旭, 邱士鑫,等.磁性埃洛石对水溶液中盐酸土霉素的吸附[J]. 环境工程学报, 2013, 7(10):3921-3926. ZhANG Z J,WANG X,QIU S X,et al. Adsorption of oxytetracycline hydrochloride in aqueous solutions by magnetic halloysite composites[J]. Chinese Journal of Environmental Engineering, 2013, 7(10):3921-3926(in Chinese).
[13] 伊玉. 可回收磁性材料CoFe2O4/GO催化PMS降解染料废水的性能研究[D].上海:东华大学硕士学位论文, 2014. YI Y. The Research on the degradation of dye wastewater using PMS activated by CoFe2O4 immobilized on GO[D]. Shanghai:Donghua University Master's Dissertation, 2014(in Chinese).
[14] GUO X J, LI H R, ZHAO S G, et al. Fast degradation of acid orange Ⅱ by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 55:90-100.
[15] 马楠, 刘华波, 谢鑫源,等. 天然矿物负载Fe/Co催化H2O2氧化降解阳离子红3R[J]. 环境科学, 2015, 36(2):576-583. MA N, LIU H B, XIE X Y, et al. Oxidation of cationic red 3R in water with H2O2 catalyzed by mineral loaded with Fe/Co[J]. Environmental Science, 2015, 36(2):576-583(in Chinese).
[16] 魏红, 杨虹, 赵琳,等. 粉煤灰增强超声/H2O2降解左氧氟沙星的实验研究[J]. 中国环境科学, 2014, 34(4):889-895. WEI H, YANG H, ZHAO L, et al. Enhancement of levofloxacin degradation in US/H2O2 system by addition of fly ash[J]. China Environmental Science, 2014, 34(4):889-895(in Chinese).
[17] BEGG J D, ZAVARIN M, KERSTING A B, et al. Plutonium desorption from mineral surfaces at environmental concentrations of hydrogen peroxide[J]. Environmental Science& Technology, 2014, 48(11):6201-6210.
[18] SPANNRING P, PRAT I, COSTAS M,et al. Fe(6-Me-PyTACN)-catalyzed, one-pot oxidative cleavage of methyl oleate and oleic acid into carboxylic acids with H2O2 and NaIO4[J]. Catalysis Science&Technology, 2014, 4(3):708-716.
[19] LU X F, YANG L, BIAN X J, et al. Rapid, microwave-assisted, and one-pot synthesis of magnetic palladium-CoFe2O4-graphene composite nanosheets and their applications as recyclable catalysts[J]. Particle & Particle Systems Characterization, 2014, 31(2):245-251.
[20] 姚志鹏, 张颖, 王慧,等. CoFe2O4-活性炭磁性纳米复合材料吸附去除罗丹明B染料[J]. 西南大学学报(自然科学版), 2015, 37(7):166-169. YAO Z P, ZHANG Y, WANG H, et al. Removed of rhodamine B by an activated carbon-CoFe2O4 magnetic nanocomposite[J]. Journal of Southwest University (Natural Science Edition), 2015, 37(7):166-169(in Chinese).
[21] ANDERSSON A. S, THOMAS J. O, et al. The source of first-cycle capacity loss in LiFePO4[J]. Journal of Power Sources, 2001, 97/98(1/2):498-502.
[22] 王彦斌, 赵红颖, 赵国华,等. 基于铁化合物的异相Fenton催化氧化技术[J]. 化学进展, 2013, 25(8):1246-1259. WANG Y B, ZHAO H Y, ZHAO G H, et al. Iron compounded -based heterogeneous Fenton catalytic oxidation technology[J]. Progress in Chemistry, 2013, 25(8):1246-1259(in Chinese).
[23] 陆天宇, 周培国, 张楠,等. 以凹凸棒土为载体的非均相Fenton催化剂处理苯酚废水研究[J]. 环境污染与防治, 2018, 40(2):155-160. LU T Y, ZHOU P G, ZHANG N, et al. Research on treatment of phenol wastewater by attapulgite heterogeneous Fenton catalysts[J].Environmental Pollution & Control, 2018, 40(2):155-160(in Chinese).
[24] 吴大清, 刁桂仪,等. 含铁矿物的表面催化氧化作用及其环境意义[J]. 矿物岩石, 2003, 23(4):11-14. WU D Q, DIAO G Y, et al. The surface catalyzed oxidation of iron-bearing minerals and their environmental significations[J]. J Mineralogy Petrology, 2003, 23(4):11-14(in Chinese).
[25] 孔青青, 张祥丹, 李富华,等. 不同形态氮对水环境中氯贝酸光降解的影响[J]. 中国环境科学, 2017, 37(2):584-591. KONG Q Q,ZHANG X D,LI F H, et al. Effect of different forms of nitrogen on the photodegradation of clofibric acid in water environment[J]. China Environmental Science, 2017, 37(2):584-591(in Chinese).
[26] 何占伟, 刘国光, 刘海津,等. 水体中不同形态氮对环丙沙星溶液光降解影响[J]. 环境科学学报, 2011, 31(11):2409-2415. HE Z W, LIU G G, LIU H J, et al. The effect of different nitrogen forms on the photo-degradation of ciprofloxacin in water[J]. Acta Scientiae Circumstantiae, 2011, 31(11):2409-2415.(in Chinese).
[27] ZHANG X X, LI R P, JIA M K, et al. Degradation of ciprofloxacin in aqueous bismuth oxybromide(BIOBr) suspensions under visible light irradiation:a direct hole oxidation pathway[J].Chemical Engineering Journal, 2015, 274:290-297.
[28] 孙猛, 李娟, 徐勤勤,等. 超声波对垃圾渗滤液COD和氨氮去除的研究[J]. 中国农学通报, 2010, 26(18):347-352. SUN M, LI J, XU Q Q, et al. The research of removing COD and NH3-N in landfill leachate by using ultrasonic[J]. Chinese Agricultural Science Bulletin, 2010,26(18):347-352(in Chinese).
[29] 尚会建, 周艳丽, 赵彦,等. 活性炭催化臭氧氧化处理低浓度氨氮废水[J]. 化工环保, 2012, 32(5):405-408. SHANG H J,ZHOU Y L,ZHAO Y, et al.Treatment of low-concentration ammonia nitrogen wastewater by catalytic ozonation process with activated carbon[J].Environmental Protection of Chemical Industry, 2012,32(5):405-408(in Chinese).
[30] 彭人勇, 陈康康, 李艳琳,等. 超声吹脱处理印染废水中氨氮的研究[J]. 环境科学与技术, 2010, 33(10):166-168,204. PENG R Y, CHEN K K, LI Y L, et al. Removal of ammonia nitrogen in dyeing wastewater by ultrasonic stripping[J]. Environmental Science & Technology, 2010,33(10):166-168,204(in Chinese).
[31] 伊玉, 李洁冰, 王倩,等. 无机盐离子对CoFe2O4/GO催化PMS氧化降解酸性橙Ⅱ的影响[J]. 广东化工, 2014, 41(13):10-11. YI Y, LI J B, WANG Q, et al. The effects of inorganic ions on the CoFe2O4/GO catalytic oxidation orange Ⅱ by PMS[J]. Guangdong Chemical Industry, 2014,41(13):10-11(in Chinese).
[32] 朱锡忠, 王泉源, 胡建强,等. 微波协同CuFeO2类Fenton反应降解橙黄G的研究[J]. 广州化工, 2017, 45(11):110-113,138. ZHU X Z, WANG Q Y, HU J Q, et al. Degradation of orange G by microwave coupled with Fenton-like reaction using CuFeO2 as catalysis[J]. Guangzhou Chemical Industry,2017,45(11):110-113,138(in Chinese).
[33] 赵莹, 任月明, 张慧玉,等. Go/CoFe2O4催化过硫酸盐降解邻苯二甲酸二丁酯效能[J]. 哈尔滨工业大学学报, 2017, 49(8):31-36. ZHAO Y, REN Y M, ZHANG H Y, et al. Efficiency of dibutyl phthalate degradation by Go/CoFe2O4 catalytic oxidation of peroxymonosulfate[J]. Journal of Harbin Institute of Technology, 2017,49(8):31-36(in Chinese).
[34] SHEN L L, MITSCHER L A, SHARMA P N, et al. Mechanism of inhibition of DNA gyrase by quinolone antibacterials:A cooperative drug-DNA binding model[J]. Biochemistry, 1989, 28(9):3886-3894.
[35] 魏红, 杨虹, 李克斌,等. CCl4增强超声降解环丙沙星的效果及路径解析[J]. 高校化学工程学报, 2015, 29(3):703-708. WEI H, YANG H, LI K B, et al. The enhanced effect of ciprofloxacin sonochemical degradation by adding CCl4 and its degradation pathways[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(3):703-708(in Chinese).
[36] TIAS P, MICHAEL C. D, TIMOTHY J. S, et al. Photolytic and photocatalytic decomposition of aqueous ciprofloxacin:Transformation products and residual antibacterial activity[J]. Water Research, 2010, 44(10):3121-3132.
[37] 魏红, 史京转, 杨虹,等. CCl4强化超声降解诺氟沙星的效果和抗菌性分析[J]. 环境化学, 2015, 34(5):884-890. WEI H,SHI J Z, YANG H, et al. Degradation and antibacterial activity analysis of norfloxacin under CCl4-enhanced ultrasound irradiation process[J]. Environmental Chemistry,2015,34(5):884-890(in Chinese).